

Talk Overview

Introduction

- Jets
- Physics with jets
- Corrections and uncertainties
 - Different levels of jets
 - Does the Monte Carlo reproduce the data?
- Tests and cross-checks
 - Are the corrections accurate?
 - Are the uncertainties believable?
- Conclusions

Jets

- Measurements of hard scattering processes in ppbar collisions depend on the determination of the 4-momenta of quarks and gluons produced in the hard scatter
- The measurement of these 4-momenta relies on the reconstruction of hadronic jets resulting from the quark or gluon fragmentation
- Jets are complicated objects measured by calorimeter towers and defined by a clustering algorithm
- To convert jet energies to parton energies we need to correct for:
 - Instrumental effects
 - Physics effects
 - Jet algorithm effects

10/10/05

Jets

Instrumental effects:

- non-linear calorimeter
- non-instrumented regions
- non-compensating calorimeter
- may not contain low energy deposition

Algorithm effects:

- might not capture all particles
- Iow energy jets might not be possible to define

Physics effects:

- hadronization
- spectator interactions
- radiation
- multiple ppbar interactions
- flavor of the parent parton

10/10/05

Physics with Jets

Precision on the determination of jet energies is required by many analyses NLO pQCD EKS CTEQ 6.1, (μ =P_T^{Jet}/2), R_{sen}=1.3 Cross Section Ratio (Data/Theory) — LEP1, SLD data Midpoint cone R=0.7, f_merce=0.75 ····· LEP2 (prel.), pp data (CDF-II m,) 80.5 Data corrected to parton level 2.5 68% CL 0.1<|Y|<0.7 L = 385 pb⁻¹ [_____ 5] 80.4 Systematic uncertainty. Systematic uncertainty including 2– hadronization and underlying event. ĕ -NLO pQCD PDF uncertainty. Data/NLO pQCD 1.5 80.3 CDF Run II Preliminary 0.5 6% luminosity uncertainty not included 150 175 200 500 600 400 0 100 200 300 m, [GeV] P_T (GeV/c) 1% uncertainty in jet => ~10% $M_{top} = 173.5^{+2.7}_{-2.6}(stat.) \pm 2.5(JES) \pm 1.7(syst.)GeV/c^{2}$ uncertainty in jet cross section Florencia Canelli - UCLA 10/10/05 6

CDF Jet Energy Scale Philosophy

D To accommodate the needs of different physics analyses:

- Corrections from 8 GeV to 600 GeV
- Corrections for different jet clustering algorithms: Cone 0.4, 0.7, 1.0, Midpoint, K_T
- Different levels of jet energy corrections
- Obtained from "generic" flavor jets

They are obtained from Monte Carlo (generators+CDF simulation):

- Need good models of hadronization and radiation in generators (Pythia, Herwig)
- Need good CDF detector simulation (GFLASH)

Jet Energy Corrections Overview

Calibration:

- Calorimeter energy scale
- Detector simulation
- Physics models

Corrections:

- **\bigcirc** Obtain calorimeter-to-particle corrections using simulated dijet events (C_{Abs})
- Obtain particle-to-parton corrections using Monte Carlo shower in dijet events (C_{ooc})
- Make jet energy scale uniform in η using dijet balance (data and Monte Carlo) (C_{Rel})
- **Pile-up and underlying event** are measured from data (C_{MI} and C_{UE})

$$\mathbf{P}_{\text{Parton}} = \left[\mathbf{P}_{\text{jet}} \times \mathbf{C}_{\text{Rel}} - \mathbf{C}_{\text{MI}} \right] \times \mathbf{C}_{\text{Abs}} - \mathbf{C}_{\text{UE}} + \mathbf{C}_{\text{OOC}}$$

Uncertainties:

- Differences between Monte Carlo and data
- Uncertainties from the method used to obtain the corrections

10/10/05

Calorimeter Energy Scale

Scale

- CEM and PEM set using Z→e⁺e⁻ = LEP measurement
- CHA and PHA set using test beam pions (57 GeV)
- Maintained using *in-situ* and test beam measurements

Stability

- Scales decrease due to aging of photomultipliers and scintillators
- Online response is kept stable better than 3%
- Offline response is kept stable better than 0.3% for CEM, PEM and 1.5% for CHA, WHA, PHA

Calorimeter Simulation

CDF Run II simulation:

- GEANT 3 propagates particles up to the first inelastic interaction in the calorimeter
- GFLASH (from H1) parameterize the electromagnetic and hadronic showers shapes in the calorimeter

Calorimeter simulation (GFLASH) :

- Calculates spatial distribution of energy deposited by a shower and the energy which is visible to the active medium (using sampling fractions, 2 parameters)
- Longitudinal shower profile (18 parameters)
- Lateral shower profile (14 parameters)
- Energy is summed into towers based on the CDF calorimeter tower segmentation
- Parameters are modified to reproduce energy deposition from data
- Only a fraction of the available parameters are tuned, rest using default setting by H1 collaboration

Tuning of the Calorimeter Simulation

Single Particle Response - Central Region

Single Particle Response - Central Region

Uncertainties from Single Particle Response

Central region			
p(GeV/c)	0-12	12-20	>20
<e p=""> response to hadrons</e>			
in inner 81% (%)	1.5	2.5	3.5
in 19% near phi and eta boundaries (%)	1.9	1.9	1.9
Total hadrons (%)	2.5	3.0	4.0
<e p=""> response to EM particles</e>			
in inner 84% tower (%)	1.0	1.0	1.0
in 16% near phi boundary (%)	1.6	1.6	1.6
Total EM particles (%)	1.7	1.7	1.7

These numbers will be passed to the jet scale uncertainty

10/10/05

Calorimeter Simulation in the Forward Region

η-dependent Corrections Dijet balance as a function of $\boldsymbol{\eta}$ Not β_{dijet} 1.3 β_{dijet} optimal 1.2 1.2 **MC** tuning 1.1 1.1 in plug region 0.9 0.9 0.8 0.8 55>p_T">75 GeV/c 25>p_">55 GeV/c 0.7 0.7 Herwig 0.6 0.6 discrepancies $\tilde{\eta}_{jet}^3$ -3 η_{jet}^3 -2 -3 -2 -1 0 1 2 -1 0 1 2 are only seen β_{dijet} 1.3 in dijet 1.3 β_{dijet} 1.2 1.2 samples 1.1 1.1 0.9 0.9 0.8 0.8 75>pT >105 GeV/c prave>105 GeV/c 0.7 0.7 0.6 0.6 $\hat{\eta}_{jet}^3$ $\tilde{\eta}_{jet}^3$ -2 -3 -2 -1 0 2 -3 -1 0 1 1 2 Data R_{iet}=0.4: Pythia ▲ Herwig 10/10/05 Florencia Canelli - UCLA 18

η-dependent Corrections

Jet Energy Scale Corrections

- Once the calorimeter simulation is done and the p_T response is uniform in η we need to correct for calorimeter effects
- Only obtained with central jets (0.2<|η|<0.6)
- Corrections obtained using two leading jets in MC PYTHIA dijet events with difference minimum P_T (0-600 GeV)
- Parameterize difference between calorimeter jet and particle jet (calorimeter corrections) and particle jets and parton (OOC+UE corrections)

Calorimeter Uncertainties

Physics Effects: Multiple Interactions

Correction:

- Energy in a random cone in minimum bias events as a function of the number of reconstructed vertices (N_{vtx})
- Use parameterization to subtract corresponding energy

Uncertainty (15% of correction):

Vertex reconstruction efficiency

Physics Effects: Underlying Event

- **Correction:** Use Multiple Interactions correction at N_{vtx}=1
 - 0.11 GeV (R=0.4)
 - 0.32 GeV (R=0.7)
 - 0.66 GeV (R=1.0)

Uncertainty: Quantify agreement between MC and data by comparing charged particle transverse energy densities in "transverse regions" w.r.t. leading jets in dijet events

30% uncertainty of correction

tuned to CDF data

Herwig UE seems too small - we (Rick Field) are working on tuning **Jimmy (Herwig UE** model) to CDF Run II

Total Uncertainties

Validation of the η-dependent Corrections

P_T Balance = P_T^{Jet}/P_T^{γ} -1 in Photon+Jets events

28

Validation of the Calorimeter Corrections

applied to jets After corrections p_T balance of photon and jet should be similar to the

particle level (p_T balance

29

Future Improvements

- Improve calorimeter simulation:
 - Lateral profile
 - Statistical precision of central calorimeter (medium p)
 - Extend tuning to higher p to avoid the use of test beam data
 - Measurement of single particle response in the plug calorimeter

Improve performance of physics generators:

- better understanding of the underlying event, gluon radiation effects
- tuning of Pythia, Herwig (Jimmy)
- Improve jet resolution

10/10/05

Will Z->bbbar help with the JES in the near future?

Conclusions

- CDF has a set of corrections and uncertainties that are very solid
- The main component consist of tuning the calorimeter simulation to single particle response
- Uncertainties are about 3% and we are working on decreasing them as well improving our means
- Besides decreasing JES uncertainties, Improvements in JES benefit many analysis: better simulation, missing ET resolution, better physics models
- At 320pb⁻¹, the top mass in the golden channel, the JES plays an very important role reducing the error from W->jj. In the future, as more data is accumulated, the impact of JES will be limited in this channel comparing to W->jj

Moreover, there are other analyses for which the JES will soon be an important uncertainty (if not yet)

Improvements - Monte Carlo

Improvements - Simulation

- **Central**:
 - For p<20 GeV</p>
 - more statistics to evaluate E/p uncertainty
 - if the discrepancy is large, tune the Monte Carlo
 - For p>20 GeV
 - replace test beam measurement for in situ calibration
 - special trigger
 - Lateral profile:
 - could improve the calorimeter showering, decrease out-of-cone uncertainty

Plug:

- Having a better forward simulation will allow us to be independent of the dijet balance method
- p_T balance in dijet event is topology dependent and might create a bias
- Will improve MET resolution

Single Particle Response - φ-boundaries

HAD particles

- Signal defined in only 81% of calorimeter HAD towers
- 10% discrepancy in 19% of the tower: 1.9% uncertainty in single particle response
- Similar effect seen at ηboundaries

Single Particle Response - φ-boundaries

EM particles

- \(\phi_{rel}\) azimuthal angle of the track impact point w.r.t. the target tower center
- Signal defined in 84% of calorimeter EM towers
- 10% discrepancy in 16% of the tower: 1.6% uncertainty in single particle response
- Similar effect seen at ηboundaries

Particle Multiplicity

- p_T spectrum of particles inside a jet depends on fragmentation details
- Spectrum corrected for track inefficiencies and underlying event contribution
- Good agreement between MC and data for all jet p_T bins

10/10/05

Particle Multiplicity Uncertainties

10/10/05

Florencia Canelli - UCLA

41

η-dependent Uncertainties Run I vs Run II

Gflash in a Nutshell

