NASA Home Sitemap Dictionary FAQ
+
+
+
Solar System Exploration Multimedia
Solar System Exploration Home
News and Events
Planets
Missions
Science and Technology
Multimedia
People
Kids
Education
History
Galactic Twin
 
 
Galactic Twin
What would our Milky Way galaxy look like if we could travel outside it and snap a picture? It might look a lot like a new image by NASA's Spitzer Space Telescope of a spiral galaxy called NGC 7331 - a virtual twin of our Milky Way.

The picture shows our twin as never before. Its swirling arms spin outward from a central bulge of light, which is outlined by a ring of actively forming stars.

"Being inside our galaxy makes it difficult to see what's going on in the center," said Dr. J.D. Smith, a member of the team that observed NGC 7331, and an astronomer at the University of Arizona, Tucson. "By looking at a very similar galaxy, we gain a bird's eye-view of what the entire Milky Way might look like."

Such an outside perspective will teach astronomers how our own galaxy, as well as others like it, might have formed and evolved. The latest observations are the first in a large-scale effort to observe 75 nearby galaxies with Spitzer's highly sensitive infrared eyes. Called Spitzer Infrared Nearby Galaxies Survey, the program will combine Spitzer data with that from other ground- and space-based telescopes operating at wavelengths ranging from ultraviolet to radio to create a comprehensive map of the selected galaxies. The program's first target, NGC 7331, was chosen in part for its striking similarities to the Milky Way. While these so-called twin galaxies do not share the same parents, they have many features in common, including number of stars, mass, spiral arm pattern and star-formation rate of a few stars per year. Whether the Milky Way has an inner star-forming ring like that of NGC 7331 is not known. NGC 7331 is located about 50 million light-years away in the constellation Pegasus.

The Spitzer image demonstrates the power of the telescope's infrared eyes to dissect galaxies into their various parts. Taken by the telescope's infrared array camera, the false-colored picture readily distinguishes NGC 7331's arms (brownish red), central bulge (blue) and star-forming ring (yellow). The composition of materials making up these regions was also revealed by the Spitzer observations: the central bulge consists primarily of older stars; the ring possesses a large amount of gas and dusty organic molecules called polycyclic aromatic hydrocarbons, which typically glow when illuminated by newborn stars; and the arms contain these same dust grains to a lesser degree. Polycyclic aromatic hydrocarbons are also found on Earth, on burnt toast and in car exhaust among other places.

Data from Spitzer's infrared spectrograph instrument were also used to show that the center of NGC 7331 harbors either an unusually high concentration of massive stars, or a moderately active black hole about the same size as the one lurking at the core of our galaxy.

Image Credit: NASA/JPL-Caltech/STScI
Explore more of NASA on the Web:
FirstGov - Your First Click to the U.S. Government
+
+
+
+
+
NASA Home Page
+