THORACIC ELECTRICAL BIOIMPEDANCE

Prepared for: Agency for Health Care Research and Quality U.S. Department of Health and Human Services 2101 East Jefferson Street Rockville, MD 20852 http://www.ahrq.gov

Contract No. 290-97-0019 Task Order #10 EPC Technical Support of the CPTA Technology Assessment Program

Prepared by Tufts-New England Medical Center AHRQ Evidence-based Practice Center

Harmon S. Jordan, ScD John P. A. Ioannidis, MD Leonidas C. Goudas, MD, PhD Mei Chung, MPH Bruce Kupelnick, BA Kimberly Miller, BA Norma Terrin, PhD Joseph Lau, MD

July 2, 2002 (rev. November 27, 2002)

Document must be viewed in "Page Layout" mode for all figures to display.

TABLE OF CONTENTS

Page	Section
2	Table of Contents
3	Abstract
7	Introduction
14	Methods
30	Results
65	Further Consideration Of Certain Relevant Abstracts And
	Other Material
77	Previous Systematic Reviews
79	Discussion
86	Conclusion
89	Tables, Figures, and Appendices
113	Evidence Table 1: Comparison Studies
164	Evidence Table 2: Non-comparison Studies
172	References

Abstract 1 2 THORACIC ELECTRICAL BIOIMPEDANCE 3 4 Purpose: Thoracic electrical bioimpedance (TEB) is an alternative to invasive 5 monitoring of hemodynamic parameters including cardiac output, stroke volume, 6 and cardiac index. The Centers for Medicare and Medicaid Services (CMS) 7 requested a technology assessment by the Agency for Health Care Research 8 and Quality (AHRQ) to evaluate data on the clinical effectiveness of thoracic 9 electrical bioimpedance (TEB) for several cardiovascular applications. The Tufts-10 New England Medical Center was asked to conduct a technology assessment on 11 the literature published since an earlier report published in 1992 by the Agency 12 for Health Care Policy and Research (now AHRQ). 13 14 Materials and Methods: We conducted a systematic review and meta-analysis 15 of the TEB literature. We searched MEDLINE[®] using synonyms for "impedance 16 cardiography;" the search strategy was restricted to the English language, to 17 human subjects, and was conducted for the period from 1966 through January 18 2002. This search yielded more than 8000 articles. An updated search was 19 performed on July 22, 2002. Inclusion criteria for articles included date of 20 publication 1991 and onward, reporting on the methodology of TEB as a 21 diagnostic and/or monitoring tool or TEB in comparison to another diagnostic 22 technique for the clinical indications of interest. Seventy-seven articles were 23 included in the evidence tables of this report. 24 25 We performed meta-analyses by constructing subgroups (i.e., inpatient, 26 outpatient, emergency department, and years of publication - to account for most 27 recent technology) for selected comparison techniques, equations used by the 28 devices and hemodynamic parameters --- cardiac output, cardiac index, and 29 stroke volume. 30 31 32 Results: 33 34 1. Accuracy of bioimpedance devices The overwhelming majority of studies reported only the correlation coefficient of 35 bioimpedance when compared to alternative techniques, such as thermodilution 36 (TD). Correlation coefficients were in the range of -0.01 to 0.97. Correlation 37 coefficients have serious limitations when used to summarize diagnostic test 38

- 39 data, and there are no methodologic crosswalks which can allow correlation
- 40 coefficients to reflect well-established parameters of accuracy, such as sensitivity

and specificity. There was significant between-study heterogeneity due to factors 41 other than the factors that we used to stratify studies. The majority of the studies 42 were done on the NCCOM device, a device that is no longer commercially 43 produced. There is wide variation in results across the instruments; the variation 44 could be due to differences in instrument performance, but there is not enough 45 data available on any one instrument to draw conclusions about this. We also 46 reported the bias (systematic error) and limits of agreement (random variation) in 47 studies of TEB. The test for heterogeneity across studies was statistically 48 significant for bias and limits of agreement for cardiac output for TD, suggesting 49 that there may be patient populations where TEB measurements can be much 50 farther from the TD measurement than the combined limits of agreement 51 indicate. 52 53 Errors in placement of the leads, and clinical factors such as patient weight and 54 presence of pulmonary edema, have been reported to affect results of 55 measurements. Data on the effect of these factors have not been adequately 56 reported in published literature with currently available commercial devices on 57 the outpatient population of interest. 58 59 60 2. Clinical Results 61 A. MONITORING IN PATIENTS WITH SUSPECTED OR KNOWN 62 CARDIOVASCULAR DISEASE 63 No studies provided information on health outcomes, patient management, or on 64 clinical endpoints to address the usefulness of TEB in monitoring or 65 management. 66 67 **B. ACUTE DYSPNEA:** 68 No studies were found that evaluated the clinical impact on patient management 69 and/or improved health outcomes from the use of TEB monitoring for the 70 differentiation of cardiogenic from pulmonary causes of acute dyspnea. 71 72 C. PACEMAKERS: 73 74 There were no well-designed studies for this indication that provided information on the clinical impact on patient management or improved health outcomes. For 75 example, since none of the studies reported health outcomes after adjustment of 76 the atrioventricular delay (AV) setting, the evidence is insufficient to conclude 77 whether TEB optimization of the AV delay improves health outcomes. 78 79 80

- 81 D. INOTROPIC THERAPY:
- No studies were found that evaluated the clinical impact on patient management
- and/or improved health outcomes from the use of TEB monitoring of patients in
- 84 need of inotropic therapy.
- 85
- 86 E. POST-HEART TRANSPLANT EVALUATION:
- 87 Only one study reported sensitivity and specificity of TEB as a diagnostic test.
- In this study, TEB had a sensitivity and specificity of 71% and 100%,
- 89 respectively, for detecting rejection in heart transplant patients, suggesting that, if
- this finding were replicated, TEB might be a useful adjunct to the standard test,
- 91 myocardial biopsy.
- 92
- 93 F. CARDIAC PATIENTS WITH A NEED FOR FLUID MANAGEMENT:
- 94 Several studies were identified which assessed congestive heart failure patients
- 95 with a need for fluid management with whole body impedance, but no such
- 96 studies involving TEB were found.
- 97

98 G. HYPERTENSION:

- 99 Only one study reported patient outcomes, and this was a randomized study of
- 100 the use of TEB compared to specialist care in guiding management of patients
- 101 with resistant hypertension. In this study, patients who were monitored with TEB
- had a small, but statistically significant, lower blood pressure at the end of the
 study, compared to patients treated using clinical judgment. Blood pressure is a
- well-accepted intermediate result for health outcomes of interest such as lower
- rates of stroke. Despite the randomized design, the TEB group had a lower
- average blood pressure at the beginning of the study. The difference in blood
- 107 pressure between groups at the end of the study was not much larger than the
- 108 difference at the beginning. Patients in both the control and TEB groups had
- 109 large reductions in blood pressure compared to their starting pressures,
- suggesting that the majority of the benefit may have been due to intensive
- management by expert specialists. The results may not be generalizable to
- 112 community practice.
- 113
- **Conclusion**: Due to limitations in the studies, no meaningful conclusions can be drawn about the accuracy of TEB, compared to alternative measures of hemodynamic parameters. There is also little conclusive evidence regarding TEB's usefulness in the specific clinical areas addressed. This was largely due to the lack of focus on clinical outcomes by researchers in this area. The clinical reports on the use of TEB for a variety of clinical indications in reports published from 1991 onwards suggested that this non-invasive method is of interest and

- 121 may potentially support some of these indications, but there is little evidence that
- directly addressed how this monitoring technique can affect patient outcomes.

124

125 **1. INTRODUCTION**

Indicators of cardiac function, measured through invasive techniques such as 126 pulmonary artery catheters, are often used for applications such as peri-operative 127 128 monitoring of surgical patients. Thoracic electrical bioimpedance (TEB) cardiography is a noninvasive technology for cardiac output monitoring. TEB has 129 been suggested as a replacement for invasive techniques in critically ill and 130 surgical patients; due to the noninvasive nature of TEB, other applications have 131 also been suggested in the outpatient setting. These applications include 132 optimizing hemodynamic parameters in patients with congestive heart failure, 133 patients with pacemakers, patients needing fluid management, and patients with 134 135 other conditions. 136 TEB devices measure a variety of hemodynamic parameters, including 137 Cardiac output --- the volume of blood pumped each minute by the heart 138

(Tate, Seeley, Stephens, et al., 1994). Cardiac output is a function of the heart
rate (pulse) and the stroke volume (amount of blood pumped by each ventricle
of the heart in one contraction).

142	•	Cardiac index although this measure is not widely used in practice, it is
143		theoretically more useful than cardiac output, because it adjusts for patient
144		weight and height.

Ejection fraction --- this important indicator of cardiac function denotes the
 proportion of total blood in the ventricle pumped out of the heart in one
 contraction.

148

A variety of methods and devices have been developed to measure these parameters, and some of these are more invasive than others. Invasive techniques such as cardiac catheterization subject the patient to increased risk, are more complex and costly, and require more training. Another disadvantage of invasive techniques is that they are impractical in the outpatient setting (De Maria and Raisinghani, 2000). Non-invasive techniques that decrease risk but which provide the same or greater accuracy would be of great benefit.

157 The following table briefly describes several invasive and non-invasive

measurement techniques. The techniques are ranked roughly in order of their

159 usefulness as reference standards for the current analysis. (An asterisk indicates

that the material is extracted from De Maria and Raisinghani (2000):

	Technique	Inva- sive?	Description
1.	Direct Fick*	Yes	 Estimates cardiac output through direct measurement of mixed venous blood oxygen concentrations Gold standard but usually confined to the cardiac catheterization lab and research settings
2.	Indirect Fick*	Yes	 Similar to direct Fick but uses pulse oximetry assessment of arterial oxygen content
3.	Thermo- dilution*	Yes	 Estimates cardiac output by measuring change in temperature of a solution injected into the right atrial chamber Large measurement variability Most widely used in clinical practice
4.	Dye dilution	Yes	• Similar to thermodilution. Dye is injected into pulmonary artery and its concentration is measured at a peripheral site
5.	Radio- nuclide angiography or ventriculo- graphy	Yes	Estimates cardiac output by dynamic sampling of left ventricular radioactive counts.
6.	Echocardio- gram/Dopp- ler	No	 Measures stroke volume and provides a complementary estimation of systolic function by providing velocity values as well as two-dimensional images
7.	Echocardio- gram/non- Doppler*	No	 Measures ejection fraction (and therefore stroke volume) by using two-dimensional images of the left ventricle to estimate its volume Under-estimates left ventricular volume

163 TEB is one of a variety of methods used to measure cardiac output, cardiac

¹⁶⁴ index, stroke volume, and ejection fraction. TEB takes advantage of the fact that

resistance to electrical current in the thorax (the area between the neck and

abdomen) varies in relation to the amount of blood in the aorta. It works by

introducing a low voltage alternating current between sets of electrodes (leads) 167 placed on the skin surface over the thorax. The difference between the voltage 168 that is introduced by the device and that which the device senses moving through 169 the thorax indicates the amount of resistance (impedance) that the electrical 170 current encounters. The impedance, in conjunction with electrocardiographic 171 results and an equation, are used to estimate stroke volume, from which other 172 cardiac measures may be computed (De Maria and Raisinghani, 2000). Cardiac 173 index is another cardiac parameter that can be calculated from bioimpedance 174 measurements. While ejection fraction can also be calculated, TEB has not been 175 viewed as a substitute for echocardiography or radionuclide ventriculography. 176 177

178 **1.1 Requests by the Centers for Medicare and Medicaid Services**

The Centers for Medicare & Medicaid Services (CMS) requested a technology assessment by the Agency for Health Care Research and Quality (AHRQ) to address a number of issues regarding the value of TEB.

182

These issues include:

184 **1.** A review of the diagnostic test performance of electrical bioimpedance for

measurement of cardiac output, stroke volume, thoracic fluid content, and

other physiological parameters including the following elements:

187	 Comparison to the diagnostic test performance of alternative tests
188	A review of information from clinical trials (if any) on any factors (for
189	example, placement of leads, experience of the operator, comorbid
190	conditions) that may affect the test performance of electrical bioimpedance
191	and the limitations that these factors would place on clinical utility.
192	
193	2. A review of the clinical trial literature on the use of electrical bioimpedance for
194	the following seven indications, with a focus on data demonstrating changes in
195	patient management and/or improved health outcomes from the use of the
196	device. The first six indications are taken from CMS' existing national
197	coverage policy on the use of TEB:
198	
199	 Noninvasive diagnosis or monitoring of hemodynamics in patients with
200	suspected or known cardiovascular disease.
201	 Differentiation of cardiogenic from pulmonary causes of acute dyspnea.
202	 Optimization of atrioventricular interval for patients with A/V sequential
203	cardiac pacemakers.
204	 Patients with need of determination for intravenous inotropic therapy.
205	Early identification of rejection in post heart transplant myocardial biopsy
206	patients.

207	Cardiac patients with a need for fluid management (Excluding patients on
208	dialysis and with cirrhosis of the liver).
209	Management of hypertension.
210	
211	3. A review of the setting of the clinical trials of bioimpedance (inpatient vs.
212	outpatient) and issues related to generalizability of data from the inpatient to
213	the outpatient setting.
214	
215	4. A review of any information available in the clinical trials on training of the
216	persons using the devices and any issues related to this training (e.g., must
217	monitoring data be interpreted only by a cardiologist; can nonphysicians
218	collect the data?)
219	
220	In 1992, the Agency published a technology assessment that examined the
221	accuracy of measuring cardiac functions with TEB using literature published up
222	to 1992 (Handelsman, 1992). The following excerpt from that report
223	summarizes the findings: "There continues to be lack of persuasive data
224	derived from rigorous clinical trials supporting the use of [T]EB determinations of
225	cardiac output for the clinical management of any subset of patients Although
226	many investigators have concluded that [T]EB yields satisfactory resultstheir

reliance on correlation coefficients as the main evidence supporting their stance
appears to provide necessary but insufficient evidence of clinical utility in either
hospital or outpatient settings..."

230

The present report is a systematic review of studies that have assessed TEB since the 1992 review. Issues in the assessment of a diagnostic technology include test performance in diagnosing disease, test performance relative to alternatives, and clinical impact. Issues in the assessment of individual research studies include the need for clear definitions, appropriate reference standards, and appropriate statistical analyses. In the following section we describe our systematic review methodology.

238 **2. METHODS**

239 **2.1 Assessment Approach**

AHRQ, CMS, and T-NEMC staff jointly developed an analytic framework for the
assessment of TEB (Figures 2.1 – 2.3). TEB may be used in three different
ways: diagnosis, guiding interventions, and monitoring. An example of the
diagnostic application of TEB is the differentiation of cardiogenic from pulmonary
causes of dyspnea. Examples of guiding interventions and monitoring are
monitoring patients' status in the critical care setting and early diagnosis of
rejection in post-heart transplant patients.

247

As shown in the analytic framework, the primary purpose of this technology 248 assessment is to find evidence directly demonstrating that the use of TEB leads 249 to changes in patient management that in turn lead to better health outcomes for 250 patients. Adverse effects of TEB and any information about alternative 251 technologies that are directly compared to TEB in clinical trials are also included 252 in the technology assessment. The technology assessment also includes studies 253 of the correlation of TEB with other diagnostic tests such as thermodilution (TD), 254 but most of these studies do not report whether changes in patient management 255 were made, or provide information on health outcomes. 256

257

The report on "Recommendations for Evaluating Effectiveness; Executive
Committee Working Group Medicare Coverage Policy" (Executive Committee
Working Group, 2001) stated that:

"...Few studies have directly measured the effects of a diagnostic or screening 261 test on health outcomes (studies of occult blood testing for colon cancer 262 represent one such exception). Typical studies that evaluate the effectiveness of 263 diagnostic, screening, or monitoring tests focus either on technical characteristics 264 (e.g., does a new radiographic test produce higher resolution images?) or effects 265 on accuracy (does it distinguish between patients with and without a disease 266 better than another test?)..." These points apply to TEB. Few well-designed 267 studies evaluate the impact of this test on clinical outcomes. 268

269

Our assessment approach therefore relied on three components and was driven largely by the study design and measurements reported in the literature. The assessments we were able to perform included:

• Assessment of the correlation between TEB and other techniques (high

274 correlation implies that measurements using one method move in the same

direction --- upwards or downwards ---as measurements derived from the

276 method being compared)

Assessment of the bias and limits of agreement of TEB compared to other
 techniques (tests may have high correlation coefficients while still having
 systematic differences from the reference test or large random variation for
 individual measurements; bias and the limits of agreement are one way to
 measure these variations)

• Qualitative assessment of studies on the use of bioimpedance in clinical situations. Our analyses of these studies are presented in narrative form.

284

285 2.2 Literature Search

Using the OVID search engine on January 9, 2002, we conducted a broad 286 search of Medline[®] & PreMedline[®] (Table 2.1). Filters and limitations were used 287 to eliminate inappropriate publications. The search yielded 8330 citations. The 288 search was conducted for the period from 1966 through January, 2002. The 289 290 search strategy was restricted to English language publications about human subjects and consisted of the terms *impedance*, *bioimpedance*, *cardiography*, 291 impedance cardiography, electrical impedance. Synonyms for bioimpedance 292 include: electrical bioimpedance, thoracic electrical bioimpedance (TEB), 293 bioelectrical impedance, electrical impedance tomography, bioimpedance 294 spectroscopy, single or multifrequency bioimpedance, and impedance 295 cardiography. Technical experts were consulted, and references in published 296

meta-analysis and selected review articles were examined to identify additional
articles. An updated search performed on July 22, 2002 yielded 213 additional
abstracts which were identified and screened. Three additional studies qualified
and were included in this report.

301

302 **2.3 Selection Criteria**

All abstracts were reviewed to identify full articles that met the criteria. Those 303 articles reporting on the methodology of TEB as a diagnostic and/or monitoring 304 tool, or TEB in comparison to another diagnostic technique (such as TD, dye 305 dilution, direct or indirect Fick methods, echocardiographic techniques, or 306 radionuclide angiography) in the following seven clinical situations were 307 retrieved: cardiovascular disease, dyspnea, pacemakers, intravenous inotropic 308 therapy, heart transplant, fluid management, hypertension. Both studies that 309 explicitly compared bioimpedance to other techniques (comparative studies) and 310 studies using other types of assessment (noncomparative, qualitative studies) 311 312 were included. (See 'Assessment Of Methodological Issues' below). After discussions with CMS, studies were excluded if they involved: animals, pediatric 313 or obstetric populations, healthy volunteers, patients on dialysis, patients with 314 acromegaly, cystic fibrosis, AIDS, Crohn's disease, obesity solely to determine 315 body composition, patients subjected to laparoscopic cholecystectomy, and 316

patients with cirrhosis of the liver who were on fluid management. In addition, related technologies such as electrical impedance tomography (EIT) were excluded. If the article did not specifically say that *thoracic* impedance was measured, or if non-thoracic electrode placement was used (i.e. whole body impedance), the studies were rejected. Subsequent discussions with CMS further narrowed the inclusion criteria from the initial indication of "cardiac patients with a need for fluid management" to only CHF patients with such a need.

324

Approximately 275 full articles were retrieved and examined, including five metaanalyses (De Maria and Raisinghani, 2000; Fuller, 1992; Handelsman, 1992; Raaijmakers, Faes, Scholten, et al., 1999; Critchley and Critchley, 2000); one of these was a Technology Assessment report by AHCPR that included studies through part of 1992. All titles in bibliographies of these articles were also reviewed and retrieved, if pertinent. In addition, several lists of articles compiled by CardioDynamics sent to CMS were reviewed.

332

Because so few articles were obtained for certain conditions, we included articles containing studies with a minimum of 5 subjects for the evaluation of diagnostic test performance or for studies that report correlation with important physiologic parameters.

At the request of CMS, our analyses include only articles published from 1991
onward. This ensures coverage of articles published late in 1991 since the
earlier review by AHCPR covered articles prior to that time (Handelsman, 1992).
Seventy-seven articles are included in the evidence tables.
Abstracts not published as full articles were not reported in the Results section,
were not included in the evidence tables, and were not included in any metaanalyses. In the section entitled "Further Consideration Of Certain Material" some

abstracts and allusions to future research were discussed.

347

348 **2.4 Data Extraction**

We noted the following elements for each study: primary purpose of the study,

350 clinical situation, reference standard in the comparison tests, design of study,

351 characteristics of the population including setting and funding source,

demographics and extended description of the patients enrolled in the study,

inclusion and exclusion criteria, description of the equipment and methods of

354 TEB including model and year, manufacturer, calibration and details of the test,

355 placement of leads and procedure followed, quality of the data, method of data

356	analysis, and results. The opinions and conclusions of the authors were quoted
357	where appropriate. Furthermore, the following questions were posed:
358	
359	 Is the diagnostic test performance compared with a reference standard?
360	 Does the TEB measurement correlate with clinical measurements?
361	 Do the authors of the study conclude that TEB is useful, accurate, reliable?
362	 Are there data to suggest that TEB improves patients' outcomes or affects
363	clinical management?
364	 Do the authors conclude that TEB improves patients' outcomes or affects
365	clinical management?
366	 Does this paper discuss the training and experience of the operator? If so,
367	what
368	Does this paper address any problems encountered in operating the device? If
369	so, what
370	
371	2.5 Assessment of Methodological Issues
372	The studies were classified into two groups. Comparative studies explicitly

compared TEB to another technique. Non-comparative studies examined a

373

relevant aspect of TEB as a diagnostic technique but did not provide data 374

375 comparing TEB to an alternate technique. For the non-comparative studies, the
 376 outcomes and results were described in narrative form.

377

Four criteria that specifically related to the scope of this report were used to 378 assess major methodological issues regarding the articles included. These 379 criteria pertained to the subject studied (i.e. medical or surgical condition of 380 patients enrolled and inclusion/exclusion criteria) and the apparatus used 381 (manufacturer of the device and specific equation used to calculate cardiac 382 parameters from measured impedance variables). For both types (i.e. 383 comparative and non-comparative) of studies, four yes or no questions were 384 385 developed and applied. These four questions were: 386 1. Does the study provide a description of the device that was used to measure 387 TEB (including manufacturer and model)? 388 2. Does the study describe the equation used to calculate impedance 389 measurements? (researchers using an off-the-shelf clinical system might not 390 know the equations used) 391 3. Does the study include a description of the patients in the study, with inclusion 392

and exclusion criteria?

4. Does the study include a description of the indication for the use of TEB in thepatients enrolled?

396

The results of this classification are presented in the final column of each 397 evidence table (see below). The criteria were neither used as inclusion criteria 398 nor to provide a detailed assessment of the methodological quality, but rather 399 400 describe a minimum set of methodological standards that should be applied to the included reports. For studies that measured cardiac output and used TD as 401 the comparison, we added an additional quality measure: the number and 402 appropriate analysis of measurement replications. This is important because 403 researchers have measured variation of 10-20% in repeat TD measurements 404 (Handelsman, 1992); therefore measurement replication is essential to obtain an 405 accurate measurement. We graded each study (A, B, C, where A was highest) 406 according to the methodology employed for obtaining the TD and TEB 407 408 measurements:

A. At least three TD measurements were made (Stetz, Miller, Kelly, et. al. 1982),
with variability between the TD measures less than 20% (by discarding those
poor measurements, or excluding those patients with poor measurements from
the analysis). Means of the TD and TEB measurements were used in the
analysis.

B. Taking only single measurements for both TD and TEB, (or some other data
collection problem), but not inappropriately analyzing the results, as in "C" below.
C. Inappropriately treating multiple measurements taken on one patient as if
they were "independent" in the statistical analysis.

418

Both of the above grading approaches focus on key aspects of the measurement
process that could be readily inferred from the Methods sections of the articles.

421

422 **2.6 Evidence Tables**

The detailed information extracted from the articles along with assessment of
methodological issues are included in two evidence tables. Because the types of
information extracted from the comparative and non-comparative studies differ in
some respects, Evidence Table 1 contains comparative studies, and Evidence
Table 2 contains non-comparative studies.

428

429 2.7 Meta-analysis Methods

430 Under certain circumstances, an overall estimate of key results is desirable,

431 because such an estimate is more precise than any individual finding. Meta-

analysis provides a means of obtaining such an estimate of the results through

433 systematic statistical procedures. While this approach has benefits, it is important

434	to exercise interpretive caution when combining highly variable data, and to
435	consider other information in addition to the quantitative results.
436	Our meta-analytic framework identified key measures, comparison techniques,
437	and subgroups. Figures 3.1 and 3.2 show the number of studies for each
438	comparison technique as well as the analytic approach, which resulted in the
439	following meta-analyses when there were three or more studies within a
440	subgroup:
441	Measures of cardiac function: cardiac output, cardiac index, stroke volume
442	Comparison techniques: TD
443	• Subgroups: setting (inpatient, outpatient, emergency department), study year
444	(1991-1996 vs. 1997-2002), and 'quality'
445	While many studies were excluded from the meta-analyses, they were reviewed
446	for relevant qualitative material which was, when appropriate, included in the
447	narrative sections. Following is a summary of the article selection and analysis
448	process:

Step 1	Step 2	Step 3	Step 4
Number of Articles Identified by Literature Searches	Number of Articles Included After Title & Abstract Screening	Number of Articles Included After Full-Text Screening	Final Number of Articles Included in Meta-analyses
Initial search: 8330 Updated search: 213	TEB articles: 271 Review articles: 5	Non- comparative studies: 17* Correlation Coefficients: 49 [†]	Correlation Coefficients: 22 [‡]
		Bias: 36 [†]	Bias: 9 [‡]
Total: 8543	276	77 [†]	22 ^{†*}

450

⁴⁵¹ [†]There is some overlap between correlation studies and bias studies.

⁴⁵² [‡]Some articles provide more than one comparison (study); therefore the sums of the studies in

the analytic frameworks (Figures 3.1 and 3.2) are larger then the number of articles included inthe meta-analyses.

455 * Non-comparative studies were not in meta-analyses.

456 Random effects model meta-analyses were performed on studies that compared

457 TEB against alternative methods for the measurement of cardiac function. These

458 studies provided the correlation coefficient and/or the average bias for TEB vs.

459 other techniques, but several analytic issues arose regarding potential

460 duplication of information. To address these issues, the following rules were

461 developed and applied:

1. Whenever a study provided not only data for the whole sample but also for

subgroups of patients, only the one entry from the entire sample was used to

avoid double counting. Similarly, when a study provided information about the

same patients for different conditions (e.g. at rest vs. active) as well as

aggregated, only the aggregated data were used. If aggregated data were not
provided, the data were averaged across conditions. Averaging such results
made the analysis of these studies more comparable to other studies that did not
perform subgroup analyses. This avoided over-weighting but, of course, some
information was lost.

471

2. When the study protocol specified repeated measurements on each patient,

473 we replaced the number of paired measurements with the number of patients in

the correlation meta-analyses to provide the appropriate weighting.

475

476 3. The equations used by the TEB device may impact the results (See below).

477 We therefore only used meta-analysis on groups of studies using the same

478 equation. Because of the number of studies threshold we applied, meta-analyses

479 could only be done with studies that used the Sramek-Bernstein equation.

480

481 The software used to conduct the correlation meta-analyses was Comprehensive

482 Meta-analysis Version 1.0.23 (www.Meta-Analysis.com). The bias analyses

483 were done using a web site calculator

484 (http://department.obg.cuhk.edu.hk/ResearchSupport/MetaEffectSize.asp) verified against a

standard random effects model formula (Sutton, Abrams, Jones et al., 2000)
programmed into a spreadsheet.

487

488 **2.8 Statistical Analysis**

The most commonly reported statistic was the correlation between the various cardiac function metrics as measured by TEB vs. the same metrics measured by the various comparison techniques. For example, cardiac output as measured by TD was frequently compared by a correlation coefficient to cardiac output as measured by TEB. Correlation coefficients were therefore an important component of the meta-analysis, despite their limitations. These limitations include:

the dependence of the correlation on the distribution of true cardiac output
 levels in the study sample

the fact that even when the correlation coefficient is close to one, there can be
 large systematic differences or random variations in individual measurements.

500 (Bland and Altman, 1986).

501

502 For correlation coefficients, formal tests for the presence of heterogeneity (gross

503 variation in the size of the correlation coefficients) across studies were

504 performed. The combined estimates of the correlation coefficients and their

confidence intervals were derived from random-effects models. These models
incorporated both "within" and "between" study variability into the calculations,
which generally increases the variability of the combined estimates and produces
wider, more conservative confidence intervals and fewer statistically significant
findings.

510

Correlation coefficients measure the correlation of one diagnostic test to another, 511 but do not provide any information about the clinical utility of the diagnostic test. 512 There is no straightforward method of translating the magnitude of correlation 513 coefficients into a statement that reflects the clinical impact of TEB on a 514 515 population. While such comparisons cannot be translated into clinical impact, it 516 is possible to compare correlations across diagnostic studies to provide a context for interpreting them (De Maria and Raisinghani, 2000). In a later section of this 517 report, we provide some comparative data to provide this context. 518

519

The method of Bland and Altman (1986) is commonly used to measure the bias (systematic error) and limits of agreement (random variation) in comparison studies of diagnostic tests. One researcher has pointed out that there is a "…notable lack of consistency in how results of bias and precision statistics are presented…" in studies of methods of measuring cardiac parameters (Critchley,

1999). This, combined with incorrect collection of TD data as reported by some

- authors (see Results), limits the number of studies for which the bias can be
- 527 analyzed, but we analyzed bias data where feasible. Finally, we reported bias as
- 528 (TEB minus comparison) to ensure that the 'sign' of the bias was consistent.

529

530 **2.9 Meta-analysis Displays**

- 531 The meta-analysis displays show:
- Abbreviated name of the effect/metric being analyzed (e.g. CO for cardiac

533 output)

- Article citation (author and year)
- Number of patients used in the comparison
- Graphic description of the individual effects and 95% confidence intervals
- Measurement conditions applying to the comparisons (see Evidence Table 1

538 for detail)

• Combined random effects model estimate and its confidence bounds

540 **3. RESULTS**

- 541 In this section we address the issues raised by the key study questions described
- 542 in the Introduction. We organize the questions around the seven clinical
- 543 indications:
- 544 (1) hemodynamic monitoring
- 545 (2) acute dyspnea
- 546 (3) pacemakers
- 547 (4) inotropic therapy
- 548 (5) heart transplants
- 549 (6) fluid management
- 550 (7) hypertension
- 551
- 552 Within each indication, we examine evidence regarding:
- 553 1. Clinical impact on patient management and/or improved health outcomes from
- the use of TEB,
- 555 2. TEB performance compared to alternative technologies for monitoring cardiac
- output, cardiac index, and stroke volume,
- 3. TEB performance compared to alternative technologies for the measurement
- of other physiologic parameters,

559	4. Factors that may affect performance of the measurement (e.g. lead
560	placement, operator experience, comorbid conditions)
561	5. Potential limitations in the use of the technology relating to the setting (i.e.
562	inpatient, outpatient, emergency), and
563	6. Training needs.
564	
565	3. 1: INDICATION 1: Demonstration of changes in patient management
566	and/or improved health outcomes from the use of the device for
567	noninvasive diagnosis or monitoring of hemodynamics in patients with
568	suspected or known cardiovascular disease.
569	
570	3.1.1 Clinical impact on patient management and/or improved health
570 571	3.1.1 Clinical impact on patient management and/or improved health outcomes from the use of TEB
571 572	outcomes from the use of TEB
571 572 573	outcomes from the use of TEB No studies provided information on health outcomes, patient management, or on
571 572 573 574	outcomes from the use of TEB No studies provided information on health outcomes, patient management, or on clinical end-points to address the usefulness of TEB in monitoring or
 571 572 573 574 575 	outcomes from the use of TEB No studies provided information on health outcomes, patient management, or on clinical end-points to address the usefulness of TEB in monitoring or management. In what follows, however, we discuss results of studies that
 571 572 573 574 575 576 	outcomes from the use of TEB No studies provided information on health outcomes, patient management, or on clinical end-points to address the usefulness of TEB in monitoring or management. In what follows, however, we discuss results of studies that

(Greenberg, Hermann, Pranulis, et al., 2000; Scherhag, Pfleger, de Mey, et al.,
1997; Zerahn, Jensen, Olsen, et al., 1999). These were preliminary studies
designed to measure ranges of values and reproducibility of TEB in specific
clinical populations.

584

Zerahn, Jensen, Olsen, et al. (1999) aimed to determine the relationship between 585 improvement in lung function and changes in TEB after thoracocentesis in 586 patients with pleural effusions due to heart failure or malignancy. They found 587 that the relative impedance at baseline was twice as high in patients with cancer 588 as compared with that in heart failure patients. They also found correlation 589 between TEB and the "drying effect" of lung fluid aspiration in respiratory 590 functional variables (FEV1, FVC, VC, TLC). Baseline impedance measurements 591 did not change at the end of thoracocentesis and ten minutes later. 592 593 Greenberg, Hermann, Pranulis, et al. (2000) found that TEB provided 594 reproducible hemodynamic measurements in the outpatient setting in 62 ill 595 patients with clinically stable heart failure, with no reporting of adverse reactions 596 on the procedures associated with TEB. 597 598

Scherhag, Pfleger, de Mey, et al. (1997) reported on the computerized
impedance cardiographic monitoring of 50 outpatients with suspected coronary
artery disease (CAD) during pharmacological stress testing with dobutamine or
dipyridamole. The researchers found varying responses of the hemodynamic
parameters to the different pharmacologic agents, but no comparative test was
used to validate this data.

605

Kasznicki and Drzewoski (1993) performed a study to compare the effect of
chemotherapy on cardiac indices in 30 patients with hematological malignancies
divided into two groups ---those with and those without cardiac risk factors. They
found that chemotherapy had some effect on some hemodynamic parameters in
some patients, but these measurements were not validated through comparison
with other methods. Finally, it should be noted that one of the electrodes was
placed on the forehead.

613

While the following two studies were not as directly relevant to the hemodynamic indication as the others, they are nonetheless included because they reported some hemodynamic data. Raaijmakers, Faes, Meijer, et al. (1998) investigated the effects of non-cardiogenic edema (accumulation of protein and extracellular fluid) on thoracic impedance. One study component involved 13 ICU patients

with acute respiratory failure and found a poor correlation (r = -0.24) between single frequency impedance measurement and extravascular lung water measured by the double indicator dilution method. These findings may be applicable to the differential diagnosis of cardiogenic versus non-cardiogenic pulmonary edema where extravascular lung water volumes may differ. These results, however, are very preliminary and were derived from a very small heterogeneous sample of patients.

626

Tatevossian, Shoemaker, Wo et al. (2000) performed an uncontrolled, 627 observational study in a series of consecutive trauma and ICU patients to 628 629 evaluate whether early noninvasive monitoring using TEB may reveal early circulatory deficiencies that lead to the development of acute respiratory distress 630 syndrome (ARDS). They used both invasive (pulmonary thermodilution catheter) 631 and non-invasive (TEB) methods to record the time course of hemodynamic and 632 tissue perfusion patterns in 60 severely injured postoperative patients to assess 633 hemodynamic parameters in survivors and non-survivors of ARDS. In a 634 subgroup analysis they observed significantly lower cardiac index and 635 transcutaneous oxygen tension, and higher transcutaneous carbon dioxide 636 tension beginning with the early stage in those patients who developed ARDS 637 638 compared with those who did not. They concluded that early noninvasive

monitoring in the emergency department, operating room, and ICU can disclose
patterns of reduced cardiac and tissue perfusion in patients who subsequently
develop ARDS which may help identify patients at higher risk for developing
ARDS, a rather strong inference, given the limitations of their study design.

These data suggest that TEB may help in the early identification of ARDS in
trauma patients. This has potentially important implications in the management
of ARDS and reduction of its associated morbidity and mortality.

647

In summary, the studies summarized in this section provide preliminary data

649 indicating that TEB may be able to detect clinically significant changes in

650 hemodynamic parameters in a variety of clinical situations. However, the studies

do not provide adequate evidence of TEB's clinical utility due to study design

issues such as not providing a comparison group and not reporting changes in

653 patient management and health outcomes.

654

655 **3.1.2 TEB performance compared to alternative technologies for monitoring**

656 cardiac output, cardiac index, and stroke volume

657 Assessment of diagnostic performance requires information on how well a test

identifies a disease or some aspect of a disease. We did not identify any studies

that used TEB to diagnose a disease or condition, so in this section we can only 659 compare 'agreement' between TEB and alternatives. Most of the data available 660 on TEB report correlations with reference tests; correlation coefficients have 661 662 serious limitations when used to summarize diagnostic test data. There were 49 comparisons in 45 articles that paired TEB with other techniques and reported 663 correlation coefficients (Table 3.1; some articles contained more than one 664 'study.'). The majority of these comparisons were to TD, with a small number of 665 comparisons to the two Fick methods, echocardiogram, and radionuclide 666 methods. The greatest amount of data were provided for the cardiac output and 667 cardiac index metrics, with the least provided on stroke volume and left 668 ventricular ejection fraction. The meta-analyses described below therefore focus 669 on the comparisons of TEB cardiac output and cardiac index to TD, according to 670 the analytic framework presented in Figure 3.1. The results are presented below 671 672 for various subgroups.

673

674 **3.1.4.1** Factors that may affect test performance (e.g. lead placement,

675 operator experience, comorbid conditions)

Most studies did not investigate any of these factors. No studies reviewed have
analyzed the influence of operator experience; TEB measurements were typically
obtained as part of routine care. The evidence tables describe the co-morbidities

of patients in each study. In the large majority of studies, no separate data were
provided on the agreement of TEB compared with another technique for patients
with a specific comorbid condition.

682

685

683 **3.1.4. Leads and Equations**

684 **Overall Lead Positioning**

The principle of TEB is based on measuring the impedance in the thorax when an alternating current is applied. Electrodes are used to apply the current and measure the impedance. Several equations, lead configurations, and combinations of equations and lead configurations have been described in the literature.

691

There are three principal equation types (Fuller, 1992; De Maria and Raisinghani, 692 2000; Handelsman, 1992). These equations can be summarized as follows: 693 Kubicek's equation was described in 1966 as part of NASA's effort to 694 develop TEB as a non-invasive cardiac output monitoring system. The 695 equation for estimating stroke volume uses measurements obtained from 696 four circumferential aluminum strip electrodes, two around the neck and two 697 around the torso (See below and Appendix 2 for electrode detail). The stroke 698 volume is calculated as a function of the blood resistivity (hematocrit 699

dependent), distance between electrodes, baseline thoracic impedance,
ventricular ejection time, and the maximum rate of reduction of thoracic
impedance during systole. The volume of electrically participating tissue is
assumed to be a cylinder.

704

705	 Sramek modified Kubicek's equation in 1981 and replaced circumferential 	
706	electrodes with four pairs of electrocardiogram (ECG)-type electrodes (se	Э
707	below and Appendix 2 for electrode detail). The volume of electrically	
708	participating tissue is assumed to be a cone; parameters in the equation	
709	include circumference of the thorax and the average distance between	
710	sensing electrodes, while the blood resistivity variable was eliminated.	
711		
712	Bernstein (Sramek-Bernstein) modified the Kubicek and Sramek equation	s in
713	1986 by correcting for both height and weight.	
714		
715	Several electrode configurations linked to the equations are described by van	der

715 Several electrode configurations linked to the equations are described by van d
 716 Meer, Woltjer, Sousman (1996):

• The original Kubicek et al. configuration used bands of circular electrodes at

four levels of the thorax --- two at the neck and two just below the xyphoid.

719 (Appendix 2)

The lateral spot configuration consists of eight spot electrodes placed at four 720 levels of the thorax--- two pairs inject current and two pairs measure the 721 voltage (Appendix 2). One pair of voltage measuring electrodes is placed on 722 the left and right mid-axillary lines at the xiphoid level. The second pair of 723 voltage measuring electrodes is placed at the base of the neck, parallel to 724 the first pair of measuring electrodes. The current injecting electrodes are 725 placed on the same lines as the voltage measuring ones --- one pair is 726 placed just below the voltage measuring electrodes at the xiphoid level, and 727 the other pair is located just above those at the neck. This configuration is 728 used in many currently available commercial devices. 729

• The semicircular spot electrode configuration consists of sixteen spot

electrodes--- four pairs inject current and four pairs measure the voltage.

The pattern is similar to the lateral spot placement, with two rather than four
pairs of electrodes at each level. This configuration is electrically equivalent
to the circular electrode configuration of Kubicek. Krasznicki and Drzewoski
(1993) developed a modification of this electrode placement that included a

forehead placement.

737

Balestra, Malacrida, Leonardi, et al. (1992) studied the accuracy of bioimpedance
 measurements using a prototype 7 mm diameter esophageal probe with four

applied electrodes introduced via a conventional oro-gastric tube in 10 critically ill
ICU patients. The use of these internal electrodes yielded high correlation (r=
.989) with very little bias. The authors pointed out that this technique was less
invasive than TD. It was not very practical, however, for routine use in the
outpatient setting, as it was invasive and required position confirmation with
radiography.

746

758

Woltjer, Bogaard, Scheffer et al. (1996) compared a modified semi-circular 747 (MSC) array (the semicircular array with an additional current injecting electrode 748 749 on the forehead with the same voltage detecting electrodes as the eight spot configuration) to the lateral spot array among patients undergoing coronary 750 bypass surgery. They found that the Sramek-Bernstein equation was valid only 751 752 with the lateral spot electrode array for calculating stroke volume, and the Kubicek equation worked well only with the modified semi-circular spot electrode 753 array. They found a higher correlation coefficient to TD with the Kubicek 754 equation/modified MSC electrode configuration compared to the Sramek-755 Bernstein/lateral spot electrode configuration. 756 757

759 TEB and TD in ten stable, non-ventilated male coronary artery bypass patients in

Demeter, Parr, Toth et al. (1993) compared the estimation of cardiac output by

an open heart recovery unit. These investigators calculated the blood resistivity
for the Kubicek equation from actual hematocrits, and compared the correlation
(but not bias) of cardiac output estimated from TEB vs. TD to that obtained using
a 'constant' value. Because they found superior results using the calculated
hematocrits, these investigators concluded that this approach would be most
important in situations where the hematocrit is not normal, for example among
the type of patients in their study.

Van der Meer, Woltjer, Sousman, et al. (1996) reported that systems using the
equations which adjust for height and weight (Sramek-Bernstein and adjusted
Kubicek) with the appropriate lead placement had similar performance; this
performance was superior to systems using the older equations that did not
adjust for height and weight (Sramek and the original Kubicek equation) in
mechanically ventilated patients in intensive care settings.

There were an insufficient number of studies using similar enough equations to
 conduct a meta-analysis comparing equation types.

780 Effects of Electrode Type and Errors in Electrode Placement

Jewkes, Sear, Verhoeff, et al. (1991) concluded that a main source of TEB 781 observer error "...relates to the placement of the electrodes and the electrode 782 type... " These authors found that different electrode types (RedDot[™] and 783 Medicotest[™]) resulted in significant differences in measurement of thoracic fluid 784 index, but they did not observe significant differences in average stroke volume 785 and cardiac output. Changing electrode position in the diagonal or frontal 786 positions, or decreasing the effective inter-electrode position by 5 cm movement 787 of the cervical electrodes yielded only small changes (< 5%) in thoracic fluid 788 index and stroke volume. Large changes (39.8% increase for thoracic fluid index 789 and 15.8% decrease for stroke volume) were observed when inter-electrode 790 791 difference was increased by 10 cm.

792

Balestra, Malcrida, Leonardi et al. (1992) studied the effects of displacing the xiphoid voltage sensing electrodes by 3 cm in the caudal direction, which led to a change in cardiac output from 7.1 +/- 1.2 to 5.8 +/- 1.3 L/min (p< 0.001) in the lateral spot electrode configuration using Sramek-Bernstein equations in healthy volunteers (another group of critically ill ICU patients were studied in another part of this article; see above). Statistically significant increases in cardiac output

were also measured when the electrodes were moved 3 and 6 cm in the cranialdirection.

801

802 Other Factors

One study designed to investigate the influence of pulmonary edema (13 ICU 803 patients with lung injury or adult respiratory distress syndrome) on the accuracy 804 of cardiac output as measured by TEB found that Kubicek's equation correlated 805 better with TD than when the Sramek-Bernstein equation was used 806 (Raaijmakers, Faes, Kunst, et al., 1998). These authors provided a theoretical 807 basis for their empirical findings and postulated that Kubicek's equation is 808 'edema-independent' due to its modeling assumptions. They also hypothesized 809 that mechanical ventilation's impact among patients with respiratory failure on the 810 accuracy of TD measurements but not on those of TEB could result in 811 measurement error being incorrectly attributed to TEB. 812 813 The performance of TEB during mechanical ventilation is also a factor of interest. 814

Castor, Klocke, Stoll, et al. (1994) studied 10 patients with Swan-Ganz

816 catheterization during neurosurgical removal of intracranial tumor or aneurysm.

817 They concluded that compared to TD, TEB "... slightly overestimates cardiac

output in the normal range during spontaneous ventilation and during intermittent

positive pressure ventilation (IPPV)..." They reported overestimation of cardiac
output in increased cardiac output states with spontaneous ventilation and
underestimation of cardiac output during IPPV.

822

Being overweight has been suggested as a factor that might affect the 823 performance of TEB. Van Der Meer and co-workers prospectively investigated 824 the influence of being overweight on TEB measurements of cardiac output 825 among forty critically ill post-cardiac surgery patients (Van der Meer, de Vries, 826 Schreuder WO, et al., 1997). These investigators compared cardiac output 827 measurements obtained by TEB with those obtained through the use of TD. All 828 829 patients were mechanically ventilated. Three patients were excluded from the final analysis due to increased variability in cardiac output measurements 830 obtained by the TD method and one due to dysrhythmia. In the remaining thirty-831 832 seven patients (n=37) a correlation coefficient for cardiac output of 0.60 (bias +/-2 standard deviations = -0.06 +/- 1.25) was found between the TEB and TD 833 methods. In a subgroup analysis the authors excluded patients with more than 834 15% deviation from ideal weight and calculated a correlation coefficient of 0.85 835 (bias \pm 2 standard deviations = 0.09 \pm 0.96) for the remaining twenty-five 836 patients. The authors discuss potential reasons for their finding mainly in relation 837 to the body geometry factor in the Sramek-Bernstein formula. 838

839

840	In another report on the same patient sample, Woltjer, Bogaard, and van der
841	Spoel (1996) focus on stroke volume rather than cardiac output. The correlation
842	and bias +/- 2 standard deviations was r=0.90; bias = 2.0 +/- 17.7 ml using
843	Kubicek's equation for normal weight patients and $r=0.80$; bias = -2.7 +/- 14.4 for
844	obese patients. Using Sramek and Bernstein, the correlation and mean
845	difference +/- 2 standard deviations was r=0.63, md= -0.8 +/- 30.8 ml and
846	r=0.43, md= -7.7 +/- 26.2 for obese patients. In this analysis, the authors
847	concluded that "weight significantly influences the calculation of stroke volume
848	when Sramek and Bernstein's method is applied and that the weight correction
849	factor is not valid to adjust this. Kubicek's method, however, is not seriously
850	biased by weight and appears to be more accurate than Sramek and Bernstein's
851	method in patients after coronary bypass surgery"
852	
853	Both of the above analyses suggest that larger scale investigations are needed
854	to compare TEB with other methods in patients with abnormal anthropometric

855 characteristics such as being overweight. The discussion of the implications of

the findings about equation use adds further support to the proposition that

equation type may be important.

860	Summary of Equation and Lead Placement
861	Many currently available commercial devices use the lateral spot electrode
862	configuration; many devices use proprietary equations. Errors in placement of the
863	leads and clinical factors such as patient weight and presence of pulmonary
864	edema have been reported to affect results of measurements; data on these
865	factors have not been adequately reported in published literature with currently
866	available commercial devices on the outpatient population of interest.
867	
868	3.1.5 Potential limitations relating to test performance setting (i.e. inpatient,
869	outpatient, emergency)
869 870	outpatient, emergency)
	outpatient, emergency) 3.1.5.1 Correlation Coefficients
870	
870 871	3.1.5.1 Correlation Coefficients
870 871 872	3.1.5.1 Correlation CoefficientsMost of the studies on bioimpedance are performed on an inpatient population;
870871872873	3.1.5.1 Correlation CoefficientsMost of the studies on bioimpedance are performed on an inpatient population;many of these patients are critically ill. Results for these patients might not be
 870 871 872 873 874 	 3.1.5.1 Correlation Coefficients Most of the studies on bioimpedance are performed on an inpatient population; many of these patients are critically ill. Results for these patients might not be generalizable to the outpatient population of interest in this TA. In this section,

One study directly compared TEB for measuring cardiac output between thirteen 878 critically ill and fifteen non-critically ill patients and found no statistically significant 879 difference in cardiac output results (Weiss, Calloway, Cairo, et al., 1995). The 880 authors do not assess the statistical power of their design, so it is difficult to 881 assess whether the lack of statistical significance results from true equivalence or 882 merely lack of power. Additionally, these authors concluded that TEB 883 measurement variability limits its use to monitoring relative changes in cardiac 884 metrics rather than estimating absolute values of these metrics. 885

886

Table 3.2 shows meta-analyses of inpatient, outpatient, and emergency 887 888 department studies comparing TEB to TD for either cardiac output or cardiac index. Since the TEB equation used might influence results, and because at 889 least three studies was our cutoff for analysis, we restricted our analyses to 890 studies using the Sramek-Bernstein equation. Figures 3.2.a and 3.2.b show 891 individual study results and in what follows, when statistical significance is 892 reported, the level was p<.0001, unless otherwise indicated. Overall (not just 893 those studies in the meta-analysis) the correlation coefficients ranged from -0.01 894 to 0.97. In seventeen studies (396 patients) of cardiac output for inpatients using 895 TD as the comparison, the combined r = 0.693 (95% CI, 0.578-0.781), with 896 significant heterogeneity. In three studies (75 patients) of cardiac index for 897

inpatients using TD as the comparison, the combined r = 0.349 (95% CI: 0.1220.540), without significant heterogeneity.

900

901 In studies of outpatients using TD as the comparison, there were three studies

902 (40 patients) using cardiac output with combined r = 0.879 (95% CI: 0.642-

903 0.962), without significant heterogeneity. There were no studies meeting the

904 criteria for an analysis of outpatient cardiac index.

905

There were three studies (793 patients) of cardiac index in the emergency

department comparing TEB to TD with combined r=0.848 (95% CI: 0.827-0.866),

without significant heterogeneity. There were no studies for a meta-analysis of

909 cardiac output in the ED.

910

911 3.1.5.2 BIAS

As mentioned earlier, it is preferable to analyze the 'bias' and limits of agreement rather than the correlation coefficient, when they were reported and the methodology for obtaining them was correct. Of 36 studies that reported bias and limits of agreement, only 12 used the correct methodology for obtaining the data. Most comparisons were to TD, with a small number of comparisons to the direct Fick method, and only one to the pulsed Doppler method. The greatest

amount of data was provided for the cardiac output metrics, with the least
provided on cardiac index and stroke volume. Table 3.3 summarizes all studies
reporting bias and Figure 3.2 shows the analytic framework used to analyze the
bias. Due to the limited number of comparisons among outpatients, our metaanalyses focus on the test agreement between TEB cardiac output and stroke
volume with TD.

924

Fourteen studies correctly (single measurement or average of multiple 925 measurements per patient) reported cardiac output for a comparison between 926 TEB and TD among inpatients using the Bland and Altman method. Table 3.4 927 928 shows the bias, limits of agreement (+/-2) standard deviations of the difference), and measurement conditions (another indicator of the quality of measurement) 929 for the eight studies. Individual study results may be interpreted as follows: 930 About 95% of patients would be expected to have the cardiac metric measured 931 by bioimpedance (i.e. cardiac output) within ± 2 standard deviations (i.e. the limits 932 of agreement) of the bias. A good test should have a bias as close to zero as 933 possible. Bias near zero and clinically acceptable limits of agreement would 934 imply a favorable comparison of TEB to the alternative. For example, the bias of 935 one study was 0.10, with limits of agreement of -1.90 to 2.10 L/min (van der 936 Meer, deVries, Schreuder, 1997). This suggests that 95% of patients would be 937

expected to have bioimpedance derived cardiac output measurements between
-1.90 lower to 2.10 L/min higher than the results derived from TD. This finding
would be most useful when the clinical implications of an interval this wide could
be assessed.

942

943 The combined bias and the combined limits of agreement of the bias for cardiac output in the 8 studies were 0.006 and -2.87 to 2.89. If these results were not 944 heterogeneous, the implication would be that 95 percent of inpatients might be 945 expected to have TEB cardiac output limits of agreement of -2.87 to 2.89. The 946 test of heterogeneity across studies was statistically significant, however, for both 947 bias and limits of agreement. This suggests that there may be patient 948 populations where TEB measurements can be much further from the TD 949 measurements than the combined limits of agreement indicate. 950 951 Table 3.5 shows that the combined bias and the combined limits of agreement of 952 the bias for stroke volume in these studies were -1.86 and -28.30 to 24.74, 953 respectively. While the test of heterogeneity for the combined limits of 954 agreement was not statistically significant (p=0.59), the test for the bias was. 955 956

957 **3.1.6 Training Needs**

958 For the time frame reviewed, no studies were identified that adequately

959 addressed this issue. One study, however, (Belardinelli, Ciompini, Costantini et

960 al., 1996) stated in its Discussion section that it examined the 'reproducibility' of

TEB by 2 independent and experienced cardiologists on TEB measurements on

962 patients in sinus rhythm with CAD and a previous myocardial infarct either at rest

or during exercise on 2 tests separated by 1 week. The authors state that the

coefficient of variation was similar for the 2 observers and for the 2 tests; but the
results were not presented clearly.

966

3. 2 Indication 2: bioimpedance use for the differentiation of cardiogenic
from pulmonary causes of acute dyspnea

969

970 **3.2.1 Patient Management and Health Outcomes**

Acute dyspnea has a variety of causes, including cardiogenic and pulmonary causes. Patient management is determined by diagnosis of the underlying cause. No studies, however, were found that evaluated the clinical impact on patient management and/or improved health outcomes from the use of TEB monitoring for differentiation of cardiogenic from pulmonary causes of acute dyspnea (but see also Conclusions section).

978	3.2.2-3.2.6 Other Issues
979	No studies were found that addressed the following issues regarding this
980	indication:
981	TEB performance compared to alternative diagnostic tests for monitoring
982	cardiac output, cardiac index, stroke volume, or other physiologic parameters
983	 factors that may affect test performance
984	 potential limitations regarding test performance setting
985	factors regarding training.
986	
987	3.3 Indication 3: Applicability of bioimpedance in the optimization of
988	atrioventricular interval for patients with AV sequential cardiac pacemakers
989	
990	3.3.1 Patient Management and Health Outcomes
991	Some researchers have suggested that finding the optimal atrioventricular (AV)
992	delay is important in maximizing cardiac output in patients with AV sequential
993	pacemakers. We found no well-designed studies for this indication that provide
994	information on the clinical impact on patient management or improved health
995	outcomes after treatments that would be useful in addressing the issues of TEB
	outcomes alter treatments that would be useful in addressing the issues of TED

been published that measure ranges of values and reproducibility of TEB
measurements in patients with pacemakers; these offer some insight into the
potential uses of TEB.

1000

Five studies evaluated various aspects of applicability of impedance 1001 1002 cardiography-derived cardiac measurements in patients with pacemakers (Haennel, Logan, Dunne, et al., 1998; Ovsyshcher, Gross, Blumberg, et al., 1003 1992; Ovsyshcher, Gross, Blumberg, et al., 1993; Ovsyshcher, Zimlichman, Katz, 1004 et al., 1993: Kindermann, Frohlig, Doerr et al. 1997). Two similar studies by the 1005 same authors found a mean coefficient of variation of 4% during dual chamber 1006 pacing and 6% when the ventricular pacing mode was used to calculate cardiac 1007 indices (cardiac and stroke index) from serial (consecutive and non-consecutive) 1008 impedance measurements suggesting a high level of reproducibility of the 1009 technique at rest during sinus rhythm (Ovsyshcher, Gross, Blumberg, et al., 1010 1992; Ovsyshcher, Gross, Blumberg, et al., 1993). Another study by the same 1011 authors evaluated the use of impedance cardiography to optimize pacing (AV) 1012 delay in 11 patients (8 with complete heart block and 3 with sick sinus syndrome) 1013 with DDD pacemakers or during VVI pacing (3% and 6% respectively) 1014 (Ovsyshcher, Zimlichman, Katz, et al., 1993). The authors defined the best 1015 1016 programmed AV delay as the setting that produced the highest cardiac index, but

they did not validate this measurement with an alternative technique or with data
on health outcomes. They found that the correlation coefficient between two
consecutive measurements of the cardiac index was 0.94 (p<.0001) in the DDD
mode and 0.82 (p<0.0001) in the VVI mode and concluded that "hemodynamic
measurements obtained with impedance cardiography can facilitate optimal
programming of pacemaker variables."

1023

Haennel and colleagues used impedance cardiographic monitoring in 10 1024 pacemaker-dependent patients to assess the effects of three different exercise 1025 sensing modes on the cardiovascular response to graded exercise (Haennel, 1026 1027 Logan, Dunne, et al., 1998). While the study was not designed to assess the accuracy of TEB in this context, the authors stated that "...impedance 1028 cardiography provides a simple and reliable means of obtaining repeated 1029 1030 hemodynamic data during upright exercise that allows for sequential measurements during a single exercise bout and permits a beat-to-beat 1031 examination of the relative contribution of both stroke volume and overall heart 1032 rate to cardiac output..." 1033

1034

Kindermann, Frohlig, Doerr et al. (1997) performed a prospective study in 53
 patients with high degree AV block to evaluate a new method for the

determination of the optimal AV delay using pulsed Doppler echocardiography. 1037 These investigators correlated the optimal AV delay using serial TEB 1038 determinations of the cardiac index after different settings of AV delay with the 1039 1040 optimal delay estimated in the same set of patients. They found a moderate but significant correlation of the AV delay determined with the two methods. It is 1041 important to note that in this study TEB-determination of the optimal AV delays of 1042 pacemakers was considered the standard and it was compared to an alternative 1043 technique. This study did not report health outcomes in two groups of patients in 1044 which AV delay optimization was performed using different methods so it is 1045 unknown which method of setting the delay is optimal. 1046

1047

Some of the above evidence suggests that TEB is potentially useful in patients with pacemakers and one of these studies compares TEB with an alternative method for optimization of the AV delay setting. None of the studies reported health outcomes after adjustment of the AV delay, so the evidence is insufficient to conclude whether TEB optimization of the AV delay improves health outcomes.

1054

1055 **3.3.2-3.3.6 Other Issues**

1056 No studies were found that addressed the following issues regarding this

1057 indication:

- TEB performance compared to alternative diagnostic tests for monitoring
- 1059 cardiac output, cardiac index, stroke volume, or other physiologic parameters
- Factors that may affect test performance
- potential limitations regarding test performance setting
- 1062 factors regarding training.

1063

- **3. 4 Indication 4: Bioimpedance use in patients with need of determination**
- 1065 for intravenous inotropic therapy

1066

3.4.1 Health Outcomes and Patient Management

1068 Non-invasive serial hemodynamic measurements of cardiac parameters might be

- 1069 useful to monitor the effects of parenteral inotropic agents such as dobutamine or
- 1070 milrinone. No studies, however, were found evaluating the clinical impact on
- 1071 patient management and/or improved health outcomes from the use of TEB
- 1072 monitoring of patients in need of inotropic therapy (but see Conclusions section).

1074 **3.4.2-3.4.6 Other Issues**

1075 No studies were found that addressed the following issues regarding this

1076 indication

- TEB performance compared to alternative diagnostic tests for monitoring
- 1078 cardiac output, cardiac index, stroke volume, or other physiologic parameters
- factors that may affect test performance
- potential limitations regarding test performance setting
- 1081 factors regarding training.

1082

1083

- **3.5** Indication 5: Bioimpedance use in early identification of rejection in
- 1085 post heart transplant myocardial biopsy patients

- **3.5.1 Patient Management and Health Outcomes**
- 1088 The current standard of care for patients with heart transplant includes a
- 1089 regularly scheduled series of cardiac biopsies. Some researchers have
- 1090 suggested that a non-invasive monitoring technique could potentially supplement
- 1091 cardiac biopsies in the early identification of transplant rejection. Weinhold
- 1092 Reichenspurner, and Fulle et al. (1993) assessed the usefulness of TEB in early
- 1093 diagnosis of rejection in 35 heart transplant recipients during the immediate

1094 postoperative period and during the outpatient follow-up. These investigators 1095 used TEB to measure the stroke volume index, ejection fraction and the acceleration index. They found that average value of the acceleration index 1096 during 17 rejection episodes was significantly lower when compared with the 1097 non-rejection average. They also found that in their study the diagnostic 1098 sensitivity and specificity of the acceleration index for rejection in these patients 1099 was 71% and 100% respectively. The authors concluded that TEB is ideal for 1100 use "in the outpatient setting to supplement myocardial biopsies." 1101

1102

This study did not provide data on the clinical impact on patient management or improved health outcomes after treatment. These preliminary findings might be useful if replicated. The fact that we found no other report published on this indication since this study was published almost 10 years ago suggests that the approach has not been widely adopted.

1108

1109 **3.5.2-3.5.6 Other Issues**

No studies were found that addressed the following issues regarding thisindication:

• TEB performance compared to alternative diagnostic tests for monitoring

1113 cardiac output, cardiac index, stroke volume, or other physiologic parameters

- factors that may affect test performance
- potential limitations regarding test performance setting
- 1116 factors regarding training.
- 1117
- 3.6 Indication 6: Bioimpedance use in cardiac patients with a need for fluidmanagement
- 1120

3.6.1 Patient Management and Health Outcomes

1122 This indication might include monitoring and diagnosis of pulmonary edema or

1123 peri-operative monitoring of patients following various types of surgery. Several

- studies employing a similar technology --- whole body impedance—were found
- that assessed congestive heart failure patients with need for fluid management;

however, we found no study of TEB for this indication.

1127

1128 **3.6.2-3.6.6 Other Issues**

- 1129 No studies were found that addressed the following issues regarding this
- indication.
- TEB performance compared to alternative diagnostic tests for monitoring
- 1132 cardiac output, cardiac index, stroke volume, or other physiologic parameters
- Factors that may affect test performance

- Potential limitations regarding test performance setting
- Factors regarding training.
- 1136

3.7 Indication 7: Bioimpedance use in the management of hypertension

3.7.1 Patient Management and Health Outcomes

TEB has been used to monitor the efficacy of antihypertensive medications. One 1140 study compared TEB-based drug selection to physician management without the 1141 1142 support of TEB. Taler, Textor, Augustine, et al. (2002) described a controlled 1143 trial involving 104 resistant hypertension patients without a secondary cause or 1144 who were to be treated medically. Patients were randomized to hemodynamicbased drug selection or hypertension-specialist-directed drug selection. TEB was 1145 1146 used to calculate stroke volume, cardiac output, systemic vascular resistance index, and markers of cardiopulmonary volume. The authors reported that 1147 patients with chronic hypertension who were treated using a treatment algorithm 1148 1149 and serial hemodynamic measurements obtained by TEB had a small but statistically significant greater decrease in blood pressure compared to patients 1150 treated with clinical judgment alone. 1151

1152

Certain methodological weaknesses of this study should be noted. The details of 1153 1154 the randomization method are not reported, and it is unclear whether or not all patients were blinded to the use of TEB in their care. There was a small 1155 1156 difference in average blood pressure between the "specialist care" and "hemodynamic" monitoring group (4/4 mm Hg difference); this difference was 1157 1158 similar in magnitude to the difference between the groups at the end of the study (8/7 mm Hg difference). The blood pressure control rate achieved by the 1159 hemodynamic treatment group (56%) was significantly higher than the control 1160 rate achieved for the specialist care group (33%). Also, the authors noted that 1161 significantly more frequent changes in medications and dosages were made in 1162 1163 the hemodynamic group as compared to the specialist care group, while it is unclear how many opportunities for such a change were offered in each study 1164 arm. The authors commented that the specialist care group was comprised of 1165 nationally certified hypertension specialists with special expertise in the treatment 1166 of resistant hypertension, and suggested that monitoring with TEB would have a 1167 greater benefit when the alternative was management with a community 1168 physician. However, it is also possible that the small improvement in the 1169 hemodynamic monitoring group was due to the increased number of specialist 1170 visits. It is, therefore, not known what the benefit of TEB would be in community 1171 1172 practice with treatment decisions made by generalists.

1174	3.7.1 Other Issues
1175	No studies were found that addressed the following issues regarding the
1176	following situations:
1177	TEB performance compared to alternative diagnostic tests for monitoring
1178	cardiac output, cardiac index, stroke volume, or other physiologic parameters.
1179	Factors that may affect test performance.
1180	Factors regarding training.
1181	
1182	The study by Taler, Textor, Augustine, et al. (2002) described above has a
1183	serious limitation regarding test performance setting. As noted above, the
1184	specialists in the study were national experts, and the results might not be
1185	generalizable to a community setting.
1186	
1187	3.8 Additional Material Regarding Some Of The Indications
1188	While not among the original questions, peer review comments and discussions
1189	with AHRQ suggested further analyses.
1190	
1191	
1192	

1193 **3.8.1 Year of Publication**

First, it is of interest to examine whether year of publication affected the results. 1194 Advances in technology such as new signal processing algorithms may lead to 1195 increased accuracy of bioimpedance over time. Figure 3.3 shows correlation 1196 coefficients arrayed by year; no trend toward higher correlation in more recent 1197 1198 years is apparent in these graphs. In order to quantitatively estimate whether there has been an improvement in correlation in recent years, we compared an 1199 estimate of correlation in the period 1991-1996 to the period 1997 and later. 1200 There were twelve studies (305 patients) using cardiac output in the period 1991-1201 1996 comparing TEB among inpatients to TD. The combined correlation 1202 1203 coefficient for this group was 0.756 (95% CI: 0.639-0.838), with significant 1204 heterogeneity. For the five studies (91 patients) published in 1997 and later, the combined r = 0.487 (95% CI: .299-.640), without significant heterogeneity. The 1205 magnitude of the combined correlation coefficient from earlier studies was 1206 somewhat higher than that of the coefficient from more recently published 1207 studies. 1208

1209

1210 3.8.2 Quality

There were a sufficient number of studies using the Sramek-Bernstein equation
involving a comparison of TEB and TD to conduct a meta-analysis comparing

one dimension of quality of measurement --- that relating to appropriate analysis 1213 of number of measurement replications. There were five studies (148 patients) 1214 using cardiac output with a quality grade of "A" with combined r=0.612 (95% CI: 1215 1216 0.422-0.751). There were four studies (88 patients) with a guality grade of "B" with combined r=0.691 (95% CI: 0.333-0.874). There were eight studies (160 1217 patients) with a quality grade of "C" with combined r=0.738 (95% CI: 0.545-1218 0.856). These results, for which there was not significant heterogeneity, do not 1219 suggest that this definition of quality is related to the size of the correlation 1220 coefficient. Table 3.6 displays quality grades by study. 1221

1222

1223 **3.9 Summary of Results**

1224 Despite the large amount of observational data generated on TEB, almost all of the studies did not use a design that would allow for meaningful comparisons of 1225 patient outcomes of care and thus provide evidence to address the questions. In 1226 several of these reports the authors anecdotally stated in their discussion 1227 sections that they found the method to be clinically useful and helpful for 1228 1229 managing patients under various critical circumstances (or the opposite); however, these inferences were not based on randomized or other comparative 1230 designs where a group of patients was monitored by TEB and contrasted with a 1231 control group. The authors' conclusions are included in the evidence table. 1232

4. FURTHER CONSIDERATION OF CERTAIN RELEVANT ABSTRACTS AND OTHER MATERIAL

For some of the indications and some of the material discussed in the Results section, some additional material beyond that previously presented merits comment. In this section we mention several abstracts, none of which appear to have been published as full articles (the earliest was first presented in 1998). It is difficult to adequately evaluate these reports, because this type of publication provides limited information. They are included, however, to provide relevant information about work in progress.

1242

1244

1243 **4.1 Comparisons to alternative technologies for monitoring**

Several abstracts that could not be evaluated for the reasons described above involved comparisons of TEB to alternative techniques. Yung, Fletcher, Fedullo, et al. (1999) reported comparing TEB to TD and Fick on 33 ambulatory patients with echocardiographic evidence of pulmonary hypertension. Based on the correlation coefficients and measures of bias and precision against TD and Fick that they obtained, the authors suggested that, for measuring CI in patients with pulmonary hypertension, TEB may be a convenient, less costly alternative to TD.

1253

An abstract by Milzman, Napoli, Gerace et al. (2000) reported studying whether the use of TEB monitoring of 58 heart failure patients in the ED (stratified by whether or not their CI improved after one hour of therapy in the ED) affected total hospital stay and charges. They concluded that TEB was helpful identifying patients likely to show an early response to therapy and to incur lower total costs, but they also observed that the device had limitations when certain arrhythmias occurred and that the lack of central pressure monitoring could be problematic.

In another abstract Kzanegra, Barcarse, Chen et al. (2002) reported investigating
whether TEB measurements, combined with knowledge of B-type natriuretic
peptide (BNP) levels, improved physicians' ability to diagnose congestive heart
failure (CHF) in 98 patients in an emergency setting. They concluded that TEB
enabled better diagnosis of CHF by rapidly distinguishing systolic from diastolic
dysfunction and by assessing severity of illness.

1268

1269 **4.2 Acute Dsypnea**

Diagnosing the cause of dyspnea can be difficult and TEB has been proposed as a tool that is potentially useful for the differential diagnosis of cardiogenic and pulmonary causes of dyspnea in an abstract by Marrocco, Eskin,Nashed et al. (1998). They studied the sensitivity and specificity of hemodynamic parameters

measured by TEB to distinguish between cardiogenic and pulmonary causes of dyspnea. Only patients with "clinically clear" diagnoses were included, and only moderate sensitivity and specificity were achieved with TEB. This suggests that the diagnostic performance of TEB would be unacceptable when all patients are considered, including patients with mixed or uncertain diagnoses that were excluded from this study. Since this report was in abstract form, it is impossible to assess the quality of the study and its usefulness.

1281

No studies on the use of TEB for differential diagnosis of dyspnea were found in 1282 a search of Medline[®]. This search was supplemented with a search for abstracts 1283 1284 published at the annual meetings of the American Academy of Emergency 1285 Medicine. Two relevant abstracts presented in the last three years were found, and a reviewer suggested an additional abstract. Han, Lindsell, Tsurov et al. 1286 (2002) found a significant correlation in hemodynamic parameters measured by 1287 TEB in the presence of congestive heart failure as determined by follow-up over 1288 the next two months, but no information was given about whether the use of TEB 1289 would lead to changes in management. Another abstract (Aisiku, Ander, Knoepp 1290 et al., 2000) did not find a correlation between hemodynamic parameters 1291 measured with TEB and subjective improvement in dyspnea following treatment 1292 for heart failure. These studies suggest that changes in hemodynamic 1293

1294 parameters may be measured in patients with dyspnea, but the interpretation and 1295 clinical utility of these measurements is not known at the present time. The abstract suggested by the reviewer described a study of 45 dyspneic and 1296 hypotensive patients in which TEB was compared with an ED physician's clinical 1297 judgment to determine whether the cause of the dyspnea and hypotension was 1298 1299 cardiogenic (Springfield, Sebat, and Sebat, 2002). The authors concluded that TEB yielded a quicker assessment and equal accuracy, which could enable 1300 earlier intervention. Again, since these reports were in abstract form, it is 1301 impossible to assess their quality and usefulness. 1302

1303

1304 **4.3 Atrioventricular Delay**

A narrative review article by Belott (1999) asserted that finding the optimal AV 1305 delay is valuable to maximize cardiac output and prevent mitral regurgitation, but 1306 1307 that most pacemakers are left at the default setting because of the difficulty of finding the optimum value. The article also stated that newer pacemakers have 1308 internal systems that work on a similar principle to bioimpedance (minute 1309 1310 ventilation) for automatic parameter adjustment, but that possibly harmful interactions can occur with these systems and TEB, so TEB would be 1311 contraindicated for patients with these pacemakers. 1312

1314 The proposed benefit of TEB is based on an analytic framework with three steps:

1315 **1. TEB can measure changes in cardiac output in response to programming**

1316 changes in the AV delay in pacemakers.

1317 2. The optimal AV delay can be found based on the information provided by1318 TEB.

1319 3. Adjusting the AV delay would potentially improve clinical outcomes.

1320 The Ovsyshcher, Gross, Blumberg (1992) article cited above only addressed the

1321 first part of this analytic framework (without a confirmatory technique). The

1322 Ovsyshcher, Gross, Blumberg (1993b) article addressed the second, but did not

have any independent confirmation (such as echocardiogram) that the values

1324 found were objectively optimal. The Kindermann, Frohlig, Doerr et al. (1997)

1325 study is a step in this direction.

1326

1327 In another abstract related to this subject that was suggested by a reviewer,

1328 Trupp, Voegtlin, Abraham et al. (2002) studied 15 patients before discharge to

1329 determine whether TEB could better determine optimal inter-ventricular settings

1330 during biventricular pacing than echocardiography. The results presented by

1331 these authors were unclear, although they concluded that TEB "...may provide

1332 an alternative noninvasive method to echo..."

1333

Finally, one case study has been reported where a single patient had resolution of symptoms of heart failure after optimization of atrioventricular delay with TEB (Young, Smart, and Ventura, 1999). The currently available evidence, however, is not adequate to demonstrate a benefit in health outcomes with the use of TEB.

1339 **4.4 Intravenous Inotropes**

There were no original studies that directly addressed TEB's usefulness for this indication. One author, however, argued in a case report for the use of TEB for this indication (Lasater, 1999), but rigorous studies of TEB for this application are needed.

1344

1345 **4.5 Cardiac Patients With a Need for Fluid Management**

With respect to use for congestive heart failure, the American College of 1346 Cardiology and American Heart Association in their 2001 "ACC/AHA Guidelines 1347 for the Evaluation and Management of Chronic Heart Failure in the Adult" (ACC 1348 website: http://www.acc.org/clinical/guidelines/failure/iii%5Fassessment.htm) makes the 1349 1350 following statement about TEB for use in patients with chronic heart failure: "...Although hemodynamic measurements can also be performed by non-1351 invasive methods such as transthoracic bioimpedance, routine use of this 1352 1353 technology cannot be recommended at the present time because the accuracy of

bioelectrical parameters has not been defined in patients with chronic HF and it
has not been shown to be more valuable than routine tests, including the
physical examination. Moreover, it is not clear whether serial noninvasive
hemodynamic measurements can be used to gauge the efficacy of treatment or
to identify patients most likely to deteriorate symptomatically during long-term
follow-up ..."

1360

1361 **4.6 Adverse Events**

TEB does not require the skills and expertise needed for the use of invasive
techniques, and only one study reported a death due to pacemaker malfunction
associated with TEB use (Critchley, 1998). It is unclear, however, whether such
information would have been routinely reported in these types of studies, but the
FDA MAUDE database (voluntary adverse event reporting) indicated no reports
related to TEB.

1368

1369 **4.7 Lead Placement and Equations**

Additional comments about lead placement are merited. Although they do not present evidence for their observation, Castor, Klocke, Stoll, et al. (1994) point out that small changes in the position of TEB electrodes impact measurement of cardiac output by as much as 10 percent. They suggest that decreased distance

leads to overestimation of cardiac output and vice versa. These authors further
suggest that "…incorrect input of height and weight of the patient in the
computerized system…" can lead to error. They provide theoretical but not
empirical evidence for this assertion.

1378

While the lead placements described in the results were those most frequently
encountered in this review, Critchley (1998) mentions that new electrode
placement schemes have been proposed. He also mentions that the esophageal
probe method described by Balestra, Malacrida, Leonardi, et al. (1992) was
withdrawn because of "...fears of oesophaeal perforation with surgical diathermy
and defibrillation." However, no specific reference was provided.

1385

We report above that Demeter, Parr, Toth et al. (1993) inferred that the Kubicek 1386 equation performs well when the resistivity term is calculated from measured 1387 hematocrit rather than from an assumed constant. Fuller's (1992) TEB review 1388 also indicated that previous studies had found improved correlations when 1389 calculated hematocrit was used. In contrast, Handelsman's 1992 review referred 1390 to Sramek's removal of the blood resistivity term from the Kubicek equation and 1391 characterization of this parameter as inconsequential in the context of total 1392 resistivity. Similarly, in a study of cardiac output among nineteen patients with 1393

1394 chronic obstructive pulmonary disease, Bogaard, Hamersma, Horsch, et al.

1395 (1997) concluded that measured hematocrit resulted in only a small improvement

in validity. These contrasting findings raise the issue of whether more research

1397 on this issue may be needed.

1398

1399 The reporting of equations in studies reviewed was not always complete, and for some devices the equations may be proprietary by the manufacturer of the 1400 device and not known to the researcher. For example, three recent studies with a 1401 total of 95 patients (Spiess, Patel, and Soltow, 2001; Drazner, Thompson, 1402 Rosenberg, et al., 2002; Sageman, Riffenburgh, and Spiess, 2002) reported 1403 1404 using "BioZ" equipment (Cardiodynamics International Corporation, San Diego, CA), but these studies did not describe which equation was used. The correlation 1405 coefficients measured in these three studies range from 0.61-0.93. The 1406 1407 combined correlation coefficient for these three studies is r=0.788; 95% CI: 0.466-0.926; which is somewhat higher than the correlation coefficient we 1408 calculated only for studies which indicated that the Sramek-Bernstein equation 1409 was used. These three studies illustrate the large number of variables between 1410 the studies that make it difficult to combine the studies in a single meta-analysis 1411 (see Evidence Table I for details). For example, in one study patients are 1412 1413 critically ill but in another patients are hospitalized but not critically ill.

1414 Furthermore, the different studies measure different hemodynamic parameters.

1415 In this technology assessment, we present results of separate meta-analyses for patient setting, hemodynamic parameter measured, equation used and quality of 1416 1417 thermodultion measurements; these meta-analyses show that there is significant between-study heterogeneity, suggesting that many other factors in addition to 1418 the factors that we have identified from the studies are important. Further studies 1419 are needed to identify all the sources of heterogeneity in TEB measurements ---1420 especially studies that characterize the performance of TEB in the outpatient 1421 population of interest for the questions addressed in this technology assessment. 1422 1423

1424 **4.8 Electrical Disturbance**

Balestra, Malacrida, Leonardi et al. (1992) observed that "... simultaneous measurement of TEB and Doppler ultrasound leads to prolonged disturbance of the impedance signal..." They explained that the Doppler transducer absorbs a large portion of the current, reducing the signal and thereby decreasing the cardiac output measurement. This effect was not mentioned in other articles, but if confirmed, it does raise concerns about simultaneous Doppler vs. TEB comparisons.

1432

1434

1435 **4.9 Manufacturers**

Figure 3.4 shows correlation coefficients for cardiac output as measured by TEB for the different manufacturers' instruments, showing results for critically ill patients (including CCU, ICU and critically ill inpatients), inpatients who were not identified as critically ill, and outpatients.

1440

The majority of the studies were done on the NCCOM device (#9), which is no 1441 longer commercially produced. There is wide variation in the correlation 1442 coefficient measured with this device, which is no longer commercially produced. 1443 1444 The manufacturers attribute the variation to problems with the signal processing algorithms (letter to CMS). Other possible causes of the variation include factors 1445 that are identified in the TA, such as specifics of lead placement and clinical 1446 1447 characteristics (overweight, pulmonary embolism) that affect accuracy of the devices or other factors that have not been studied. 1448

1449

There is wide variation in the results across the instruments. Several factors
could account for this such as variation in lead placement and clinical
characteristics. The variation could also be due to differences in instrument
performance; however, not enough data is available on any one instrument

- 1454 except the NCCOM to draw conclusions about this. Unfortunately, most of the
- 1455 research literature focuses on machines no longer made, and there are few data
- 1456 available on currently manufactured devices.

1458	5. PREVIOUS SYSTEMATIC REVIEWS
1459	Five systematic reviews (Fuller, 1992; De Maria and Raisinghani, 2000;
1460	Handelsman, 1992; Raaijmakers, Faes, Scholten, et al., 1999; Critchley and
1461	Critchley, 2000) have examined whether the measurement of cardiac output by
1462	TEB is comparable to measures obtained by other technologies. The
1463	conclusions reported in these systematic reviews are summarized below:
1464	
1465	Fuller (1992):
1466	• "A moderately good correlation exists between impedance cardiac output
1467	measurement and other techniques, although correlation is not so good when
1468	ICU patients are studied"
1469	
1470	Raaijmakers, Faies, Scholten et. al. (1999):
1471	• "The overall r ² value of .67 indicates that thoracic impedance cardiography
1472	might be useful for trend analysis of different groups of patients. However, for
1473	diagnostic interpretation, a value of .53 might not meet the required accuracy
1474	of the studyGreat care should be taken when thoracic impedance
1475	cardiography is applied to the cardiac patient"
1476	

1477 De Maria and Raisinghani (2000):

"...impedance cardiography has the potential to make routine assessment and
 trending of cardiac output a viable alternative to assist in the management of
 both chronically and acutely ill patients, including those with heart failure..."

1482 Critchley and Critchley (1999):

¹⁴⁸³ "...Using our revised criteria for the acceptance of limits of agreement of less

than +/- 28.3%, the results of many of the studies performed in the early 1990's

1485 using Doppler ultrasound and bioimpedance methods would still support the

rejection of either of the newer techniques in favor of TD. This is particularly true

1487 of studies involving impedance cardiography in critically ill patients... however

apart from this specific <critical care> situation our present review of the literature

suggests that the bioimpedance method is more accurate than current Doppler

1490 techniques...." They conclude by suggesting technological improvements be

1491 made to improve the accuracy of both.

1492

1493 **6. DISCUSSION**

Fineberg, Bauman, Soman et al. (1977) suggested five criteria for evaluating
 diagnostic technologies:

- Technical capacity (feasibility and reproducibility),
- Diagnostic accuracy (test performance, i.e. sensitivity, specificity),
- Diagnostic impact (influence on the pattern of subsequent diagnostic testing
- and replacement of other tests or procedures)
- Therapeutic impact (influence the selection and delivery of therapy), and
- Patient outcome (contribution to improved health).

1502

1503 The majority of the studies on TEB address only the first issue, technical

1504 capacity. One study on heart transplant patients addressed the second issue,

1505 sensitivity and specificity for diagnosing a specific condition (in this case rejection

of the transplant); but this study did not quantify the potential diagnostic impact,

1507 therapeutic impact or patient outcome. One study on the use of TEB in resistant

hypertension addressed the fifth issue, patient outcome compared to a standardtreatment (in this case management by a specialist).

1510

1511 While we did not conduct a systematic review of other diagnostic tests, several 1512 additional reports regarding TD are relevant. One systematic review of 1,610

patients from 12 randomized controlled trials " ... examined the incidence of major 1513 morbidity in critically ill patients managed with pulmonary artery catheters ... and 1514 found a statistically significant reduction in morbidity using pulmonary artery 1515 catheter-guided strategies..." (Ivanov, Allen, Calvin, 2000). In contrast, another 1516 review (of studies of less ill patients) of four randomized prospective studies 1517 found that "...in moderate risk vascular surgery patients routine preoperative 1518 pulmonary artery catheterization is not associated with improved outcomes..." 1519 (Barone, Tucker, Rassias, et al., 2001). 1520

1521

It should also be noted that the parameter most useful in patient management
obtained from catheterization is pulmonary artery wedge pressure, which cannot
be directly measured by TEB. Furthermore, Drazner, Thompson, Rosenberg, et
al. (2002) found that thoracic fluid content obtained via TEB did not correlate well
with this cardiac parameter.

1527

1528 There has been considerable debate about the value of right heart

1529 catheterization (using TD), with concern not only about lack of demonstrated

1530 benefit, but also about possible harm. Potential reasons that have been

1531 suggested to explain negative outcome include complications of the procedure

1532 itself or, possibly harmful, aggressive interventions (e.g. inotropic therapy)

initiated in response to catheterization findings. (Connors, Speroff, Dawson et al.,
1996; Hall, 2000; Polanczyk, Rohde, Goldman et al., 2001). One review
concluded that inotropic (e.g. dobutamine, milrinome) therapy has "... beneficial
hemodynamic effects..." (Felker and O'Connor, 2001). These authors, however,
also described a "negative impact on survival in patients with heart failure" and
concluded that the evidence for the impact of this type of therapy on improving
quality of life is "mixed".

1540

This debate about TD is only indirectly related to the key objective of this TA of 1541 evaluating the use of TEB. It warrants consideration, however, because 1542 1543 evaluating TEB using existing literature requires comparison to TD, since much of the literature compares TEB to thermodilution in inpatient and intensive care 1544 unit settings. Due to the extensive use of TD implied by the large number of 1545 comparisons, the accuracy of TEB relative to TD is relevant. The controversy 1546 about the value of TD (beyond the issue of its accuracy) results from outcomes 1547 studies of that procedure. The fact that outcomes studies raise these issues 1548 strengthens the point made repeatedly in this TA --- without more such studies of 1549 TEB, conclusions about its usefulness in patient care must remain limited. 1550 1551

The most important limitation in addressing the questions raised in this review is the almost complete absence of studies examining clinical outcomes in a methodologically sound manner. It is for this reason that each of the Results sections repeatedly emphasizes this. This limits the interpretation of the quantitative and non-quantitative results that follows. Additionally, as mentioned previously, many of the studies reviewed have serious methodological flaws beyond this basic one.

1559

First, to best evaluate diagnostic test performance, comparisons of one test 1560 versus another should be made on each test's ability to diagnose a specific 1561 clinical condition. Studies that take this approach are almost non-existent, so a 1562 sound answer to the study question regarding this issue is impossible to provide. 1563 We therefore had to rely solely on comparisons of TEB to various other tests, 1564 and this presented another problem. The Fick method is, in a sense, a "gold 1565 standard" but is not and cannot be commonly used in outpatient practice. In fact, 1566 none of the tests commonly used in actual practice are likely to qualify as a gold 1567 standard, and their usefulness could only be assessed by a systematic review of 1568 those other tests. 1569

1570

Another review article attempts to address this problem. Critchley and Critchley (1999) quotes the accuracy of TD as +/- 10 to 20%, and suggests that +/- 20 to 30% limits of agreement would be acceptable for patients with certain indications. While our review was not designed to estimate the prevalence of the use of this alternative technique, TD was the most frequently used comparative technique in the literature. Our meta-analyses therefore heavily rely on this technique for most comparisons.

1578

Correlation coefficients are poor summary indicators of the relative performance 1579 of diagnostic tests. At least one researcher (Critchley and Critchley, 1998) 1580 describes their use as 'inappropriate.' Interpreting the correlation coefficient is 1581 complicated further by the difficulty in translating its magnitude into a clinically 1582 meaningful statement. While the scope of this review did not include a review of 1583 how comparison techniques compare among themselves on this measure, we do 1584 have limited information which may help to put the correlation results into 1585 context. For example, Handelsman (1992) reported that the correlation of TD 1586 with Fick ranged from .89 to .96, but that " ... intra-subject TD measurements, 1587 depending on the clinical situation, is stated to be in the range of 15% to 20%..." 1588 or even higher during mechanical ventilation. 1589

1590

Looking at TEB performance within subgroups is clinically more meaningful than 1591 combining coefficients across the various cardiac metrics, equations, and 1592 practice settings. This approach, however, trades off the higher statistical power 1593 1594 that would result from collapsing across some of these categories. Correlations as high as .879 for TD measurement of cardiac output compared to TEB using 1595 1596 the Sramek-Bernstein equation appear encouraging, but the wide confidence interval (.642 - .962) based on only three studies limits the inferences that can be 1597 made. Similarly, the low correlation of .349 (.122 to .541) for CI using the 1598 Sramek–Bernstein equation is tempered by the scarcity of data. In summary, 1599 there is great variability in the results reporting correlation coefficients. 1600

1601

Critchley and Critchley (1999) point out that with their data, for one subset of patients, the difference between TD and TEB is not much greater than the difference between different measurements of TD itself. That paper also points out that the repeatability of bioimpedance is 4 to 8%--better than TD.

1606

A better measure than correlation coefficients (Critchley and Critchley, 1999;

1608 Bland and Altman, 1986) is the "bias" and limits of agreement. We, like Critchley

and Critchley, found that the bias is infrequently reported, and when present, it is

1610 sometimes based on inappropriate measurements. The three studies with the

largest bias in cardiac output (Balestra, Malcrida, Leonardi et al., 1992; Ng,
Coleman, Walley, et al., 1993); Critchley, Calcroft, Tan, et al., 2000) shared a
common characteristic. These authors used only a single measurement or
averages of the multiple measurements without controlling for the variability of
the measurements. Lack of controlling for the variability of TD measurements
may be one explanation for these results (Stetz, Miller, Kelly, et al., 1982).

Nonetheless, we did identify 12 articles (thirteen studies) for which the
measurement method justified further analysis. The implications of these results
depend upon the "clinical interpretability" of the limits of agreement. It is difficult
to interpret such results, however, without data on clinical outcomes. In addition,
the issue of the adequacy of the reference "standard" (in this instance TD)
remains in doubt.

1624

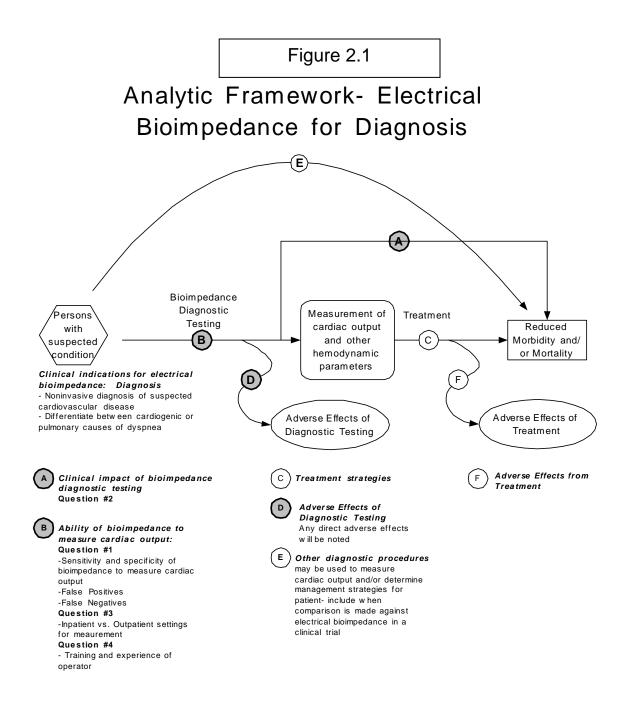
Finally, the scarcity of suitable data placed limits on what could be quantitatively analyzed. For example, combinations of equations and electrode configurations, which some of the studies suggested may be important, were not analyzed.

1628 **6. Conclusion**

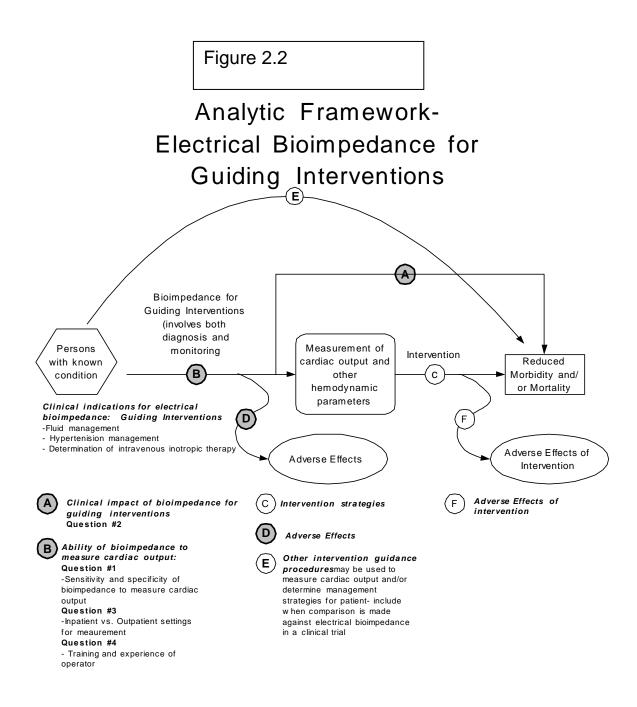
The clinical reports on the use of TEB for a variety of clinical indications by reports published since 1991 suggested that this non-invasive method is of interest and may potentially support some of these indications, but there is little evidence that directly addressed how this monitoring technique can affect patient outcomes. A conceptual model that captures the essential clinical aspects of the use of this technique for clinical management and therapeutics, such as the CMS analytic model described in the Introduction, will aid the design of such studies.

There was little conclusive evidence regarding TEB's usefulness in the specific 1637 areas addressed, and this was largely due to the lack of focus of researchers in 1638 this area on clinical outcomes. One study (Taler, Textor, Augustine, et al., 2002) 1639 is an example of the type of study that needs to be done; it evaluated the use of 1640 TEB for managing patients with resistant hypertension and examined 1641 hypertension, an important outcome, that is a well-accepted surrogate for other 1642 important health outcomes. The Taler, Textor, Augustine, et al. (2002) study 1643 1644 demonstrates the importance of a control group. In that study patients in the TEB and the control group both experienced large reductions in blood pressure; 1645 therefore, the majority of the effect in the study is attributed to other factors that 1646 are common to both the control group and the intervention group such as access 1647

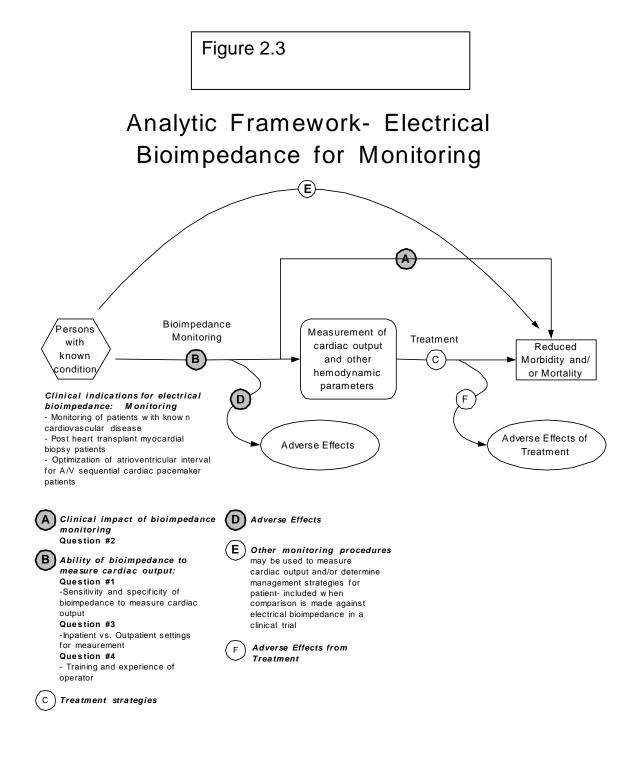
to the expert specialists. The results may not be generalizable in a communitysetting.


- 1650
- 1651 In conclusion, using the Fineberg, Bauman, Sosman et al. criteria described

above, the following table summarizes TEB performance based on available


1653 studies:

FINEBERG, BAUMAN, SOSMAN ET AL.	TEB Performance
CRITERION	
Technical capacity (feasibility and	Variable results
reproducibility)	
Diagnostic accuracy (test performance, i.e.	Insufficient data
sensitivity, specificity)	
Diagnostic impact (influence on the pattern of	Insufficient data
subsequent diagnostic testing and	
replacement of other test or procedures)	
Therapeutic impact (influence the selection	Insufficient data
and delivery of therapy), and	
Patient outcome (contribution to improved	Insufficient data
health).	


THIS PAGE INTENTIONALLY LEFT BLANK

For diagnostic testing, the sensitivity and specificity of bioimpedance to measure cardiac output or other physiological parameter compared to reference methods will be reviewed (link B). Any direct adverse events of testing mentioned in the studies will be noted. The effects of false positives and false negatives on morbidity/mortality will be reviewed if mentioned in the studies (link D). Any studies that directly demonstrate a change in patient management or a reduction in morbidity/mortality will be reviewed (link A). It is outside the scope of this technology assessment to include other diagnostic strategies except when compared with bioimpedance in clinical studies.

For use in guiding interventions, the sensitivity and specificty of bioimpedance for measuring cardiac output or other physiological parameters compared to reference methods will be reviewed (link B). Any direct adverse effects cited in the studies will be noted (link D). Studies that directly link a change in patient strategy or a reduction in morbidity/mortality to the use of bioimpedance for guiding interventions will be reviewed (link A). It is outside the scope of this technology assessment to review other intervention guidance strategies except to review these strategies when compared to bioimpedance in clinical studies.

For monitoring, the correlation of bioimpedance to reference methods will be reviewed (link B). Any direct adverse effects of bioimpedance monitoring cited in the studies will be noted (link D). Any studies that directly demonstrate a change in patient management or a reduction in morbidity/mortality will be reviewed (link A). It is outside the scope of this technology assessment to review other monitoring strategies except when compared to bioimpedance in clinical studies.

Table 2.1 Bioimpedance literature search strategy using OVID to search MEDLINE and PREMEDLINE databases on January 2002

Citations 1 bioimpedance.mp. [mp=ti, ab, rw, sh] 633 2 impedance.mp. [mp=ti, ab, rw, sh] 10735 3 exp cardiography, impedance/ 1042 4 exp electric impedance/ 3114 5 exp thermodilution/ 1495 6 teb.tw. 109 7 1 or 2 or 3 or 4 or 5 or 6 13977 limit 7 to human [Limit not valid in: Pre-MEDLINE; 8 records were retained] 10434 9 limit 8 to english language 8846 10 Case Report/ 1031559 9 not 10 8597 11 12 limit 11 to (addresses or bibliography or biography or comment or dictionary or directory or editorial or festschrift or interview or lectures or legal cases or letter or news or periodical index) 267 11 not 12 13 8330 14 exp hypertension/ 152540 15 hypertens\$.tw. 159472 16 high blood pressure.tw. 4698 14 or 15 or 16 17 204979 13 and 17 18 330 19 13 not 18 8000

	Study	Ref. Test	Para- meter	Setting	Equation	Manufacturer of TEB	Disease	Corr.	Ν	Measurement Condition
		1030	meter			OTTED				Condition
1	Balestra 1992	TD	CO	IN	SB	NCCOM-4	CV	0.74	10	External electrodes
2	Barin 2000	TD	CO	OUT	K	Rheo-Graphic	Lab	0.86	47	Suspected cardiac disease
3	Barry 1997	TD	CO	IN	SB	NCCOM-3	Mixed ICU	0.10	7	
4	Belardinelli 1996a	TD	CO	OUT	SB	NCCOM-7	CAD	0.90	10	Normal LV @exercise
								0.98	10	Normal LV @rest
	1996b							0.90	15	isch cardiomyo @exercise
								0.94	15	isch cardiomyo @rest
5	Clancy 1991	TD	CO	IN	SB	NCCOM-7	mixed ICU	0.91	17	
6	Critchley 1996	TD	CO	IN	SB	NCCOM-7	mixed ICU	0.60	8	
7	Critchley 2000	TD	CO	IN	SB	NCCOM-7	Sepsis	0.39	24	
8	Demeter 1993	TD	CO	IN	К	Minnesota 304B	CABG	0.84	10	Supine 1
								0.90	10	45 degrees
								0.97	10	Supine 2
9	Doering 1995	TD	CO	IN	ND	NCCOM-3	cardiac surg	0.22	34	Postextubation
								0.28	34	Normothermia
								0.46	34	24h ICU
10	Dao	тр		INI		D!- 7	he out foil une	0.48	34	ICU admission
10	Drazner 2002	TD	CI CO	IN	ND	BioZ	heart failure	0.64	50 50	
11	Genoni 1998	TD	CO	IN	SB	NCCOM-7	lung injury	0.78	10	ZEEP
	Genoni 1990	ID	0.0	IIN	50		iung injury	0.60	10	PEEP
12	Horstmann 1993	TD	CO	OUT	K	Diefenbach	Lab	-0.01	35	at rest
								0.45	35	at exercise
13	Jewkes 1991	TD	CO	IN	SB	NCCOM-3	mixed ICU	0.72	16	
			SV					0.83	16	
14	Marik 1997	TD	CO	OUT	ND	Renaissance- IQ	CHD	0.08	24	
15	Ng 1993	TD	CO	IN	SB	NCCOM-7	mixed ICU	0.87	37	
16	Perrino 1994	TD	CO	IN	SB	NCCOM-7	noncardiac surgery	0.84	43	
17	Pickett 1992	TD	CO	IN	К	HDC	mixed ICU	0.86	43	SM with means of multiples
18	Raaijmakers 1998a	TD	CO	IN	SB	ND	sepsis	0.42	13	
19	Sageman 1993	TD	CO	IN	SB	NCCOM-7	CABG	0.48	50	
20	Sageman 2002	TD	CI	IN	ND	BioZ	CABG	0.93	20	
21	Shoemaker 1994	TD	CI	ED	ND	Renaissance- IQ	mixed ED	0.86	68	
22	Shoemaker 1998	TD	CI	ED	ND	Renaissance- IQ	mixed ED	0.85	680	

	Study	Ref. Test	Para- meter	Setting	Equation	Manufacturer of TEB	Disease	Corr.	N	Measurement Condition
23	Shoemaker 2000	TD	CI	ED	ND	Renaissance- IQ	mixed ED	0.78	45	
24	Shoemaker 2001	TD	CO	ED	ND	Renaissance- IQ	mixed ED	0.91	151	
25	Spiess 2001	TD	CI	IN	ND	BioZ	CABG	0.87	47	Postanesthesia
								0.56	45	Chest closed
								0.73	45	Chest open
								0.76	47	after bypass
26	Thangathurai 1997	TD	CO	IN	ND	IQ 101	surgery	0.89	23	
27	Van der Meer 1996	TD	CO	IN	SB	IPG-104	CABG	0.83	21	
28	Van der Meer 1997	TD	CO	IN	SB	IPG-104	CABG	0.60	37	
29	Velmahos 1998	TD	CI	ED	ND	Renaissance- IQ	CV accidents	0.82	17	
30	Weiss 1995	TD	CO	OUT	SB	NCCOM-7	lab	0.69	15	Stable pts
							MICU	0.81	13	Unstable pts
31	Woltjer 1996b	TD	SV	IN	SB	IPG-104	CABG	0.64	37	
32	Woltjer 1997	TD	SV	OUT	K	IPG-104	lab	0.69	24	
33	Wong KL 1996	TD	CO	IN	SB	NCCOM-7	CABG	0.86	18	
34	Zacek 1999	TD	CI	IN	SB	HotmanAH- HHC	cardiac surgery	0.26	28	
35	Zubarev 1999	TD	CO	IN	mod K	BPCS	AMI	0.91	11	
36	Woo 1992	TD	CO	IN	SB	NCCOM-3	heart failure	0.51	44	
37	Yakimets 1995 Tr2	TD	CI	IN	SB	NCCOM-7	cardiac surgery	0.40	28	2-4h postsurgery
								0.45	28	Immed postsurger
			CO					0.51	28	2-4h postsurgery
								0.55	28	Immed postsurger
38	Young 1993	TD	CI	IN	SB	NCCOM-6	sepsis	0.36	19	
39	Belardinelli 1996	Dir Fick	CO	OUT	SB	NCCOM-7	CAD	0.93	15	isch cardiomyo @exercise
								0.85	15	isch cardiomyo @rest
								0.89	10	Normal LV @exercise
								0.95	10	Normal LV @rest
40	Yakimets 1995 Tr1	Dir Fick	CI	OUT	SB	NCCOM-7	lab	0.26	17	at exercise
								0.62	17	at rest
			SV					0.43	17	at exercise
								0.76	17	at rest
41	Drazner 2002	Dir Fick	CI	IN	ND	BioZ	heart failure	0.61	28	
			CO	IN	ND	BioZ	heart failure	0.73	28	
42		Ind Fick	CO	OUT	K	IPG-104	COPD	0.92	14	
43		Pulsed Doppler	SV	OUT	К	ND	HBP	0.95	14	
44	Van der Meer 1999	Echo Doppler	CO	OUT	SB	IPG-104	lab	0.85	26	

	Study	Ref. Test	Para- meter	Setting	Equation	Manufacturer of TEB	Disease	Corr.	N	Measurement Condition
45	Summers 2001	Echo- cardiog	LVEF	ED	ND	Sorba	mixed ED	0.89	15	Capan method
								0.89	15	Weissler method
46	Bowling 1993	Angio- graphy	LVEF	OUT	ND	NCCOM-7	Cancer	0.74	20	
47	Marik 1997	Angio- graphy	LVEF	OUT	ND	Renaissance- IQ	CAD	0.02	24	
48	Mattar 1991	Angio /nucl steth	LVEF	IN	SB	NCCOM-7	mixed ICU	0.69	17	
49	Thomas SH 1992b	Angio- graphy	CO	IN	SB	NCCOM-7	CHD	0.25	34	
			SV					0.65	34	
*Abi TD= C0= CI=(SV= IN=I OU7 ED=	e: Some article previations: Thermodilutic Cardiac inpu Cardiac Index Stroke volum npatient F=Outpatient Emergency E Sramek-Bern	on t e Dept.	t more 1	han one	'study.'					
	ubicek									

Table 3.2: Combined correlation coefficients for cardiac output and cardiac index by care setting: inpatient, outpatient, emergency room (TEB compared to TD using Sramek-Bernstein equation)

	Inpatient	Outpatient	ED
Cardiac Output	.693	.879	-
95% Confidence Interval	.578781	.642962	-
# Studies / # Patients	17/396	3/40	-
Cardiac Index	.349	-	.848
95% Confidence Interval	.122540	-	.827866
# Studies / # Patients	3/75	-	3/793

Figure 3.2.a : Combined correlation coefficients for cardiac output by care setting: inpatient, outpatient, emergency room (TEB compared to TD using Sramek-Bernstein Equation) Individual Study Results

	Setting	Citation	Effect	NTotal	-1.00	-0.50	0.00	0.50	1.00	Manufacture
	IN	Clancy 1991	.910	17	1		1		I	NCCOM-7
	IN	Jewkes 1991	.720	16					I	NCCOM-3
	IN	Balestra 1992	.740	10			·		I	NCCOM-4
	IN	Woo 1992	.510	44				<u> </u>	·	NCCOM-3
	IN	Ng 1993	.870	37					→	NCCOM-7
	IN	Sageman 1993	.480	50				<u> </u>		NCCOM-7
	IN	Perrino 1994	.840	43					→	NCCOM-7
	IN	Weiss 1995	.810	13					→ –	NCCOM-7
	IN	Yakimets 1995 Tr2	.530	28			·		-	NCCOM-7
	IN	Van der Meer 1996	.830	21				-	—— I	IPG-104
	IN	Critchley 1996	.600	8						NCCOM-7
	IN	Wong KL 1996	.860	18				-	— − −	NCCOM-7
	IN	Van der Meer 1997	.600	37					-	IPG-104
	IN	Barry 1997	.100	7					-	NCCOM-3
	IN	Genoni 1998	.450	10					-	NCCOM-7
	IN	Raaijmakers 1998	.420	13					-	ND
	IN	Critchley 2000	.390	24						NCCOM-7
Random	IN (17)		.693	396				-	-	
	OUT	Weiss 1995	.690	15						NCCOM-7
	OUT	Belardinelli 1996 a	.940	10						NCCOM-7
	OUT	Belardinelli 1996 ь	.920	15					→	NCCOM-7
andom	OUT (3)		.879	40				-	— - -	
andom	Combined (21)		.744	587				_	I	

Figure 3.2.b: Combined correlation coefficients for cardiac index by care setting: inpatient, outpatient, emergency room (TEB compared to TD using Sramek-Bernstein Equation) individual study results

	Setting	Citation	Effect	NTotal	-1.00	-0.50	0.00	0.50	1.00	Manufacture
	ED	Shoemaker 1994	.860	68					→	Renaissance-
	ED	Shoemaker 1998	.850	680					+	Renaissance-
	ED	Shoemaker 2000	.780	45					-	Renaissance-l
Random	ED (3)		.848	793					-	
	IN	Young 1993	.360	19				- -		NCCOM-6
	IN	Yakimets 1995 Tr2	.425	28			—			NCCOM-7
	IN	Zacek 1999	.260	28						HotmanAH-HH
Random	IN (3)		.349	75			-			
Random	Combined (6)		.675	868					_	

Table 3.3: Sເ	umm	ary of s	studie	s repo	rting b	oias		
Study	N	Ref. Test	Test	D	SD	Unit	Measurement conditions	Replication of measurements
Antonicelli 1991	14	Pulsed Doppler	SV	-0.7	8.5	ml		Yes
Atallah 1995	5	TD	CI	0.69	0.66	L/min.m ²		Yes
Balestra 1992	30	TD	CO	1.99	2.20	L/min	external electrodes	No
Barin 2000	47	TD	CO	-0.18	0.78	L/min		Yes
Barry 1997	7	TD	CO	-1.60	1.16	L/min		Yes
Belardinelli 1996	15	TD	CO	-0.10	0.17	L/min	at rest	
	15	TD	CO	-0.12	0.15	L/min	at rest 25%	
	15	TD	CO	-0.14	0.20	L/min	at rest 50%	
	15	TD	CO	-0.16	0.40	L/min	at rest 75%	
	15	TD	CO	-0.22	0.22	L/min	at rest 100%	
	10	TD	CO	0.04	0.10	L/min	peak exercise	
	10	TD	CO	-0.05	0.20	L/min	peak exercise 25%	
	10	TD	CO	-0.08	0.20	L/min	peak exercise 50%	
	10	TD	CO	-0.10	0.30	L/min	peak exercise 75%	1
	10	TD	CO	-0.30	0.40	L/min	peak exercise100%	
	15	Fick	CO	-0.03	0.24	L/min	at rest	1
	15	Fick	CO	-0.09	0.13	L/min	at rest 25%	
	15	Fick	CO	-0.12	0.30	L/min	at rest 50%	1
	15	Fick	CO	-0.10	0.40	L/min	at rest 75%	
	15	Fick	CO	-0.31	0.42	L/min	at rest 100%	Vaa
	10	Fick	CO	-0.01	1.43	L/min	peak exercise	Yes
	10	Fick	CO	-0.04	0.25	L/min	peak exercise 25%	
	10	Fick	CO	-0.02	0.20	L/min	peak exercise 50%	1
	10	Fick	CO	-0.20	0.30	L/min	peak exercise 75%	1
	10	Fick	CO	-0.50	5.53	L/min	peak exercise100%	
	15	TD	SV	1.78	2.48	ml	at rest	
	15	TD	SV	0.50	2.50	ml	at rest 25%	1
	15	TD	SV	-1.10	3.00	ml	at rest 50%]
	15	TD	SV	-1.80	4.00	ml	at rest 75%	1
	15	TD	SV	-3.00	3.40	ml	at rest 100%	1
	10	TD	SV	1.90	0.65	ml	peak exercise	1
	10	TD	SV	1.10	3.00	ml	peak exercise 25%	1
	10	TD	SV	0.50	4.00	ml	peak exercise 50%	1
	10	TD	SV	-1.20	4.50	ml	peak exercise 75%	1
	10	TD	SV	-1.97	0.40	ml	peak exercise100%	1

Study	Ν	Ref. Test	Test	D	SD	Unit	Measurement conditions	Replication of measurements
Bogaard 1997	19	Indir. Fick	CO	-11.7	11.05	L/min	At rest	
	10	Indir. Fick	CO	-7.45	9.3	L/min	Prior to t3	
	14	Indir. Fick	CO	3.98	12.8	L/min	Prior to t4	
	19	Indir. Fick	CO	3.45	9.0	L/min	Prior to t5	
	19	Indir. Fick	CO	6.85	8.85	L/min	Highest work intensity	No*
	19	Indir. Fick	SV	-1.05	0.955	ml	At rest	NO
	10	Indir. Fick	SV	-0.67	0.89	ml	Prior to t3	
	14	Indir. Fick	SV	0.33	1.24	ml	Prior to t4	
	19	Indir. Fick	SV	0.35	0.985	ml	Prior to t5	
	19	Indir. Fick	SV	0.87	1.195	ml	Highest work intensity	
Clancy 1991	17	TD	CO	0.23	0.56	L/min	, í	Yes
Critchley 2000	24	TD	CO	-1.49	2.08	L/min		No
Doering 1995	34	TD	CI	0.21	0.53	L/min.m^2	ICU admission	
<u> </u>	34	TD	CI	0.02	0.72	L/min.m^2	Normothermia	
	34	TD	CI	0.04	0.86	L/min.m^2	Postextubation	No
	34	TD	CI	0.18	0.76	L/min.m^2	24 hrs ICU	-
Drazner 2002	50	TD	CI	0.01	0.60	L/min.m^2		
	28	Fick	CI	0.40	0.60	L/min.m^2	Subset of the 50 patients	No
	50	TD	CO	0.03	1.10	L/min	Ï	No
	28	Fick	CO	0.74	1.10	L/min	Subset of the 50 patients	
Genoni 1998	10	TD	CO	-1.81	1.07	L/min		Yes
Hirschl 2000	29	TD	CI	-0.61	0.74	L/min.m^2		Yes
Jewkes 1991	16	TD	CO	0.86	0.87	L/min		
	16	TD	SV	13.00	11.10	ml	Ī	No
Ng 1993	27	TD	CO	-1.40	1.40	L/min	Ì	N -
	27	TD	SV	-14.00	13.40	ml		No

Study	Ν	Ref. Test	Test	D	SD	Unit	Measurement conditions	Replication of measurements
Perrino 1994	43	TD	CO	-0.40	1.00	L/min		Yes
Pickett 1992	201	TD	CO	-0.13	1.03	L/min		Yes
Raaijmakers 1998a	30	TD	CO	-2.40	2.80	L/min	SB equation	Yes
Sageman 1993	50	TD	CO	0.33	1.70	L/min		No
Sageman 2002	20	TD	CI	-0.07	0.20	L/min.m^2		Yes
Shoemaker 1998	680	TD	CI	-0.12	0.75	L/min.m^2		Yes
Shoemaker 2000	45	TD	CI	-0.16	0.95	L/min.m^2		No
Spiess 2001	47	TD	CI	-0.28	0.70	L/min.m^2		Yes
Thangathurai 1997	23	TD	CO	0.10	1.00	L/min		Yes
Thomas AN 1991	28	TD	CO	-1.08	0.96	L/min	<12 hrs	Yes
	28	TD	CO	0.09	0.54	L/min	12-24 hrs	Yes
Thomas SH 1992a	15	TD	CO	-0.55	0.83	L/min		Yes
	15	TD	SV	-8.10	13.20	ml		
Van der Meer 1996	21	TD	CO	0.15	0.96	L/min	SB equation	No
Van der Meer 1997**	25	TD	CO	0.10	1.00	L/min		No
Weiss 1995	15	TD	CO	0.23	2.19	L/min	stable patients	Vaa
	13	TD	CO	0.03	2.33	L/min	unstable patients	Yes
Woltjer 1996a	37	TD	SV	-2.70	14.65	ml		No
Woltjer 1997	24	TD	SV	0.10	11.40	ml		No
Wong KL 1996	18	TD	CO	-0.66	0.915	L/min		Yes
Yakimets 1995 Tr1	17	Fick	CI	-0.56	0.78	L/min.m ²		
	17	Fick	CI	-0.75	1.12	L/min.m ²	at exercise	
	17	Fick	CO	-1.05	1.53	L/min	at rest	No
	17	Fick	CO	-1.51	2.24	L/min	at exercise	
	17	Fick	SV	-13.5	20.9	ml	at rest	
	17	Fick	SV	-16.7	24.3	ml	at exercise	
Yakimets 1995 Tr2	28	TD	CI	-0.18	0.70	L/min.m^2	immed after surgery	No
	28	TD	CI	-1.40	0.67	L/min.m^2	2-4 hrs post-op]
	28	TD	CO	-0.43	1.33	L/min	immed after surgery]
	28	TD	CO	-0.36	1.24	L/min	2-4 hrs post-op]
	28	TD	SV	-3.19	13.97	ml	immed after surgery]

Table 3.3: Summary of studies reporting bias

Table 3.3: Su	Table 3.3: Summary of studies reporting bias													
Study	Ν	Ref. Test	Test	D	SD	Unit	Measurement conditions	Replication of measurements						
	28	TD	SV	-3.69	12.49	ml	2-4 hrs post-op							
Young 1993	19	TD	CI	1.69	1.24	L/min.m^2		Yes						
Zacek 1999	28	TD	CI	-0.07	1.11	L/min.m^2		Yes						

٦

*Aggregated data was with replication, but data at each time point was without replication. **Bias and SD were estimated from the plot (not reported in the text)

Г

Table 3.4: Bias and limits of agreement in studies comparing test agreement
between TEB (Sramek-Bernstein equation) And TD cardiac output (L/Min) in
inpatients

Study	Ν	Bias	Limits of Agreement		Measurement	Measurement Procedure		
-			Lower	Upper	Conditions	TD	TEB	
Balestra 1992	30	1.99	-2.41	6.39	external electrodes	M:1	M:1	
Critchley 2000	24	-1.49	-5.65	2.67		A set of "nested reading" = mean [3 TD: + mean [3 TEBs]. Mult. nests per patier		
Jewkes 1991	16	0.86	-0.88	2.60		M:3, V<10%, aver taken M:3, aver ta		
Ng 1993	27	-1.40	-4.2	1.4		M:3, aver taken	Not clear. One measure used. "Poor quality" signals were excluded.	
Sageman 1993	50	0.33	-3.07	3.73		M:3~5, V<15%, aver taken	M:5, aver taken	
Van der Meer 1996	21	0.15	-1.77	2.07		M:4, V<15%, aver taken	M:6, V<15%, aver taken	
Van der Meer 1997*	25	0.10	-1.90	2.10		Multiple, V<15%, assume aver taken	Multiple, V<15%, assume aver taken	
Yakimets 1995 Tr2	28**	-0.43	-3.09	2.23	immed after surgery	Not clear	Not clear	
	28**	-0.36	-2.84	2.12	2-4 hrs post-op	NUL LIEAI	INUL CIEDI	
Random-effects model	191	0.006	-2.87	2.89				
combined estimate				-				

*Bias and SD were estimated from the plot (not reported in the text) **Same patients. Biases in the two conditions were averaged and the mean was taken for meta-analysis.

Table 3.5: Bias and limits of agreement in studies comparing test agreement between TEB (Sramek-Bernstein equation) and TD stroke volume (ml) in inpatients

Study	Ν	Bias	Limits of Agreement		Measurement Conditions
			Lower	Upper	
Jewkes 1991	16	13.00	-9.2	35.20	
Ng 1993	27	-14.00	-40.8	12.80	
Yakimets 1995 Tr2	28*	-3.19	-31.13	24.81	immed after surgery
	28*	-3.69	-28.67	21.29	2-4 hrs post-op
Woltjer 1996	37	-2.70	-32.0	26.60	
Random-effects model	108	-1.86	-28.30	24.74	
combined estimate					

*Same patients. Biases in the two conditions were averaged and the mean was taken for meta-analysis.

Study	Reference standard	Test	Setting	Equation	mong inpa Manufacturer	TD measures	TEB measures	Analysis of correlation	Bias reported?	Quality
Balestra 1992	TD	CO	IN	SB	NCCOM-4	M:1	M:1	Correlate single measure	Yes	В
Barry 1997	TD	CO	IN	SB	NCCOM-3	Multiple	Multiple	Correlate multiple measures	Yes	С
Clancy 1991	TD	CO	IN	SB	NCCOM-7	M:3	M:3	Correlate multiple measures	Yes	С
Critchley 1996	TD	CO	IN	SB	NCCOM-7	A set of "neste mean [3 TDs TEBs]. Mult patie	s] + mean [3 nests per	Correlate multiple "nests"	Yes*	C +
Critchley 2000	TD	CO	IN	SB	NCCOM-7	M:3, aver taken	M:3, aver taken	Correlate means	Yes	A -
Demeter 1993	TD	CO	IN	К	Minnesota 304B	M:5, discard high & low values, mean [M:3] taken	M:3, aver taken	Correlate means	No	A
Doering 1995	TD	CI CO	IN	ND	NCCOM-3	M:3, V<10%, aver taken	M:3, corresp. measures, aver taken	Correlate means	Yes	A
Drazner 2002	TD	CI CO	IN	ND	BioZ	M: 3~5, V<10%, assume aver taken	Multiple, aver taken	Correlate means	Yes	A
Genoni 1998	TD	СО	IN	SB	NCCOM-7	M:3, V<10%	M:5, discard 2 extreme values	Correlate multiple measures	Yes	C+
Jewkes 1991	TD	CO	IN	SB	NCCOM-3	M:3, V<10%, aver taken	M:3, aver taken	Correlate means	Yes	A

Г

Study	Reference standard	Test	Setting	Equation	Manufacturer	TD measures	TEB measures	Analysis of correlation	Bias reported?	Quality
Ng 1993	TD	CO	IN	SB	NCCOM-7	M:3, aver taken	Not clear. One measure used. "Poor quality" signals were excluded.	Correlate mean [TDs] with TEB	Yes	В
Perrino 1994	TD	СО	IN	SB	NCCOM-7	M:3/epoch, V<15%, aver taken/epoch, 6 epoch/patient	Corresp. measures	Claim mean [TDs/epoch] was used. In plot, mult. measures were used.	Yes	С
Pickett 1992	TD	CO	IN	К	HDC	M:4~5, V<20%, both mult measures and aver were used	Corresp. measures	Correlate both mult. measures and means, separately	Yes	A
Raaijmakers 1998a	TD	CO	IN	SB	ND	M:5, aver taken	Not clear. Mean was used.	Not sure why 32 measures in 13 patients.	Yes	В
Sageman 1993	TD	СО	IN	SB	NCCOM-7	M:3~5, V<15%, aver taken	M:5, aver taken	Correlate means	Yes	A
Sageman 2002	TD	CI	IN	ND	BioZ	Multiple	Multiple	Correlate mult. measures	Yes	С
Spiess 2001	TD	CI	IN	ND	BioZ	M: 3, V<10%, aver taken	Multiple, aver taken	Correlate means**	Yes	В
Thangathur ai 1997	TD	СО	IN	ND	IQ 101	Multiple	Multiple	Correlate mult. measures	Yes	С

		-	-	•	neasureme Imong inpa	ents for stu atients	idies com	paring TE	B cardia	C
Study	Reference standard				Manufacturer		TEB measures	Analysis of correlation	Bias reported?	Quality
Van der Meer 1996	TD	CO	IN	SB	IPG-104	M:4, V<15%, aver taken	M:6, V<15%, aver taken	Correlate means	Yes	A
Van der Meer 1997	TD	CO	IN	SB	IPG-104	Multiple, V<15%, assume aver taken	Multiple, V<15%, assume aver taken	Assume correlate means	Yes	A-
Weiss 1995	TD	CO	IN	SB	NCCOM-7	Multiple	Multiple	Correlate multiple measures	Yes	С
Wong KL 1996	TD	CO	IN	SB	NCCOM-7	7~8 pairs of measures p		Correlate multiple measures	Yes	С
Woo 1992	TD	CO	IN	SB	NCCOM-3	TD&TEB- M:3, aver taken. "A set" = a pair of mean [TDs] and mean [TEB]. 1~2 sets per patient.		Correlate multiple mean values	No	C+
Yakimets 1995 Tr2	TD	CI CO	IN	SB	NCCOM-7	Not clear	Not clear	Correlate sing measure / aver mult measures	Yes	В
Young 1993	TD	CI	IN	SB	NCCOM-6	Multiple	Multiple	Correlate multiple measures	Yes	С
Zacek 1999	TD	CI	IN	SB	HotmanAH- HHC	M: 4, V<10%	Corresp. measures	Correlate multiple measures	Yes	С
Zubarev 1999	TD	СО	IN	mod K	BPCS	Multiple	Multiple	Correlate multiple measures	No	С

*Log values were used for estimation of bias

Г

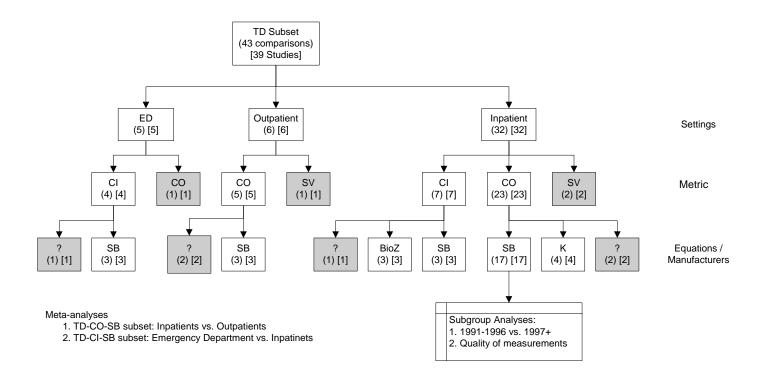
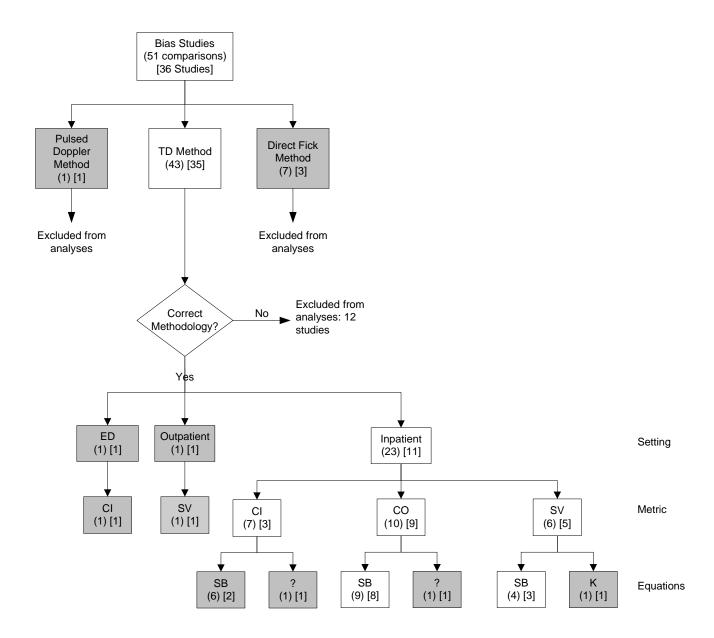

**The aggregated correlation coefficient for the 4 conditions was using multiple measurements per patient, but that for each condition was correlating means. The aggregated correlation coefficient was dropped, and the average correlation coefficient of the 4 conditions was used in the meta-analyses of correlation coefficients.

Figure 3.1: Analytic framework for correlation meta-analysis

•

		Echocardio (Doppler)	Echocardio (non- Doppler)	Direct Fick	Indirect Fick	Radio- nuclide	TD
	CL		Doppier)	3			11
Т	CO	- 1	-	5	- 1	- 1	27
E	SV	1		2	-	1	27
В	LVEF	-	1	-	-	3	-

Number of Comparisons of TEB to Other Standards in A Total of 49 Studies

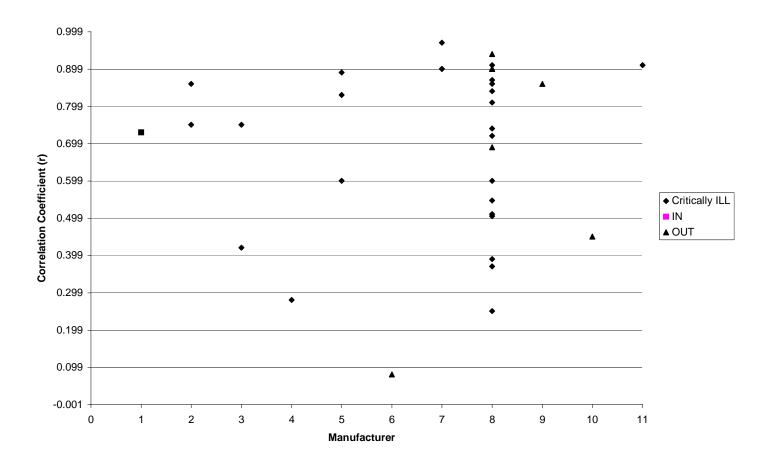


Equation abbreviations: SB= Sramek-Bernstein; K=Kubicek Notes:

Gray shading indicates studies excluded from meta-analysis.

Studies may not sum to total due to analysis of more than one cardiac metric per study

Figure 3.2: Analytic framework for meta-analyses of bias and limits of agreement

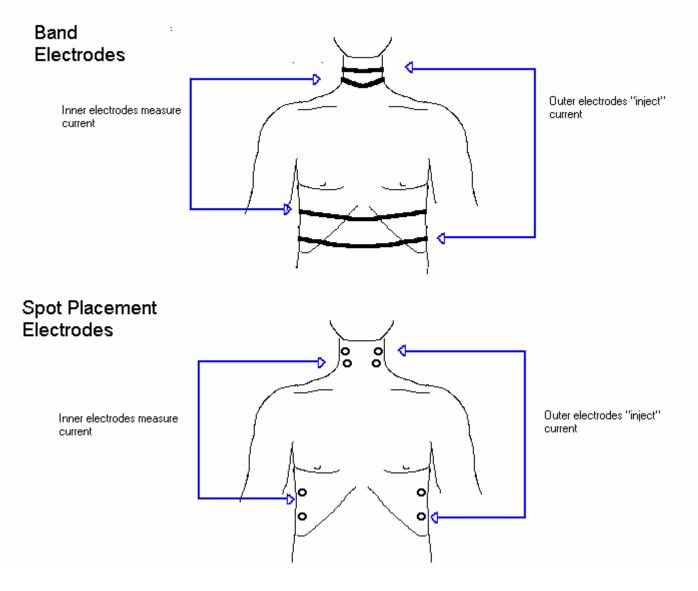

Equation abbreviations: SB= Sramek-Bernstein; K=Kubicek Notes:

Gray shading indicates studies excluded from meta-analysis.

Studies may not sum to total due to analysis of more than one cardiac metric per study.

Figure 3.3: Chronological array of correlation coefficients for cardiac output in the inpatient setting chronologically arrayed (TEB vs. TD for Sramek-Bernstein)

	YrCutoff	Citation	Effect	NTotal	-1.00	-0.50	0.00	0.50	1.00	Manufacture
	early	Jewkes 1991	.720	16					— I	NCCOM-3
	early	Clancy 1991	.910	17						NCCOM-7
	early	Woo 1992	.510	44						NCCOM-3
	early	Balestra 1992	.740	10					·	NCCOM-4
	early	Sageman 1993	.480	50				—		NCCOM-7
	early	Ng 1993	.870	37					-+-	NCCOM-7
	early	Perrino 1994	.840	43				-	→	NCCOM-7
	early	Yakimets 1995 Tr2	.530	28					-	NCCOM-7
	early	Weiss 1995	.810	13					→	NCCOM-7
	early	Wong KL 1996	.860	18				_	— —	NCCOM-7
	early	Van der Meer 1996	.830	21					→	IPG-104
	early	Critchley 1996	.600	8			_		— I	NCCOM-7
Random	early (12)		.756	305				_	-	
	new	Van der Meer 1997	.600	37					_	IPG-104
	new	Barry 1997	.100	7					-	NCCOM-3
	new	Raaijmakers 1998	.420	13					-	ND
	new	Genoni 1998	.450	10					-	NCCOM-7
	new	Critchley 2000	.390	24						NCCOM-7
Random	new (5)		.487	91				— —		
Random	Combined (17)		.693	396					-	


Figure 3.4 TEB Correlation Coefficients for Cardiac Output by Manufacturer

1= Bioz
2 = HDC
3= Custom-built
4= Hotman
5=IG101 and IPG-104
6=IQ
7= Minnesota Impedance Cardiograph
8 = NCCOM-3
9=RheoCardioMonitor
10=Tetrapolar Impedance
11=Wantagh

	Appendix 1: Evidence Table Acronyms and Abbreviations					
A/V	Atrioventricular					
AF	Atrial Fibrillation					
ARDS	Acute Respiratory Distress Syndrome					
ARF	Acute Respiratory Failure					
BBB	Bundle Branch Block					
BMI	Body Mass Index					
BPCS	Bioimpedance Polyrheocardiographic System					
CABG	Coronary Artery Bypass Graft					
CAD	Coronary Artery Disease					
CCU	Critical Care Unit					
CHD	Coronary Heart Disease					
CHF	Congestive Heart Failure					
CI	Cardiac Index					
CO	Cardiac Output					
COPD	Chronic Obstructive Pulmonary Disease					
CPB	Cardiopulmonary Bypass					
CV	Cardiovascular					
CVD	Cardiovascular Disease					
D	Bias (against gold standard)					
ECG	Electrocardiography					
ECW	Extracellular Water					
ED	Emergency Department					
EF	Ejection Fraction					
FEV	Forced Expiratory Volume (in 1 second)					
FVC	Forced Vital Capacity					
HBP	High Blood Pressure					
ICU	Intensive Care Unit					
IHD	Ischemic Heart Disease					
IPD	Individual Patient Data					
LV	Left Ventricle					
LVEF	Left Ventricular Ejection Fraction					
LVET	Left Ventricular Ejection Time					
MAP	Mean Arterial Pressure					
MI	Myocardial Infarction					
MICU	Medical Intensive Care Unit					
MVR	Mitral Valvular Regurgitation					
ND	No Data					
OR	Operating Room					
PAC	Pulmonary Artery Catheter					

	Appendix 1: Evidence Table Acronyms and Abbreviations				
PCWP	Pulmonary Capillary Wedge Pressure				
PEEP	Positive End-expiratory Pressure				
r	Correlation Coefficient				
r ²	Multivariate Coefficient of Determination				
RM	Repeated Measure				
RZ	Time between R wave of ECG and dZ/dt				
SAH	Subarachnoid Hemorrhage				
SD	Standard Deviation				
SI	Stroke Index				
SM	Single Measurement				
STI	Systolic Time Intervals				
SV	Stroke Volume				
TBW	Total Body Water				
TD	Thermodilution				
TEB	Thoracic Electrical Bioimpedance				
TFI	Thoracic Fluid Index				
TLC	Total Lung Capacity				
TS	Tricuspid Stenosis				
VC	Vital Capacity				
VEPT	Volume of Electrically Participating Tissue				
WMS	Wall Motion Score				
ZEEP	Zero End Respiratory Pressure				
Zo	Baseline Impedance				

Appendix 2: Electrode Placement

Evidence Table 1.	Comparison Studies: Part I
-------------------	-----------------------------------

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Antonicelli 1991 91368949	Double-blind crossover	Location: Italy Setting: outpatient Mean age: (66-77) % Male: ND Enrolled: 14	Hypertension Non-critically ill	Elderly hypertensives on cadralizine	Mild or moderate arterial essential HBPreliable echo required	obesity, pulmonary emphysema
Atallah 1995 95398907	Prospective	Location: Egypt Setting: hospital Mean age: ND % Male: ND Enrolled: 5	Hemodynamics Critically ill	5 radical cystectomy	ND	<20 years old, grossly obese or overweight, cardiac arrhyth- mias, valvular heart lesions, abnormal thoracic anatomy
Balestra 1992 92103922	Prospective	Location: Switzerland Setting: ICU Mean age: 63.4 % Male: 80 Enrolled: 10	Hemodynamics Critically ill	CV and/or respiratory illness	ND	ND
Barin 2000 20214491	Prospective	Location: Australia Setting: lab Mean age: 62.7 % Male: 66 Enrolled: 47	Hemodynamics Non-critically ill	Routine cardiac catheterization for suspected cardiac disease	ND	Severe lung disease, severe valve insuf- ficiency or stenosis, pulmonary con- gestion, pleural effusions, AV shunts, amyloi- dosis, cardiac arrhythmias, frequent ectopic activity, severe organ failure, advanced malignancy

Evidence Table 1.	Comparison Studies: Part I
-------------------	----------------------------

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Barry 1997 11056698	Observational	Location: UK Setting: ICU Mean age: 63 % Male: ND Enrolled: 7	Hemodynamics Critically ill	1 acute pancreatitis; 2 emergency repair of aortic aneurysm; 1 appendix abscess; 1 pulmonary embolism; 1 cholangitis; 1 respiratory failure	Patients requiring PAC	ND
Belardinelli 1996 96259436	Prospective	Location: Italy Setting: lab Mean age: 48.6 % Male: 80 Enrolled: 25	Hemodynamics Non-critically ill	CAD	Consecutive patients in sinus rhythm with documented CAD and prior MI	Unstable angina, MI<2 months, chronic heart failure, COPD, significant valvular heart disease, uncon- trolled HBP, hypotension, arthritis, other orthopedic peripheral vas- cular or neuro- logic disease that limits the ability to exercise
Bogaard 1997 98075787	Prospective	Location: Holland Setting: Lab Mean age: 57 % Male: ND Enrolled:19	Hemodynamics Fluid management Routine	COPD	Clinical diagnosis of COPD; FEV/VC>80%, normal ECG	Any pathology interfering with exercise; CV meds
Bowling 1993 94007883	Prospective	Location: US Setting: outpatient Mean age:56.8 % Male: 50 Enrolled: 20	Hemodynamics Non-critically ill	15/20 patients treated with anthracycline chemo for various malignancies	Ambulatory adults scheduled for radionuclide angiography	Evidence of ongoing myocardial injury, tchysdysrhythmia or significant valvular heart disease

Evidence Table 1.	Comparison Studies: Part I
-------------------	----------------------------

Author, Year Ul	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Castor 1994 94153663	Prospective	Location: Germany Setting: ICU Mean age: (35-65) % Male: 40 Enrolled: 10	Hemodynamics Critically ill	Surgical removal of intracranial tumor or aneurysm	ND	ND
Clancy 1991 91341839	Cross-sectional	Location: US Setting: ICU, OR Mean age: (17-83) % Male: ND Enrolled:17	Hemodynamics Critically ill	5 trauma, 5 post- CABG, 5 post- abdominal surgery, 2 cardiopulmonary	ND	ND
Critchley 1996 96338592	Prospective	Location: Hong Kong Setting: ICU Mean age: ND % Male: ND Enrolled: 8	Hemodynamics Critically ill	2 partial hepatectomies; 5 radical cystectomies + ileal conduit; 1 abdominal aortic aneurysm repair	Patients requiring PAC	ND
Critchley 2000 20399480	Prospective	Location: Hong Kong Setting: ICU Mean age: (13-87) % Male: 70 Enrolled:24	Hemodynamics Fluid management Critically ill	13 Sepsis, 5 fluid balance problems, 6 cardiothoracic problems	Patients in whom PAC was used to measure CO	ND
Demeter 1993 94032793	Cross-sectional	Location: USA Setting: CCU Mean age: 59 % Male: 100 Enrolled: 10	Hemodynamics Critically ill	CABG	Stable, non- ventilated CABG in open heart recovery	ND
Doering 1995 96019885	Prospective, Longitudinal Repeated measures	Location: US Setting: ICU Mean age: 66.7 % Male: 88 Enrolled: 34	Hemodynamics Critically ill	Elective cardiac surgery	PAC in place	Aortic insufficiency, aortic valve replacement scheduled

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Drazner 2002 21947433	Prospective	Location: USA Setting: hospital Mean age: 52 % Male: 74 Enrolled: 50	Hemodynamics non-critically ill	Heart failure	Right-sided cardiac catheterization	Electrical interference, difficulty with venous catheterization, uncertain diagnosis, no pulmonary arterial wedge pressure.
Genoni 1998 98373881	Prospective	Location: Italy Setting: ICU Mean age: 63 % Male: 80 Enrolled: 10	Hemodynamics Critically ill	Acute lung injury with mechanical ventilation	ND	Thoracic surgery, chest tube, or vasoactive drugs
Hirschl 2000 20346676	Prospective	Location: Austria Setting: CCU Mean age: 60.9 % Male: 72 Enrolled: 29	Hemodynamics Critically ill	Critically ill patients requiring monitoring: 18 CV, 2 pulmonary, 4 infectious, 2 toxicological, 3 neurological diseases	Admission to ED or CCU for circulatory disorders	Ongoing cardio- pulmonary resuscitation, hypothermia, heart valve dys- function by ECHO, evidence of pleural effu- sion, mitral regurgitation, failure of tricuspid valve
Horstmann 1993 94328978	Prospective	Location: Germany Setting: lab Mean age: ND % Male: 97 Enrolled: 35	Hemodynamics Non-critically ill	Patients undergoing heart catheterization and supine bicycle exercise for CHD	ND	ND

Evidence Table 1.	Comparison Studies: Part I
-------------------	----------------------------

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Jewkes 1991 92118578	Cross-sectional	Location: UK Setting: ICU Mean age: ND % Male: ND Enrolled: 16	Hemodynamics Critically ill	Patients in ICU after aortic surgery, abdominal surgery, acute respiratory failure	aortic surgery, abdominal surgery, acute respiratory failure	Septic shock, severe arrhythmias, or too unstable
Kerkkamp 1999 99300751	Prospective	Location: Holland Setting: critical care Mean age: 65.4 % Male: 54 Enrolled: 28	Hemodynamics Non-critically ill	Heart disease (uncomplicated CAD, cardiomyopathy)	ND	ND
Kindermann 1997 98023345	Prospective	Location: Germany Setting: inpatient Mean age: 63 % Male: 40 Enrolled: 53	Pacemaker Non-critically ill	High degree A/V block	ND	ND
Kizakevich 1993 94032797	Prospective	Location: US Setting: critical care Mean age:59 % Male:100 Enrolled:26	Hemodynamics Non-critically ill	Chest pain – patients admitted for elective coronary angiography	Ambulatory, reasonable expectation of exercise to moderate workload	Valvular heart disease
Marik 1997	Prospective	Location: US Setting: lab Mean age: 67 % Male: 80 Enrolled: 30	Hemodynamics Non-critically ill	CAD	Consecutive patients undergoing elective right and left heart catheterization	Valvular heart disease, AF
Mattar 1991 92036473	Prospective	Location: Brazil Setting: ICU Mean age: 54.3 % Male: 83 Enrolled: 17	Hemodynamics Critically ill	Subgroup from mixed ICU: 13 pts with abnormal diastolic function, 4 with normal left ventricular function	ND	ND

Evidence Table 1.	Comparison Studies: Part I
-------------------	-----------------------------------

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Mehlsen 1991 92119899	Prospective	Location: Denmark Setting: Lab Mean age: ND % Male: ND Enrolled: 25	Hemodynamics Non-critically ill	Unmedicated patients with ischemic heart disease	Ischemic heart disease	ND
Ng 1993 94907300	Prospective	Location: UK Setting: ICU Mean age: 60 % Male: 74 Enrolled: 31	Hemodynamics Critically ill	Hemodynamically stable intensive care patients incl 11 post laparotomy, 5 post femoral artery surgery, 4 cardiopulmonary disease, 3 ARF	Selected consecutively depending on availability of drs and patients	Hemodialysis, hemofiltration, or pts with intracardiac shunts
Perrino 1994 94220628	Prospective	Location: USA Setting: critical care Mean age: 67.9 % Male: ND Enrolled: 50	Hemodynamics Critically ill	Noncardiac surgery, predominantly elderly with cardiac disease	Consecutive patients scheduled for noncardiac surgery and PAC	History consistent with valvular heart disease or intracardiac shunts, unsatisfactory TEB signals
Pickett 1992 92264297	Prospective	Location: US Setting: ICU Mean age: 65 % Male: 33 Enrolled: 43	Hemodynamics Critically ill	8 AMI, 17 CHF, 13 pleural effusion, 6 pericardial effusion, 6 sepsis, mitral regur-gitation, 7 AF, 11 HBP, 3 arterio- fistula	PAC in place <24 hr; TD CO values agree \pm 20%; \geq 4 TD CO; satisfactory EC waveforms; L/Zo ratio≤165% and \geq 70%	Aortic insufficiency, intracardiac shunts
Raaijmakers 1998a 99079379	Prospective	Location: Holland Setting: ICU Mean age: 50 % Male: 77 Enrolled: 13	Hemodynamics Critically ill	7 acute lung injury and 6 ARDSall caused by sepsis	ND	ND

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Raaijmakers 1998b 99214718	Prospective	Location: Holland Setting: ICU Mean age: 50 % Male: 77 Enrolled: 13	Hemodynamics Critically ill	7 acute lung injury and 6 ARDSall caused by sepsis	Lung injury score	ND
Sageman 1993 93339081	Retrospective, longitudinal	Location: USA Setting: inpatient Mean age: 63 % Male: 58 Enrolled: 50	Hemodynamics Critically ill	CABG	All patients with CABG enrolled between Nov 1990-July 1991	Hemodynamically unstable requiring pressors, vasodilators, intropes, liquid boluses, evidence of significant valvular disease, evidence of left BBB or AMI
Sageman 2002 21843329	Prospective	Location: USA Setting: ICU Mean age: ND % Male: ND Enrolled: 20	Hemodynamics critically ill	CABG or valve replacement surgery	Pts undergoing CPB who enrolled between Dec 1998- April 1999	Significant post- op valvular pathology
Shoemaker 2001 21393819	Prospective	Location: USA Setting: ED/ICU Mean age: 36.6 % Male: 87 Enrolled: 151	Hemodynamics Critically ill	Major trauma patients admitted to ED	Consecutively monitored patients	ND
Shoemaker 2000 21021875	Prospective	Location: USA Setting: ED Mean age: 60.5 % Male: 47 Enrolled: 45	Hemodynamics Critically ill	Acutely ill sepsis and septic shock patients in ED: evidence of infection	Consecutively monitored patients	ND

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Shoemaker 1998 99087206	Prospective	Location: USA Setting: critical care Mean age: 57 % Male: 69 Enrolled: 680	Hemodynamics Critically ill	Acutely ill patients after admission to hospital: 139 severely injured or hemorrhaging, 129 nontrauma, 274 high risk surgical patients	Consecutively monitored patients	ND
Shoemaker 1994 95079738	Prospective	Location: USA Setting: critical care Mean age: 45 % Male: 68 Enrolled: 68	Hemodynamics Critically ill	Severely ill patients who required PAC	Consecutively monitored patients	ND
Spiess 2001 11687996	Prospective	Location: USA Setting: ICU Mean age: 64 % Male: 66 Enrolled: 47	Hemodynamics Critically ill	First-time CABG	No other planned cardiac surgery	Known vascular heart disease
Summers 2001 21233995	Retrospective	Location: USA Setting: ED Mean age: ND % Male: ND Enrolled: 15	Hemodynamics Critically ill	All ED patients from 1997-98 whose hemodynamics were assessed: MI, CHF, HBP, cocaine ingestion	ND	ND
Thangathurai 1997 97331660	Prospective	Location: USA Setting: critical care Mean age: (31-86) % Male: 70 Enrolled: 23	Hemodynamics Critically ill	Patients undergoing extensive surgical procedures with anticipated major blood loss and significant fluid shifts incl 8 radical cystecomy, 3 esophagectomy, 2 prostatectomy	ND	ND

Evidence Table 1.	Comparison Studies: Part I
-------------------	----------------------------

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Thomas AN 1991 92129741	Prospective	Location: UK Setting: ICU Mean age: 56.8 % Male: 93 Enrolled: 28	Hemodynamics Critically ill	CABG	Consecutive patients 24 hours post-CABG	ND
Thomas SH 1992 93152372 (Trial 1)	Prospective	Location: UK Setting: ICU Mean age: 58 % Male: 53 Enrolled: 15	Hemodynamics Critically ill	ICU pts including 2 AF, 4 COPD	ND	Valvular stenosis or regurgitation
Thomas SH 1992 93152372 (Trial 2)	Prospective	Location: UK Setting: ICU Mean age: 57 % Male: 100 Enrolled: 34	Hemodynamics Critically ill	Coronary heart disease	CHD documented by coronary angiography and contrast LV within 6 wks	Use of beta- blockers, patients who changed during treatment between angio- graphy and TEB
Van der Meer 1999 99161702	Prospective, cross-sectional	Location: Holland Setting: Critical care Mean age: 56.6 % Male: 81 Enrolled: 26	Hemodynamics Critically ill	Pts scheduled for echocardiography due to suspected CAD, valve pathology, ventricular septum defect	Consecutive patients	Continuous dysrhythmias; aortic valve pathology, heart rate difference <5% between ED and TEB, ideal body weight deviation <15%
Van der Meer 1999 99151080	Prospective	Location: Holland Setting: lab Mean age: 51.3 % Male: 88 Enrolled: 8	Hemodynamics Non-critically ill	Angiographically documented CAD; 7/8 showed hx of recent MI	CAD	ND

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Van der Meer 1997 97385315	Prospective	Location: Holland Setting: ICU Mean age: (34-70) % Male: 78 Enrolled: 37	Hemodynamics Critically ill	Mechanically ventilated patients after cardiac surgery incl 36 CABG	Pts <70 years	Hemodynamically unstable patients, cardiac arrhythmias, variation in
Woltjer 1996a 97034589						measurements <15% mean values
Woltjer 1996b 97166939						
Van der Meer 1996 97081838	Prospective	Location: Holland Setting: ICU Mean age: 57.5 % Male: 81 Enrolled: 21	Hemodynamics Critically ill	CABG, aortic valve replacement	Cardiac surgery	Nonstable cardiac status, age<70, weight deviation >15% ideal body wt, cardiac dys- rhythmias, variations >15% mean TEB signals
Van der Meer 1996 96310167	Prospective	Location: Holland Setting: lab Mean age: 45 % Male: 33 Enrolled: 24	Hemodynamics Non-critically ill	Patients who used cardiotoxic chemotherapy or suffered from cardiac failure	ND	cardiac dysrhythmias
Velmahos 1998 98347548	Prospective	Location: USA Setting: ED Mean age: 61.5 % Male: 76 Enrolled: 17	Hemodynamics Critically ill	Acute thrombotic cerebrovascular accidents	Consecutive patients arriving at ED with hemodynamic instability from cerebrovascular accidents	ND

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Weiss 1995 96071685 (stable pts)	Prospective	Location:US Setting: outpatient Mean age: 44.1 % Male: 40 Enrolled: 15	Hemodynamics Non-critically ill	Stable non-critically ill patients undergoing diagnostic heart catheterization	ND	Improperly applied electrodes, or interference with standard patient care
Weiss 1995 96071685 (unstable pts)	Prospective	Location: US Setting: ICU Mean age:50.7 % Male:36 Enrolled:14	Hemodynamics Critically ill	Unstable patients admitted to MICU with conditions requiring CV monitoring	CY monitoring	Improperly applied electrodes, or interference with standard patient care
Woltjer 1997 97468636	Prospective	Location: Holland Setting: outpatient Mean age: 61.6 % Male: ND Enrolled: 24	Hemodynamics Non-critically ill	Pts incl: 23 CAD; 3 aortic stenosis, 2 stenosis+aortic regurgitation; 3 mitral regurgitation; 1 idiopathic cardiomyopathy; 9 HBP; 2 diabetes	Pts who underwent diagnostic heart catheterization	Aortic valve pathology; mitral regurgitation
Woo 1992 91302095	Prospective	Location: USA Setting: CCU Mean age: 53.7 % Male: 84 Enrolled: 44	Heart transplant Critically ill	Heart failure	Individuals in CCU with ischemia or idiopathic cardiomyopathy with functioning PAC	Pacemaker, mechanical ventilation, intraortic balloon pump therapy, renal failure, ambiguous ECG signals
Wong KL 1996 97238198	Prospective	Location: Taiwan Setting: CCU Mean age: (39-64) % Male: 67 Enrolled: 18	Hemodynamics Critically ill	CABG	Consecutive patients with hemodynamic instability from cerebrovascular accidents	Prior severe arrhythmias or aortic insufficiency

Evidence Table 1.	Comparison Studies: Part I
-------------------	-----------------------------------

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
World 1996 96318217 (Trial 1)	Prospective	Location: UK Setting: ICU Mean age: (40-76) % Male: 62 Enrolled: 21	Hemodynamics Critically ill	Pts admitted to ICU requiring right heart catheterization	Patients collected over 3 years: which incl 7 CHF, 8 IHD	Sepsis, severe dysrhythmia, aortic incompetence
World 1996 96318217 (Trial 2)	Prospective	Location: UK Setting: CCU Mean age: (18-82) % Male: 72 Enrolled: 50	Hemodynamics Critically ill	Routine orthopedic surgery	Tourniquet applied to lower limb to prevent arterial blood flow	Sepsis, severe dysrhythmia, aortic incompetence
Yakimets 1995 95347996 (Trial 1)	Prospective, convenience sample	Location: Canada Setting: lab Mean age: 54.4 % Male: 71 Enrolled: 17	Hemodynamics Non-critically ill	Heart disease with routine cardiac catherization incl 7 CAD, 3 angina, 2 dilated cardiomyopathy	ND	ND
Yakimets 1995 95347996 (Trial 2)	Prospective, convenience sample	Location: Canada Setting: inpatient Mean age: 57.8 % Male: 68 Enrolled: 28	Hemodynamics Critically ill	Post-elective heart surgery incl 17 CABG, 5 aortic valve replacement	Hemodynamic stability	No i.v. fluid boluses; no diuretics within 1 hour of onset of study interval, no changes in medications for 15 minutes, no changes in ventilator treatment
Young 1993 93159934	Prospective	Location: UK Setting: ICU Mean age: ND % Male: ND Enrolled: 19	Hemodynamics Critically ill	Clinically septic patients incl 5 perforated viscus, 4 pulmonary infection, 4 sepsis post-trauma	Microbiological evidence of sepsis or positive blood culture	Alteration in therapy

Author, Year UI	Design	Demographics	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Zacek 1999 20032610	Prospective, cross sectional	Location: Czech Setting: ICU Mean age: ND % Male: ND Enrolled: 28	Hemodynamics Critically ill	Adults undergoing elective cardiac surgery: 19 CABG, 4 aorta valve replacements	PAC inserted prior to anesthesia or during surgery	Cardiac pacing, motor disturbance, low quality TEB signal
Zubarev 1999 99300756	Prospective	Location: Russia Setting: critical care Mean age: ND % Male: ND Enrolled: 11	Hemodynamics Critically ill	AMI complicated by acute left ventricular failure	ND	ND

Evidence Table 1.	Comparison	Studies: Part II
-------------------	------------	------------------

Author, Year Ul	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Antonicelli 1991 91368949	Stroke volume	No model detail. 4 electrodes: 2 around neck, one at xiphisternal joint, one at abdomen. Sinusoidal AC 4maRMS/100 KHz passed thru thorax. Kubicek modified equation.	Pulsed Doppler echocardiography with bi-dimensional transducer at 2.5 MHz.		
Atallah 1995 95398907	Cardiac index	NCCOM-3 (BoMed Mfrs, Irvine CA): 8-spot electrode array situated according to manufacturer's instructions	Thermodilution: Values were the mean of 3 injections of 10ml 5% dextrose at room temp.		
Balestra 1992 92103922	Cardiac output	NCCOM-3 Revision 4 (BoMed Mfrs, Irvine CA): 2.5 mA 60kHz. Kubicek modified by Sramek- Bernstein	Thermodilution: balloon-tipped pulmonary artery flow- directed catheter (Baxter Edwards 131- 7F): Injection 10mL iced isotonic saline boluses.	Electrode position explicitly evaluated on healthy volunteers only. 10 critically ill patients TD vs. external electrodes	10 critically ill patients TD vs. internal electrodes
Barin 2000 20214491	Cardiac output	RheoCardioMonitor (Rheo-Graphic PTE, Singapore): 6 single spot electrodes: 2 at appendix level, 2 on the neck, one on left knee, one in middle forehead. 2mA RMS AC current 100kHz. Kubicek equation.	Thermodilution: 7F balloon-tipped pulmonary artery flow- directed catheter (Baxter Edwards 131- 7F): 5 injections 10mL iced isotonic saline boluses.		
Barry 1997 11056698	Cardiac index	NCCOM 3, BoMed, Cheshire UK8 spot electrodes placed at root of neck and chest wall. 2.5mA rms, 70 kHz.	Thermodilution: Modified PAC (Model 746H8F, Baxter Healthcare)		

Evidence Table 1. (Comparison Studies: Part II
---------------------	-----------------------------

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Belardinelli 1996 96259436	Cardiac output, stroke volume	NCCOM-3 Series R7S (BoMed Mfrs, Irvine CA): 2.5 mA 70kHz. Sramek- Bernstein	Thermodilution: 7Fr Swan Ganz catheter (Baxter Edwards 131-7F): Bolus Injection 20mL 4C dextrose.	Direct Fick: 3 blood samples obtained from pulmonary and left brachial arteries arteriovenous oxygen difference calculated as average value.	
Bogaard 1997 98075787	Cardiac output, stroke volume	IPG-104 Minilab, RJL Systems, Detroit, Equip Medkey, Gouda Holland). Constant sinusoidal AC 0.8mA, 60 kHz introduced thru one spot electrode on forehead, 4 electrodes at lower abdomen. 2 prs in mid-axillary lines at base of neck and at xiphoid level of sternum detect voltage change. Kubicek equation	Indirect Fick (equilibrium CO-2 rebreathing method)		
Bowling 1993 94007883	Ejection fraction	NCCOM-3 Series R7 (BoMed Mfrs, Irvine CA): 2.5 mA 70kHz. 8 impedance-quality gel electrodes place on neck and and thorax. Sramek- Bernstein	Radionuclide ventriculography		
Castor 1994 94153663	Cardiac output	NCCOM-3 R7 (BoMed Mfrs, Irvine CA). 2 pairs of electrodes 5 cm apart at neck & lower thoracic aperture at level of xiphoid .Current 2.5mA RMS, 70 kHz. Sramek-Bernstein equation.	Thermodilution: ice-cold 5% glucose 10mL. Standard method used by Baxter.	Doppler echo- cardiography (Quantascope-Vital Science, Denver) placed at suprasternal notch.	

Evidence Table 1.	Comparison	Studies: Part II
-------------------	------------	------------------

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Clancy 1991 91341839	cardiac output	NCCOM.3R.7 connected to Zenith laptop #184 Model 2WL-184-2. 2 electrodes on each side of neck, 2 at thorax. Low amplitude 2.5 mA current, 70 kHz. Sramek- Bernstein.	Thermodilution: 7FSwan-Ganz catheter, Baxter Edwards Labs)		
Critchley 1996 96338592	Cardiac output	NCCOM3-R7. Sramek-Bernstein equation	Thermodilution: 7.5F PAC (BioSensor Intl, Singapore) inserted through jugular vein. 10ml cold 0.9% saline injected 1-3 sec. Determination by Sirecust 1261 monitor (Siemens Medical).		
Critchley 2000 20399480	CO, lung fluid content	NCCOM-3R-7 connected to Zenith laptop #184 Model 2WL-184-2. 2 electrodes on each side of neck, 2 at thorax (total of 8 lateral spot elecrtrodes). Srameck-Bernstein.	Thermodilution: 7FSwan-Ganz catheter calculated with Sirecust 961/1261 monitor.		
Demeter 1993 94032793	Cardiac output	Minnesota Impedance Cardiograph Model 304B (Surcom, Minneapolis) connected to computer Model 2400S (Gould, Cleveland). 4 electrode tapes applied at chest and neck. Constant current 4mA, 100kHz. 3 baseline signals averaged for 3 separate positions. Kubicek equation.	Thermodilution: Catheter (Baxter Edwards) measured by computer 9520A). 5 CO obtained of iced saline in 3 positions.		

Evidence Table 1.	Comparison Studies: Part II
-------------------	------------------------------------

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Doering 1995 96019885	Cardiac index	NCCOM-3 (BoMed Mfrs, Irvine CA). Revision 7 software. 8 electrodes placed at thorax and neck.	Thermodilution: Marquette Electronics, Chicago. Manual injection 10mL 5% dextrose.		
Drazner 2002 21947433	Cardiac output, cardiac index	BioZpatches on right side of neck placed posterior to ear lobe to avoid interference with venous access, and patchs on left placed equal distance anterior to lobe. Chest leads placed according to manufacturer. Measurements obtained either on 10 or 30 beat averaging.	Thermodilution n=50: right sided cardiac catheter-ization using balloon-tipped flotation catheter.Output obtained by average of 3-5 independent values.	Fick (subset N=28). Oxygen consumption obtained by Sensor- Medics Corp Delta Trac Metabolic Monitor (Yorba LInda CA).	
Genoni 1998 98373881	Cardiac output	NCCOM-3 R7 (BoMed Mfrs, Irvine CA): Value of CO obtained as average of 12 beats5 measurements at 1 min intervals, and 2 extremes discarded.	Thermodilution: 7.5 Fr PA catheter (Baxter Edwards) measured by computer 9520A). Infusion of iced 10mL sodium chloride injected 3 times.		
Hirschl 2000 20346676	Cardiac index	Impedance cardiograph (Cardioscreen, Messtechnik, Ilmenau German)4 pairs electrodes placed according to Bernstein. Calculation by Sramek- Bernstein.	Thermodilution: 7Fr Swan Ganz catheter (Baxter Edwards) inserted via central subclavian or jugular vein. Injection of 10mL ice cold dextrose.		

Evidence Table 1.	Comparison Studies: Part II
-------------------	-----------------------------

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Horstmann 1993 94328978	Cardiac output	Tetrapolar impedance (Diefenbach, Kardio- Dynagraph). No details provided.	Thermodilution: Schwarze-Picker IVH4. 7F catheter, injections of 10mL iced saline, connected to CO computer		
Jewkes 1991 92118578	Stroke volume, cardiac output	NCCOM-3 (BoMed Mfrs, Irvine CA) using spot electrode array. 2.5mA, 70 kHz current. Sramek- Bernstein equation	Thermodilution: 10ml ice cold saline at end- expiration, calculated by COM-1 computer. Measurements taken as average of 3 consec- utive readings.	Studied different electrode types and placements in 4 normal volunteers in first phase of study	Second phase involved 16 ICU patients.
Kerkkamp 1999 99300751	Left ventricular systolic function, systolic time ratio,	NCCOM-3 R7 (BoMed Mfrs, Irvine CA). 10 electrodes placed according to mfr's specifications.	Echocardiography Toshiba Sonolayers SSH 140A		
Kindermann 1997 98023345	Stroke volume	CARDIOmed 30 and CARDIOwin system, Homburg/ Saar, Germany): at beginning of each series, LVET determined by fingertip opto- plethysmography. SV was estimated using Kubicek.	Pulsed Doppler echocardiography, according to Ritter. Programming of AV delay done either by short 30 ms postponing mitral valve closure until end-diastolic filling is abruptly terminated at onset of LV contraction, or 250ms shortening time interval from ventricular pacing to mitral valve closure.		

Evidence Table 1.	Comparison Studies: Part II
-------------------	-----------------------------

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Kizakevich 1993 94032797	Systolic ejection dynamics	Not described. Tetrapolar band electrodes placed around neck and below xiphoid process. Kubicek equation	Doppler echo- cardiography		
Marik 1997	Cardiac output	IQ (Renaissance Technologies, Newton PA)	Thermodilution	Ventricular angiography	
Mattar 1991 92036473	Systolic time intervals, diastolic time intervals	NCCOM3-R7. 2.5 mA at 70 kHz. Kubicek's equation	Radionuclide ventricular angiography	Bios nuclear stethoscope	Mobile gamma-ray measuring probe
Mehlsen 1991 92119899	Cardiac output	Minnesota Impedance Cardiograph (Surcom, Minneapolis)tetrapolar circular lead system, 4mA, 1200kHz. Kubicek equation.	Thermodilution: Swan- Ganz catheter (model 93A-131-7F, Edwards Labs)bolus injections of 10ml 0C isotonic solution. CO calculated by Model 95120 computer, Edwards Labs.	Indicator dilution technique: Itracath inserted into right cubital vein, advanced to right atrium. Catheter inserted into right brachial artery. I131- labelled human serum albumin (185 kBq, Kjeller, Norway) injected.	
Ng 1993 94907300	Cardiac output, stroke volume	NCCOM-3 R7 (BoMed Mfrs, Irvine CA). 8 electodes at root of neck and lower chest at xiphisternum. Sramek- Bernstein equation.	Theromodilution: Swan-Ganz catheter 93A-83L (Baxter, Holland) and CO computer (Marquette Electronics, Milwaukee)		
Perrino 1994 94220628	Cardiac output	NCCOM-3 R7 (BoMed Mfrs, Irvine CA) using spot electrode array. 2.5mA, 70 kHz current. Compatible software: Cardiodynamic Data Processing.	Thermodilution: room temp injectate obtained at end-expiration by calibrated computer (SpaceLabs, Redmond WA).		

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Pickett 1992 92264297	Cardiac output	HDC, Mesa AZ Sramek equation and Kubicek equation.	Theromodilution: 10 ml injection iced 5% dextrose calculated with Edwards' model 9520A computer		
Raaijmakers 1998a 99079379	Cardiac output	Homemade cardiograph, 9 spot electrode array, sinusoidal current 1mA, 64kHZ, both equations	Thermodilution: Pulmonary artery catheter (Baxter- Edwards) 10 ml saline bolus at room temperature		
Raaijmakers 1998b 99214718	Cardiac output, Extravascular lung water	9 spot electrode array. 1mA at 64 kHz. Korsten cross-section equation.	Double indicator dilution technique (COLD)		
Sageman 1993 93339081	Cardiac output	NCCOM-3 R7 (BoMed Mfrs, Irvine CA). Sramek- Bernstein equation.	Theromodilution: 5 ml injections of iced 5% dextrose calculated with HP 78534C computer		
Sageman 2002 21843329	Cardiac index	BioZ 1.52, CardioDynamics, San Diego). Measurements of SV averaged over 16-30 beats.	Thermodilution: not described		
Shoemaker 2001 21393819	Cardiac output, cardiac index	"Improved device" (Wantagh, Bristol PA): redesigned software increased signal/noise ratio. 4mA, 100 kHz AC. (Wang X et al)	Thermodilution: Not otherwise described		

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Shoemaker 2000 21021875	Cardiac index	"Improved device" (Wantagh, Bristol PA): redesigned software increased signal/noise ratio. (Wang X et al)	Thermodilution: 7F balloon-tipped pulmonary artery flow- directed catheter (Baxter Edwards)		
Shoemaker 1998 99087206	Cardiac index	Same as above	Same as above		
Shoemaker 1994 95079738	Cardiac index	Same as above	Same as above		
Spiess 2001 11687996	Cardiac index	BioZ system: no further details	Thermodilution: internal jugular cannulation by 7.5F introducer, PAC (Baxter Edwards Model #831-HF75 or 139 H7.5		
Summers 2001 21233995	Ejection fraction by Weissler and Capan methods	Sorba Medical Systems not described	Echocardiography		

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Thangathurai 1997 97331660	Cardiac output	Model IG101(Renaissance Technologies, Newton PA:) array of 11 prewired hydrogen elect-rodes2 injecting electrodes at lateral aspect of lower thorax at level of xiphisternal junc-tion. 4 sensing electrodes placed 5cm inside area, 3 leads across precordium and shoulder. 4 mA 100 Khz current. Author's equation.	Thermodilution: 10ml saline injectates at room temp made at end-expiration.		
Thomas AN 1991 92129741	Cardiac output	NCCOM-3 R6 using 8 Medicotest VL-00-S electrodes, and 2 positioned on chest.	Thermodilution: 10 ml 5% dextrose at temp of 4C-10C. Determination by CO computer 9520A, Edwards.		
Thomas SH 1992 93152372 (Trial 1)	Cardiac output, stroke volume	NCCOM-3 R7 (BoMed Mfrs, Irvine CA). 10 electrodes at root of neck & at xiphisternum. Current 2.5mA RMS, 70 kHz. Sramek-Bernstein equation.	Thermodilution: bolus injection of 20ml 4°C 5% dextrose into right atrium via flow-directed balloon catheter (Kimal Scientific Products, Uxbridge)		
Thomas SH 1992 93152372 (Trial 2)	Cardiac index, stroke volume index, LVET	NCCOM-3 R7 (BoMed Mfrs, Irvine CA). 10 electrodes at root of neck & at xiphisternum. Current 2.5mA RMS, 70 kHz. Sramek-Bernstein equation.	Thermodilution: bolus injection of 20ml 4°C 5% dextrose into right atrium via flow-directed balloon catheter (Kimal Scientific Products, Uxbridge)		

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Van der Meer 1999 99161702	Mitral valve regurgitation	IPG-104 Minilab (RJL Systems, Detroit, & Sanofi Sante, Holland) 4 prs electrodes, current 0.8mA, 50 kHz Sramek-Bernstein equation.	Doppler echo- cardiography (HP Sonos 1000, Andover MA)		
Van der Meer 1999 99151080	LVEF	IPG-104 Minilab, RJL Systems, Detroit, Sanofi Sante, Massluis Holland). 4 electrodes applied according to Bernstein: Constant sinusoidal AC 0.8mA, 50 kHz.	Dobutamine stress echocardiography		

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Van der Meer 1997 97385315	Cardiac output	IPG-104 Minilab, RJL Systems, Detroit, Equip Medical, MassluisHolland). Constant sinusoidal AC 0.8mA , 50 kHz introduced thru one spot eletrode on forehead, 4 electrodes at lower abdomen. 2 prs in mid-axillary lines at base of neck and at xiphoid level of sternum detect voltage change. Sramek- Bernstein-equation.	Thermodilution: PAC inserted into jugular, 10 ml 0,9% saline at temp of 5C. Determination by CO computer 9520A, Edwards.		
Woltjer 1996b 97166939	Stroke volume	System described in van der Meer above and: 9 spot electrode configuration used5 electrodes applied (1 to forehead, 4 in semicircular manner low on abdomen, 2 in mid-axillary lines, 2 in mid-clavicular lines). Constant sinusoidal AC 0.8 mA, 60 kHz. Both Kubicek and Sramek-Bernstein equations compared.	See van der Meer above		
Woltjer 1996a 97034589	Stroke volume				

Evidence Table 1.	Comparison Studies: Part II
-------------------	-----------------------------

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Van der Meer 1996 97081838	Cardiac output	IPG-104 Minilab, RJL Systems, Detroit, Equip Medical, Massluis Holland). Constant sinusoidal AC 0.8 mA, 50 kHz introduced thru one	Thermodilution: 7Fr Swan Ganz catheter (Baxter Edwards) inserted via central subclavian or jugular vein. Injection of		
		spot electrode on forehead, 4 electrodes at lower abdomen. 2 prs in mid-axillary lines at base of neck and at xiphoid level of sternum detect voltage change. Kubicek equation	10mL 5C dextrose randomly chosen, repeated 4 times and averaged.		
Van der Meer 1996 96310167	LVEF	IPG-104 Minilab, RJL Systems, Detroit, Equip Medical, Massluis Holland). 4 electrodes applied according to Bernstein: Constant sinusoidal AC 0.8 mA, 50 kHz. 4 separate equations used, adopted from Capan and Judy, 2 newly developed.	Radionuclide ventriculography		
Velmahos 1998 98347548	Cardiac index	Wang's new prototype TEB: 11 noninvasive disposable prewired hydrogen electrodes 2 placed at side of neck, 2 at lateral aspect of lower thorax, 4 placed 5cm inside the area defined by electrodes. 3 ECG leads placed across precordium and left shoulder. 4mA, 100 kHz AC.	Thermodilution: 7Fr PAC (Baxter Edwards)3-5 measurements, averaged.		

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Weiss 1995	Cardiac	NCCOM-3 R7 (BoMed	Thermodilution: Swan-		
96071685	output	Mfrs, Irvine CA) using spot	Ganz catheter attached		
(stable patients)		electrode array. 2.5mA, 70	to American Edwards		
· · /		kHz current.	9520A computer.		
			Readings done using 3-		
			5 injections of 10ml 5%		
			dextrose at room temp.		
Weiss 1995	Cardiac	NCCOM-3 R7 (BoMed	Thermodilution: Swan-		
96071685	output	Mfrs, Irvine CA) using spot	Ganz catheter attached		
(unstable patients)		electrode array. 2.5mA, 70	to Nihon Kohden BSM-		
· · · /		kHz current.	8500A. Readings done		
			using 3-5 injections of		
			10ml 5% dextrose at		
			room temp.		
Woltjer 1997	Stroke	IPG-104 Minilab, RJL	Thermodilution: 7F		
97468636	volume,	Systems, Detroit, Equip	single lumen balloon		
	PCWP	MediKey, Gouda, Holland).	tipped catheter (Arrow		
		9 electrodes applied	International, Reading		
		constant sinusoidal AC 0.8	PA) by injection of 10ml		
		mA, 50 kHz. Kubicek	0.9% saline solution at		
		equation.	5C.		
Woo 1992	Cardiac	NCCOM-3 (BoMed Mfrs,	Thermodilution		
91302095	output	Irvine CA) attached to	calculated based on 3		
	-	electrodes (MediTrace,	injections at end		
		Graphic Controls Corp,	expiration (5-8C, 10 ml		
		Buffalo) Sramek-Bernstein	each, 1 min apart).		
		equation.			
Wong KL 1996	Cardiac	NCCOM-3 R7 (BoMed	Thermodilution:		
97238198	output	Mfrs, Irvine CA) 8 spot	average of 3 vaules		
		electrodes placed	using CO computer		
		according to BoMed's	(M1012A HP,		
		instructions. CO	Boeblinger Germany),		
		measurement averaged	5 ml boluses of 5%		
		from 16 successive	dextrose solution at 4C.		
		artifact-free heartbeats.	Sramek-Bernstein.		

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
World 1996	Cardiac	NCCOM-R7 (Kimal	Thermodilution: PAC		
96318217	output	Scientific Products)	(Baxter Healthcare)		
(Trial 1)		Procedure not described.	with iced 5% dextrose injectate.		
World 1996	Cardiac	NCCOM-R7 (Kimal	Doppler probe (Abbott		
96318217	output	Scientific Products)	Labs) passed orally into		
(Trial 2)		Procedure not described.	esophagus.		
Yakimets 1995 95347996 (Trial 1)	Cardiac index, stroke volume	NCCOM-3 R7 (BoMed Mfrs, Irvine CA) using spot electrode array. 2.5mA, 70 kHz current. Compatible software: Cardiodynamic Data Processing. Sramek- Bernstein.	Fick method at rest and during supine exercise on bicyle ergometer (Ergomed #740L, Siemens Ltd, Langdon Germany). CO determined from oxygen uptake, oxygen consumption, arterial oxygen content, or mixed venous oxygen uptake measured by Quinton Q-Plex metabolic cart.		
Yakimets 1995 95347996 (Trial 2)	Cardiac index, stroke volume, cardiac output	NCCOM-3 R7 (BoMed Mfrs, Irvine CA) using spot electrode array. 2.5mA, 70 kHz current. Compatible software: Cardiodynamic Data Processing. Sramek- Bernstein.	Thermodilution 3 injections of 10ml room temp 5% dextrose injected into tight atrium through proximal lumen of PAC (nF, American Edwards).		

Evidence Table 1.	Comparison Studies: Part II
-------------------	------------------------------------

Author, Year UI	Parameters Tested	Bioimpedance System, Procedure, Equation	Comparison 1 and Procedure	Comparison 2 and Procedure	Comparison 3 and Procedure
Young 1993 93159934	Cardiac index	NCCOM-3 R6 (BoMed Mfrs, Irvine CA. 8 electrodes placed on neck and thorax, 2 electrodes placed on right sternal border, over the apex beat, according to manu- facturer's instructions.	Thermodilution performed using COM- 1 computer. Temps less than 10C, injections made manually during expiration. Average of 3 measurements.		
Zacek 1999 20032610	Cardiac output	Hotman AH/HHC (Hemo Sapiens, Irvine CA)8 solid gel electrodes applied on skin at neck and thorax. Sramek-Bernstein.	Thermodilutionvalue of CI was average of 4 consecutive injections of saline solution at room temp. Marquette Electronics software was used.		
Zubarev 1999 99300756	LVEA, LVET, DTI	Bioimpedance poly- rheocardiography system with "tetrapolar electrode location." 1 injection band electrode at neck and 1 at thorax. 2 sensing band electrodes at neck and 2 at xyphoid. Kubicek equation modified by Gunderov using human thorax as a frustum of a cone, not cylinder.	Thermodilution No elaboration provided		

				Quality Criteria			
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Antonicelli 1991 91368949	RM=56 (14) r=0.95 D=-0.73ml, SD=8.46 ml Also provides separate SM data for each visit with 14 measurements in each visit and r=0.96, 0.95, 0.96, 0.94 respectively)	Correlation excellent.	No	Yes	No	Yes	
Atallah 1995 95398907	RM=86 (5) No r given D=TD-TEB=-0.69 L/min.m ² SD=0.66	TEB is unreliable in CO measurement and cannot replace or be interchanged with TD.	Yes	No	No	Yes	
Balestra 1992 92103922	SM=10 r ² =0.55 (external electrodes) [r ² =0.98 (internal electrodes) – not pertinent for the report] D=TEB-TD=1.99 L/min SD=2.20 (external electrodes) [D=TEB-TD=-0.05 L/min SD=0.26 (internal electrodes)]	Values comparable but not identical to TDdiscrepancy probably caused by position of the electrodes. Method is accurate and could be a good alternative to TD.	Yes	Yes	Yes	No	
Barin 2000 20214491	RM=142 (47) r ² =0.74 D=TEB-TD=-0.18 L/min SD=0.78 Subgroup data provided for men and women and for first 20 and last 27 patients	TEB performs best when cardiac rhythm is normal. Presence of BBB and AF can cause errors in determining Q point, preceding peak ejection period, and may lead to inaccuracies of EF but not CO. Premature ventricular contractions are hemodynamically less effective and result in small signals.	Yes	Yes	Yes	Yes	

Four criteria that specifically relate to the scope of this report were used to assess the methodological quality of the studies. The following yes/no questions were developed and applied. Does the study provide:

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

				Quality Criteria			
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Barry 1997 11056698	RM=239 (7) r ² =0.01 D=TEB-TD=-0.16 L/min-m ² SD=1.16	TEB shows poor agreement with thermodilution and cannot be recommended for CO monitoring in this situation.	Yes	Yes	Yes	Yes	

Four criteria that specifically relate to the scope of this report were used to assess the methodological quality of the studies. The following yes/no questions were developed and applied. Does the study provide:

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			C	a		
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Belardinelli 1996 96259436	TD Group A (ischemic cardiac myopathy): RM=45 (15) r=0.94 (Rest) RM=180 (15) r=0.90 (exercise) Group B: RM=30 (10) r=0.90 (rest) RM=120 (10) r=0.90 (exercise) Fick Group A (ischemic cardiac myopathy): RM=45 (15) r=0.85 (rest) RM=180 (15) r=0.93 (exercise) Group B: RM=30 (10) r=0.95 (rest) RM=120 (10) R=0.89 (exercise) Detailed D are provided in table III in the paper	TEB is an accurate and reproducible technique for measuring CO, SVno significant differences were found among devices. In critically ill patients, there was moderate agreement, and drug-induced changes in SV were accurately detected.	Yes	Yes	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Bogaard 1997 98075787	RM=81 (14) r=0.79 (SV), r=0.92 (CO) for TEB -Hct D=0.55ml, SD=12.4 ml for TEB- Hct (SV) D=0.01 L/mm SD=1.28 for TEB- ct (CO) Also provides data for differently corrected TEB, e.g. r=0.73 (SV), r=0.89 (CO) for TEB-135, or TEB- 150. See table A for more details on different D calculations	The validity of TEB for measuring SV, CO during submaximal exercise seems acceptable. "Addition of non- invasive hemodynamic measurements might prove to be of much benefitThe improvement in validity using an Hct-based blood resistivity is small."	Yes	Yes	yes	Yes	
Bowling 1993 94007883	SM=20 r=0.74 D=(TD-TEB)=-8.9% SD=7.15%	TEB should not be used in place of radionuclide ventriculography.	Yes	Yes	Yes	No	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Castor 1994 94153663	RM=131 (10) during controlled IPPV ventilation No r given D=TEB-TD=1.4% SD=16.2% RM=56 (10) during apnea No r given D=TEB-TD=-2.2% SD=11.2% RM=152 (10) during spontaneous breathing in ICU No r given D=TEB-TD=-2.1% SD=11.0%	Simultaneous measures of TEB/DU lead to prolonged disturbance of impedance signal. Metallic DU transducer absorbs current between 2 inner sensing electrodes, reducing dZ/dtmax signal, thus calculation results in decreased CO values. (The investigator was unaware of the measurements.) 2 major problems of TEB: correct signal processing of critical parameters, and the empirically derived equations. Compared with TD, TEB overestimates CO in normal range during spontaneous ventilation and IPPV, also in low flow conditions. TEB seems to underestimate CO during IPPV and sepsis. Other limitations: aortic regurgitation, tachyarrhythmias, open-heart surgery, extreme obesity. Other sources of errors: incorrect electrode placement.	Yes	Yes	No	Yes	
Clancy 1991 91341839	RM=51 (17) r=0.91 D=TEB-TD=0.23L/min SD=0.56	TEB: less expensive, has no associated patient risk (whereas TD is associated with cardiac arrythmia, pneumorthorax, infection), easier to use, produces continuous data profile, allowing earlier intervention Constraints include: obese body habitus, cervical collars, diaphoretic skin, electrocautery, motion artifacts, open thoraces. Other clinical limitations: cardiac arrhythmias, valvular insufficiency, ventricular arrhythmias, HBP, CHF.	Yes	No	No	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Critchley 1996 96338592	RM=157(8) r=0.60 D [logarithmic]=InTD=InTEB=0.14 SD=0.66 Note that values are in log scale for the estimation of bias.	Technology appears to be too inaccurate to provide useful intra-operative monitor for abdominal surgery, resulting from factors related to surgery that alter VEPT and hence the calibration of TEB. When operating conditions remain stable, instruments perform to a high degree of repeatibility.	Yes	Yes	Yes	Yes	
Critchley 2000 20399480	SM=24 r=0.39 D=TD-TEB=1.49 L/min SD=4.16 Also gives correlations between effect and Zo (=0.83)	All newer generations of TEB still use basic method of calculating CO as BoMed even the electronics and signal processing is now improved. Lung injury leads to BoMed significantly underestimating CO which is related to excessive lung fluid which effectively shortcircuits impedance changes.	Yes	Yes	Yes	Yes	
Demeter 1993 94032793	SM=10 supine 1 position r=0.97 (TEB-Hct), [0.99 (TEB- 135), 0.99 (TEB-150)] SM=10 45° position r=0.90 (TEB-Hct), [0.82 (TEB- 135), 0.82 (TEB-150)] SM=10 supine 2 position r=0.84 (TEB-Hct), [0.74 (TEB- 135), 0.74 (TEB-150)]	TEB correlates highly to TD, recommended for open heart recovery patients.	Yes	Yes	Yes	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Doering 1995 96019885	SM=34 ICU admission $r^2=0.23$ D=TEB-TD=0.21 SD=0.53 (L/min.m^2) SM=34 Normothermia $r^2=0.08$ D=TEB-TD=0.02 SD=0.72 (L/min.m^2) SM=34 Postextubation $r^2=0.05$ D=TEB-TD=0.04 SD=0.86 (L/min.m^2) SM=34 24h ICU $r^2=0.21$ D=TEB-TD=0.18 SD=0.76 (L/min.m^2)	Do not use immediately after cardiac surgery: agreement between methods is poor. Use of this device as trending is inappropriate at this time. Mean TEB values exceeded TD consistently, difference reflecting low post-op level of blood flow. One patient's abnormal chest morphology precluded TEB measurement.	Yes	Yes	Yes	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria					
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition		
Drazner 2002 21947433	TD SM=50 r=0.76 (CO) r=0.64 (CI) D=TEB-TD=0.03 L/min SD=1.1 (CO) D=TEB-TD=0.01 L/min m ² SD=0.6 (CI) Fick SM=28 r=0.73 (CO) r=0.61 (CI) D=TEB-Fick=0.74 L/min SD=1.1 (CO) D=TEB-Fick=0.4 L/min m ² SD=0.6 (CI)	BioZ measures were significantly correlated, suggesting the modality may have clinical utility in heart failure.	Yes	No	Yes	Yes		
Genoni 1998 98373881	RM=60 (10) r ² =0.14 D=TD-TEB=1.81 L/min SD=2.14 Subgroup data for ZEEP and PEEP also given	TEB is not an accurate and reproducible method for determining CO, independently from the application of PEEP. From a subsequent letter: TEB provided non- uniform positive results; previous studies were uncontrolled and those prospective studies that had good design and examined large populations had heterogeneous categories of patients, thus leading to inconclusive results; few efforts have been spent in improving knowledge of technical problems of the technique.	Yes	Yes	Yes	Yes		

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Hirschl 2000 20346676	RM=175 (29) No r given, but IPD given D=TD-TEB=0.61 L/min.m ² SD=0.74	TEB is not a general substitute for TDCO cannot be accurately assessed in a considerable percentage of critically ill patients. Heart valve dysfunction, pleural effusion, positive end-expiratory pressure are conditions associated with low accuracy and reliability, and these increase with age of the patient. In elderly, atherosclerotic changes reduce Windkessel effect of aorta and lead to reduction of the changes in TEB.	Yes	Yes	Yes	Yes	
Horstmann 1993 94328978	SM=35 at rest r=-0.006 RM=unknown (35) 4 measurements per patient (?) at exercise r=0.45	TEB is not a reliable technique to measure absolute values of CO at rest. During exercise, large scatter limits the method to the measurement of relative change in CO in larger groupsheart rate alone is a better indicator of increase of CO than TEB.	No	Yes	Yes	Yes	
Jewkes 1991 92118578	RM=160 (16) r=0.72 (CO), r=0.83 (SV) D=TD-TEB=-0.86 L/min SD=0.88 (CO) D=TD-TEB=-13 mL SD=11.1 (SV)	Main source of observer error in TEB relates to placement of electrodes and electrode type which can change skin- electrode interface which can affect dynamic component of the signal. Alterations in electrode position alter Z values which are proportional to L according to the Sramek-Bernstein formula. TEB overestimates at low and underestimates at high values of CO.	Yes	Yes	No	No	
Kerkkamp 1999 99300751	Data provided on systolic time ratio, index of contractility, acceleration index, Heather index – no data on SV, CO, or CI	TEB: noninvasive, simple to use, especially in situations where sequential monitoring is required.	Yes	Yes	No	No	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Kindermann 1997 98023345	No direct data on CO, SV, or CI. Aimed for optimization of AV delay. For AV delay optimal, r=0.655 in ATP and r=0.529 in AVP based on 53 and 49 patients, respectively	SV is not very precise for TEB	Yes	Yes	Yes	No	
Kizakevich 1993 94032797	Tables 2 and 4 provide correlation data on several parameters of systolic event timing and systolic ejection indices, but no data on SV, CO, or CI.	Users of dZ/dt timing features for determining aortic valvular events might consider alternative impedance features to improve ejection time accuracy.	No	No	Yes	Yes	
Marik 1997	SM=24 TD r=0.08 (CO) D=(TEB-TD)=0.06 SD=0.06 (estimated from plot) VA r=0.02 (EF) D=((TEB-VA)=1% SD=17%	Poor agreement between CO, EF, LVEDV. TEB produces unreliable and misleading data which lead to inappropriate clinical interventions	Yes	Yes	Yes	Yes	
Mattar 1991 92036473	SM=17 r ² =0.48 against angiography or nuclear stethoscope (no separate data).	TEB is usually correlated with TD.	Yes	Yes	Yes	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Mehlsen 1991 92119899	RM=58 (on unstated number of <u>both</u> healthy subjects and ill patients) Contrast is against either TD <u>or</u> isotope dilution (n=28, n=30 respectively) No r given but IPD given D=TEB-(TD or ID)=0.23 L/min SD=1.13	TEB is reliable and useful, highly recommended for hemo-dynamic effects of physiological and pharmacological interventions but not for quantitative studies of central blood volume. Systematic difference found between absolute values of CO measured by TEB and dilution techniques (TEB overestimated low values and underestimated high values) but close correlation between changes.	Yes	Yes	No	No	
Ng 1993 94907300	SM = 27 (duplicate means) r=0.87 (CO) r=0.86 (SV) D=TH-TEB=1.4 L/min (CO) SD=1.4 D=TH-TEB=14 ml (SV) SD=13.4 ml	Difficulties in obtaining signals caused by interference due to poor skin contact, abnormally high ECG T-wave, motion artifacts due to ventilation or vibration of the air mattress. Reproducibility is better since it is hand-free and avoids intra-observer variation. TEB underestimates CO because it detects only pulsatile impedance signals during systole. TEB cannot be considered sufficiently accurate for routine use in intensive care patients.	Yes	No	Yes	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Perrino 1994 94220628	RM=451 (43) [excludes 7 patients with inadequate signals] r=0.84 D=TEB-TD=-0.41 L/min SD=1.0 Also gives data on correlation of changes in CO	TEB is a simple to use, continuous monitor of CO, Considerable progress has been made but clinically significant errors are revealed, e.g. in obese or arrhythmic patients, and interference of electrical noises. The validity of TEB in patients with CAD and impaired ventricular function has yet to be established. Reassessment of the technology is warranted.	Yes	Yes	Yes	No	
Pickett 1992 92264297	RM=201 (43) r=0.75, r=0.86 when using SM with means of multiples D=TD-TEB=0.125 L/min SD=1.03	TEB is essentially equivalent in accuracy and reproducibility within defined limits.	Yes	Yes	Yes	Yes	
Raaijmakers 1998a 99079379	RM=30 (13) r=0.42 (SB equation), r=0.75 (Kubicek equation) D=TD-TEB=2.4 L/min SD=2.8 (SB) or 1.8L/min SD=2.0 (K)	Kubicek equation is superior to Sramek-Bernstein. Accuracy needs further improvement to become a useful clinical tool.	Yes	Yes	Yes	Yes	
Raaijmakers 1998b 99214718	RM=29 (13) r=-0.24 (extravascular lung fluid)	Using bioimpedance to estimate pulmonary edema yields different results for cardiogenic and non-cardiogenic edema	Yes	Yes	Yes	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria					
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition		
Sageman 1993 93339081	SM=50 r ² =0.24 D=TD-TEB=-0.33 L/min SD=3.14 Also subgroup data for ventilated, non-ventilated, tube thoracotomies, obese, IBW) given in Table 1	Degree of correlation and agreement is poor. Use of TEB as substitute for TD in measuring cardiac output in post- aortocoronary bypass patients cannot be recommended. The presence of certain equipment may contribute to distortion of thorax electric field. Bandage may prohibit correct postioning of throrax electrodes. Alterations in cutaneous blood flow may have an impact.	Yes	Yes	Yes	Yes		
Sageman 2002 21843329	RM=216(20) r ² =0.86 D=TD-TEB=0.07L/min.m ² SD=0.20 (Also gives data for correlation of changes over time: r=0.95)	Improvements have substantially increased precision and reliability.TEB is equivalent to TD-derived cardiac index in post-op cardiac surgery patients. TEB requires adherence of chest and neck electrodesif patients have oily skin or are diaphoretic, electrodes may become dislodged. Measurement familiarity with the equipment is required for accurate data retrieval.	Yes	Yes	Yes	Yes		
Shoemaker 2001 21393819	SM?=151 r=0.91 D=-0.30L/min.m2 SD=1.1	Advantages include technical convenience and continuous display of data allowing calculation of amount of deficit or excess of each variable. Easy, cheap, fast, safe, sensitive. It also provides an approach to an organized coherent therapeutic plan based on physiologic criteria for the emergency patient proceeding from ER. Linear discriminant function predicted outcome correctly in 95% of survivors, 62% of nonsurvivors in early period after admission.	Yes	Yes	Yes	Yes		

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria				
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
Shoemaker 2000 21021875	RM=311 (45) r=0.78 D=TEB-TD=-0.16 L/min.m ² SD=0.95	Noninvasive monitoring is easier, quicker, more convenient. Real time hemodynamic monitoring in ED provides early warning of outcome and may be used to guide therapy.	Yes	Yes	Yes	Yes	
Shoemaker 1998 99087206	RM=2192 (680) r=0.85 D=TEB-TD=-0.124 L/min.m ² SD=0.75 Subgroups per setting provided ED subgroup RM=990 r=0.83, D=- 0.058 L/min.m ² SD=0.78 OR subgroup RM=407 r=0.88, D=- 0.027 L/min.m ² SD=0.46 ICU subgroup RM=795 r=0.85, D=- 0.17 L/min.m ² SD=0.68	TEB can be acceptable alternative where noninvasive monitoring is not available.	Yes	Yes	Yes	Yes	
Shoemaker 1994 95079738	RM=842 (68) r=0.86 D=TEB-TD=-0.013 L/min (no range or SD noted)	Unsatisfactory measurements can be caused by clinical conditions such as pleural effusion, severe pulmonary edema, chest tubes, other conditions where electrolyte solutions would allow the electrical signal to bypass normal thoracic structures. Bioimpedance underestimates corresponding TD estimations in clinical conditions where very high cardiac output values are associated with tachycardia and cardiac dysrhythmias.	Yes	Yes	Yes	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			C	Quality	Criteri	a
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Spiess 2001 11687996	RM=182(47) r=0.71 D=TEB-TD=-0.28 L/min.m ² SD=0.67 Also subgroup data are given for each of 4 timepoints, e.g. for time point 1 r=0.87, time point 2 r=0.73, time point 3 r=0.73, time point 4 r=0.56	BioZ generally agrees with TD: in fact it is more accurate and unaffected by cardiopulmonary bypass. The only time point when there was less accuracy was at end of surgery immediately before transport t ICUstainless steel wires used to approximate the sternum may have altered current flow in the chest. Abnormal waveforms can easily be observed on BioZ's display screen.	Yes	Yes	Yes	Yes
Summers 2001 21233995	SM=15 only EF correlations r=0.89 by Weissler method, r=0.89 by Capan method No SV, CO, or CI data.	Lack of familiarity with the device, difficulties in recording and matching electrical and mechanical events of LV, and an uncertainty of its inherent accuracy has prevented widespread use among practicing physicians. Simple and inexpensive technology that could potentially be used effectively.	No	No	Yes	Yes
Thangathurai 1997 97331660	RM=256 (23) r=0.89 D=TEB-TD=0.1 L/min SD=1.0 Also subgroup data by original software, revised software, esophagectomy patients	Easier, faster, safer than TD. Generally accurate and reliable and can be clinically useful in patients undergoing non-cardiac surgical procedures.	Yes	Yes	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			c	Quality	Criteri	а
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Thomas AN 1991 92129741	RM=101 (28) No r given, but IPD given D is provided broken in two subgroups Subgroup of <12 hours RM=46 (28) D=TEB-TD=-1.08 L/min SD=0.96 Subgroup of 12-24 hours RM=55 (28) D=TEB-TD=0.09 L/min SD=0.54	TEB is not consistently reliable in intensive care. Poor technique can weaken agreement between comparative measurementsif a single electrode becomes displaced, NCCOM3 produces unacceptably low CO values without recognizing that the wave form is abnormal.	Yes	No	No	Yes
Thomas SH 1992 93152372 (Trial 1)	Subgroup ICU SM=15 No r given D=8.1 ml (SV) SD=13.02 ml D=0.55 L/min (CO) SD=0.28	Calculation of SV remains controversial because of questionable assumptions used in Kubicek's equations. Notwithstanding such reservations, we found acceptable agreement in patients with CV disease.	Yes	Yes	Yes	Yes
Thomas SH 1992 93152372 (Trial 2)	Subgroup CAD SM=34 r=0.65 (SVI), r=0.25 (CI) Must revisit paper	Calculation of SV remains controversial because of questionable assumptions used in Kubicek's equations. Notwithstanding such reservations, we found acceptable agreement in patients with CV disease.	Yes	Yes	Yes	Yes
Van der Meer 1999 99161702	SM=26 r=0.85 D=TEB-Echo=0.20 L/min SD=0.74 Also subgroup data for presence and absence of valve pathology	Both measurements are influenced by aortic valve pathology. TEB is capable of reliable estimation of SV even in MVR.	Yes	Yes	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			C	Quality	Criteri	a
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Van der Meer 1999 99151080	No SV, CO, CI data. Correlation of wall motion score with Heather index (r=-0.78) and between WMS and RZ time (r=0.75)	TEB might be a valuable method for peri- and post-op monitoring.	Yes	Yes	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria		a	
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Van der Meer 1997 97385315	SM=37 r=0.60 D=TEB-TD=0.06 L/min SD=1.25 (after 12 obese exclusion, D=TEB- TD=0.99 L/min SD 0.96)	Inaccurate measurements: TEB method should not be routinely used in ICU. Frequency of the current ought to be further investigated.	Yes	Yes	Yes	Yes
Woltjer 1996b 97166939	Kubicek equation with modified semi-circular electrode array: r=0.90 mean difference (2sd) 0.5 (17.1 ml) using Sramek Bernstein:for lateral spot electrode array: r=0.0.64; -2.7 (29.3 ml) (abstract appears to incorrectly report; this result given in Table 2	Sramek-Bernstein equation was valid only with the lateral spot electrode array for calculating stroke volume, and the Kubicek equation worked well only with the modified semi-circular spot electrode array. They found a higher correlation coefficient to thermodiluation with the Kubicek equation/modified MSC electrode configuration compared to the Sramek-Bernstein/lateral spot electrode configuration.				
Woltjer 1996a 97034589	Kubicek equation: r=0.90 mean difference (2sd) 2.0 (17.7 ml) using Kubicek's equation for normal weight patients and r=0.80; -2.7 (14.4ml) for obese patients. Sramek and Bernstein: correlation and mean difference +/- 2 standard deviations was r=0.63, -0.8(30.8 ml) and r=0.43, -7.7(26.2) for obese patients.	Weight affects calculation of stroke volume with Sramek Bernstein's equation; weight correction factor does not adequately adjust. Kubicek not seriously biased by weight; appears more accurate than Sramek Bernstein .				

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			G	Quality	Criteri	а
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Van der Meer 1996 96310167	SM=24 R=0.75 D=TEB-TD=-0.24 L/min SD 12.4% (LVEF)	Noninvasive estimation of LVEF is possible. We found fair correlation when incorporating LVET and heart rate in the equation. Whether the equation is accurate enough to measure LVEF in patients with cardiac pathology must be investigated.	Yes	Yes	Yes	Yes
Van der Meer 1996 97081838	SM=21 r=0.83 with SB equation lateral spot D=TEB-TD=0.15 L/min SD=0.96 Table 3 provides also r and D values for different equations and electrode configurations (8 sets)	There is no difference between reliabilities of Sramek- Bernstein and Kubicek's adjusted formulas if they are used with correct electrode positioning. These formulas should be abandoned, at least in this specific set of patients.	Yes	Yes	Yes	Yes
Velmahos 1998 98347548	RM=50 (17) r ² =0.68 No D given, but IPD given	Limitations: low signal to noise ratios from pleural effusions, chest tubes, pulmonary edema, severe CHF, severe pneumonia. Identifying and correcting circulatory deficits early may result in improved outcomes.	Yes	Yes	Yes	Yes
Weiss 1995 96071685 (stable patients)	RM=51 (15) r=0.69 D=TEB-TD=0.231 L/min SD=2.19	Presence of valvular disease contraindicates TEB monitor. Severity of condition does not affect accuracy of TEB. Wide range in inter-subject bias variability limits value of TEB at assessing absolute values.	Yes	Yes	Yes	Yes
Weiss 1995 96071685 (unstable patients)	RM=49 (13) r=0.81 D=TEB-TD=0.02 L/min SD=2.33 Also subgroup data given according to cardiac output	Best overall agreement between 2 methods. Severity of condition does not affect accuracy of TEB.	Yes	Yes	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			C	Quality	Criteri	a
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Woltjer 1997 97468636	SM=24 r=0.69 (SV) D=TEB-TD=0.1 ml SD=22.8 ml Excluding 5 patients with aortic valve disorder, r=0.87. Also good correlation (r=0.92) for the O/C ratio.	Results showed moderate overall correlation between TD and TEB, and no significant difference. When data of patients with aortic valvular disorder were excluded, correlation is considerably improved. TEB can predict PCWP and measure SV over wide range of clinically relevant values.	Yes	Yes	Yes	Yes
Woo 1991 91302095	RM=80 (44) r=0.51 D not provided, but separate data are given for subgroups with <0.5 or >0.5 L/min difference (biased split, cannot use in summary calculations).	TEB did not reliable provide CO estimations sufficiently similar to TD. Variables such as height, weight, mitral or tricuspid regurgitation, dyspnea had significant correlation with skin impedance results. Nurses must be aware that TEB may not be dependable replacement for appropriately functioning PAC in critically ill patients with severe heart failure and ischemic or idiopathic dilated cardiomyopathy. TEB cannot be recommended.	Yes	Yes	Yes	Yes
Wong KL 1996 97238198	RM=128 (18) r=0.86 D=TEB-TD=-0.66 L/min SD=0.915	Good correlation obtained. Common problems influence CO: intra- and extra-cardiac shunts, valvular heart disease, alteration in hematocrit, electrocautery, mechanical ventilation and during low CO rate. Further studies are needed.	Yes	No	Yes	Yes
World 1996 96318217 (Trial 1)	SM=21 No r given but IPD given D=TEB-TD=-0.14 L/min SD=0.8 L/min	In patients principally with sepsis, TEB provides CO estimate at least as acceptable as TD but does not permit rapid assessment of large numbers of injured patients.	Yes	No	No	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

				Quality Criteria			
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition	
World 1996 96318217 (Trial 2)	SM=50 No r given but IPD given D=TEB-esoph Doppler=0.48 L/min Also given subgroup data in orthopedic vs. other patients	There is more variability between TEB and Doppler than expected. Doppler has the advantage of rapidity, especially in the event of injured soldiers on arrival to a field hospital.	Yes	No	No	Yes	
Yakimets 1995 95347996 (Trial 1)	$\begin{array}{c} \text{SM=17 at rest} \\ \text{r=0.684 (CO) 0.62 (CI) 0.76 (SV)} \\ \text{D=TEB-Fick=-1.05 L/min} \\ \text{SD=1.53 (CO)} \\ \text{D=TEB-Fick=-0.555 L/min.m}^2 \\ \text{SD=0.78 (CI)} \\ \text{D=TEB-Fick=-13.47 mL} \\ \text{SD=20.92 ml (SV)} \\ \text{SM=17 at exercise} \\ \text{r=0.219 (CO) 0.26 (CI) 0.43 (SV)} \\ \text{D=TEB-Fick=-1.505 L/min} \\ \text{SD=2.24 (CO)} \\ \text{D=TEB-Fick=-0.745 L/min. m}^2 \\ \text{SD=1.12 (CI)} \\ \text{D=TEB-Fick=-16.67 ml} \\ \text{SD=24.27 ml (SV)} \end{array}$	TEB underestimated CO in comparison to Fick. The mean difference became greater during exercise. There is consensus that valvular disease affects accuracy of TEB and its readings should be questioned with these subjects. Gender affects stability of measurements of TEB. TEB has difficulty in assessing SV in subjects with low voltage R wave of ECG. IT is not recommended that TEB be used as a basis for clinical decision or as a basis for hemodynamic monitoring in the management of patients with heart disease.	Yes	Yes	Yes	Yes	

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			Quality Criteria			
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Yakimets 1995 95347996 (Trial 2)	SM=28 set 1 r=0.547 (CO), 0.45 (CI), 0.67 (SV) D=TEB-TD=-0.425 L/min SD=1.325 (CO) D=TEB-TD=-0.180 L/min.m ² SD=0.702 (CI) D=TEB-TD=-3.192 ml SD=13.967 ml (SV) SM=28 set 2 (2-4 hours after surgery) r=0.505 (CO), 0.400 (CI), 0.737 (SV) D=TEB-TD=-0.358 L/min SD=1.24 (CO) D=TEB-TD=-0.140 L/min.m ² SD=0.67 (CI) D=TEB=TD=-3.69 ml SD=12.49 (SV)	TEB underestimated CO in comparison to TD in initial set of readings and 2-4 hours later.	Yes	Yes	Yes	Yes
Young 1993 93159934	RM=242 (19) r=0.36 D=TD-TEB=1.69 L/min.m ² SD=1.24	Poor correlation between CI. TEB overestimated at low cardiac index and markedly underestimated at high cardiac index. It is impossible to replace TD with TEB. TEB is too insensitive for clinical use.	Yes	Yes	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

			G	Quality	Criteri	а
Author, Year UI	Results	Author's Conclusions	Apparatus	Equation	Population	Condition
Zacek 1999 20032610	RM=128 (28) r=0.26 D=TEB-TD=-0.07 L/min.m ² SD=1.1 Subgroup of CABG patients also given (r=0.30)	Despite controversial opinions on validity of TEB in clinical settings, there is agreement in defining the areas where TEB is unsuitable for usesepsis, tachycardia >180/min, extreme obesity or height, excessive patient movement, dilatation of aorta, LBBB. TEB technology encounters distinct problems in open-heart surgery.	Yes	Yes	Yes	Yes
Zubarev 1999 99300756	RM=24 (11) r=0.91 Also gives data on time interval determinations	BPCS had better reproducibility than TD in serial measurements of the same patients.	Yes	Yes	No	No

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

Author Year UI Arora 2001 11730085	Design Prospective	Demographics, location, setting Location: Canada Setting: ICU Mean age: 69.2 % Male: 87.5 Enrolled: 16	Clinical condition Angina pectoris	Patient population Hemodynamics Critically ill	Inclusion Criteria Proved stenosis >70% in at least 1 major artery. History of MI; development of Q waves for MI or	Exclusion Criteria ND
Charach 2001 21288902	Prospective	Location: Israel Setting: hospital Mean age: 74 % Male: 50 Enrolled: 30	30 patients with cardiogenic pulmonary edema	Fluid management Critically ill	ischemia CHD, valvular heart disease, arterial hypertension, all complicated by CPE	Respiratory failure due to extra- cardiac disease, pacemaker, pulmonary embolism, pleural effusion, prominent extrapulmonary pathology
Conway 1996 96240987	Prospective	Location: Hong Kong Setting: hospital Mean age: 72 % Male: 98 Enrolled: 42	Spinal anesthesia for transurethral prostate or bladder tumor surgery	Hemodynamics Non-critically ill	ND	If NYHA dyspnea class was III or IV; if heart rate was irregular; baseline CVP <0-2 cm H ₂ O (dehydration)
Critchley 1994 94153689	RCT	Location: Hong Kong Setting: clinic Mean age: 70 % Male: 100 Enrolled: 34	Subarachnoid block for urological surgery	Fluid management Critically ill	ND	Severe cardiac or respiratory disease; abnormal cardiac anatomy; heart rhythm not sinus; meds which have cardiac effect, hemoglobin <10 g/dL

Author Year UI	Design	Demographics, location, setting	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Greenberg 2000 12029190	Prospective, time series	Location: USA Setting: clinic Mean age: ND % Male: ND Enrolled: 62	Clinically stable heart failure	Hemodynamics Critically ill	Absence of clinically significant changes in physical signs of heart failure; no changes in prescribed medications	If body surface area estimates exceeded ranges for BioZ algorithm; change in heart failure status; minute ventilations pacemaker; aortic valve incompetence
Haennel 1998 98415680	Prospective	Location: Canada Setting: clinic Mean age: 74 % Male: 70 Enrolled: 10	Dual sensor rate adaptive pacemaker	Pacemaker Non-critically ill	Measured resting ejection fraction >35%, normal serum electrolytes	ND
Jonsson 1995 95407259	Prospective	Location: Denmark Setting: critical care Mean age: 66 % Male: 31 Enrolled: 16	10 aortic aneurysm resection; 5 aortic iiliac prostheses; 1 renal arterial stenosis	Fluid management Critically ill	ND	ND
Kasznicki 1993 93383616	Prospective	Location: Poland Setting: unknown Mean age: 51.7 % Male: 50 Enrolled: 30	Hematological malignancies	Hemodynamics High risk cardiac patients with cancer	ND	ND
Ovsyshcher 1992 93065475	Prospective	Location: USA Setting: clinic Mean age: 65 % Male: 82 Enrolled: 38	Implanted pacemakers	Pacemaker Non-critically ill	ND	ND

Author Year UI	Design	Demographics, location, setting	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Ovsyshcher 1993b 93318751	Prospective	Location: USA Setting: clinic Mean age: 65 % Male: 70 Enrolled: 44	Implanted pacemakers:, including 24 DDD, 14 VVI	Pacemaker Non-critically ill	ND	ND
Ovsyshcher 1993a 93171482	Prospective	Location: USA Setting: clinic Mean age: 59 % Male: 64 Enrolled: 11	Implanted bipolar DDD pacemaker	Pacemaker Non-critically ill	ND	ND
Perko 2001 21163459	Prospective	Location: Denmark Setting: hospital Mean age: 66 % Male: 81 Enrolled: 16	Ischemic heart disease, scheduled for cardiac surgery, CABG with CPB and moderate hypothermia	Fluid management Critically ill	ND	ND
Scherhag 1997 97200346	Prospective	Location: Germany Setting: lab Mean age: 67.2 % Male: 56 Enrolled: 50	Suspected CAD	Hemodynamics Critically ill	≥50% stenosis confirmed by angiography	Poor echocardio- graphic image quality, valvular regurgitation, intracardiac shunts, low CO, pregnancy, extreme obesity, severe lung disease

Author Year UI	Design	Demographics, location, setting	Clinical condition	Patient population	Inclusion Criteria	Exclusion Criteria
Taler 2002 1201920	Prospective, randomized	Location: USA Setting: hospital Mean age: 66.1 % Male: 48% Enrolled: 117	Chronic resistant hypertension	Chronic hypertension Non-critically ill	Chronic refractory hypertension as defined by P>140/90 mmHg while taking >=2 antihypertensive medications in adequate doses	Unable to return monthly during the trial or identified as noncompliant with medications as the cause of resistant hypertension
Tatevossian 2000 11138876	Prospective,cas e series	Location: USA Setting: hospital Mean age: % Male: 85% Enrolled: 60	Severe trauma, ARDS	Hemodynamics Critically ill	Hypotension tachycardia estimated blood loss of >=2L	ND
Weinhold 1993 8241224	Prospective	Location: Germany Setting: hospital Mean age: 55.9 % Male: 82% Enrolled: 35	Heart transplant	Myocardial biopsy following heart transplant Critically ill	ND	Pneumothorax, periocardial effusion, aortic insufficiency, catecholamine support, ongoing rejection therapy, acute infection with high body temperature, or septicemia
Zerahn 1999 99394144	Prospective	Location: Denmark Setting: hospital Mean age: 67 % Male: 69 Enrolled: 16	Pleural effusions due to cardiac or malignant diseases – clinically stable	Hemodynamics Critically ill	ND	Pneumothorax

				Quality Criteria			ia
Author, Year UI	Parameters Assessed	Bioimpedance System, Procedure, Equation	Author's Conclusion	Apparatus	Equation	Population	Condition
Arora 2001 11730085	Cardiac output. Stroke volume	BioZ	Known conditions that limit accuracy of BioZ-derived data are septic shock, aortic valve regurgitation, AMI, severe hypertension, tachycardia, patient's height <47in or >91in, weight <66lb or >342lb, patient movement.	Yes	No	Yes	Yes
Charach 2001 21288902	ECW	RS-205 (RS Medical Monitoring, Jerusalem)	RS-205 is suitable for monitoring patients at high risk for developing CPE and for monitoring the efficacy of their clinical management.	Yes	Yes	Yes	Yes
Conway 1996 96240987	Cardiac output	BoMed NCCOM3-R7s	BoMEd measures CO to high degree of repeatability but does not measure CO accurately. When compared with TD [but there is no data], limits of agreement range from acceptable +22% in otherwise healthy patients undergoing neurosurgery to an unacceptable \pm 50% in critically ill patients.	Yes	No	Yes	Yes
Critchley 1994 94153689	Cardiac output, arterial pressure, central venous pressure	NCCOM3-R7	TEB is valid for following trends in CO and for comparison between different treatments.	Yes	No	Yes	Yes
Greenberg 2000 12029190	Cardiac output	BioZ	BioZ values are reproducible on clinically stable heart failure patients treated in outpatient setting.	Yes	Yes	Yes	Yes
Haennel 1998 98415680	Cardiac output	Minnesota Impedance cardiograph, Model 304A. Sramek-Bernstein equation	Still controversial, TEB method provides simple reliable means of obtaining repeated hemodynamic data during upright exercise.	Yes	Yes	No	No

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

				Quality Criteria			ia
Author, Year UI	Parameters Assessed	Bioimpedance System, Procedure, Equation	Author's Conclusion	Apparatus	Equation	Population	Condition
Jonsson 1995 95407259	Fluid balance	Minnesota Impedance Cardiograph, model 304A	TEB was the only continuously monitored variable that predicted an elevated postoperative fluid balance.	Yes	Yes	No	Yes
Kasznicki 1993 93383616	Stroke Index, cardiac index, heart rate	RM-90/1 K	The authors consider as crucial the monitoring of the cardiovascular system in cancer patients and that it is convenient to use impedance cardiography for this purpose.	Yes	No	Yes	Yes
Ovsyshcher 1992 93065475	Cardiac output	NCCOM-R7 and Pacemate module. Nyboer equation modified by Sramek-Bernstein	The precision of TEB in all pacing modes indicates that detected changes of SV, CO >7% on serial measurements represent true hemodynamic alterations with 95% confidence.	Yes	Yes	No	No
Ovsyshcher 1993b 93318751	Cardiac output	NCCOM-R7, Kubicek equation, modified by Sramek	The precision of this noninvasive method, in conjunction with its ease, makes it well suited for assessing relative effects of acute physiologic or programming changes on CO.	Yes	Yes	No	No
Ovsyshcher 1993a 93171482	Cardiac output	Minnesota Impedance Cardiograph, Model 304B. Nyboar Equation modified by Kubicek	TEB enables easy, highly reproducible, serial, noninvasive assessments of CO of pacemaker patients and can detect clinically significant hemodynamic changes. Hemodynamic findings applied to pacemaker are consistent with data previously obtained using other techniques. Measurements can facilitate optimal programming in pacemaker patients.	Yes	Yes	Yes	No

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

				Quality Criteria			
Author, Year UI	Parameters Assessed	Bioimpedance System, Procedure, Equation	Author's Conclusion	Apparatus	Equation	Population	Condition
Perko 2001 21163459	Cardiac index, ECW	CDM 3000 Hemodynamic Monitor, CardioDynamics International, San Diego – 62 frequencies 4-1000 kHz	Accuracy of TEB's estimates warrant further investigation. Estimation of actual hydration status cannot be assessed because body impedance values are multifactorial. A small change in distance between electrodes or replacement of electrodes with ones of different impedance can induce essential alterations.	Yes	No	No	Yes
Scherhag 1997 97200346	Cardiac index, stroke volume index	CardioScreen, medic GmbH, Germany. 1 mA current, 100 KHz	Computerized TEB allows cost- and time-effective continuous monitoring during pharmacologic echocardiographic stress testing and provides useful complementary info regarding LVF.	Yes	No	Yes	Yes
Taler 2002 1201920	Stroke volume, cardiac output, cardiac index, systemic vascular resistance	BioZ, Z MARC algorithm	The study findings "argue that measurement of hemodynamic and impedance parameters guide selection of antihypertensive therapy more effectively than clinical judgment alone for patients resistant to empiric therapy."	Yes	No	Yes	Yes
Tatevossian 2000 11138876	Cardiac index	IQ System, Wantagh Inc., Bristol, PA 100-KHz, 4-mA current	"Emergency patients can be monitored with noninvasive techniques early in their hospital course."	Yes	No	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

				Quality Criteria			
Author, Year UI	Parameters Assessed	Bioimpedance System, Procedure, Equation	Author's Conclusion	Apparatus	Equation	Population	Condition
Weinhold 1993 8241224	Cardiac index, end-diastolic volume index, stroke volume, ejection fraction, acceleration index	NCCOM3-R7 (Osypka GmBH, Germany)	"Besides routinely performed endomyocardial biopsies, the measurement of thoracic electrical bioimpedance represents a noninvasive and ideal monitoring technique for diagnosis of acute heart rejections during outpatient follow-up of heart transplant patient	Yes	No	Yes	Yes
Zerahn 1999 99394144	Stroke volume, cardiac output	BoMed NCCOM-3 2.5 mZ at 70 kHz	Relative increase in baseline impedance was twice as high for cancer patients as for patients with heart failure. There is a close correlation between drying effect of thoracentesis and changes in baseline impedance of the thorax and subsequent improvement in pulmonary airflow, lung volume, lung diffusing capacity.	Yes	Yes	Yes	Yes

- 1. A description of the apparatus/device to measure bioimpedance (including manufacturer and model)?
- 2. The equation used to calculate impedance measurements?
- 3. A description of the patients in the study, with clear inclusion and exclusion criteria?
- 4. A description of the medical and/or surgical condition and the indication for use of impedance cardiography monitoring in the patients enrolled?

References and Bibliography

ACC/AHA Guidelines for the evaluation and management of chronic heart failure in the adult. http://www.acc.org/clinical/guidelines/failure/hf_index.htm

Aisiku I, Ander D., Knoepp L, Todd K. Noninvasive hemodynamic monitoring does not correlate with symptomatic improvement in the emergency department management of acute heart failure. Acad Emerg Med 2000;7:465.

Antonicelli R, Savonitto S, Gambini C et al. Impedance cardiography for repeated determination of stroke volume in elderly hypertensives: correlation with pulsed Doppler echocardiography. Angiology 1991 Aug;42(8):648-53.

Arora RR, Carlucci ML, Malone AM et al. Acute and chronic hemodynamic effects of enhanced external counterpulsation in patients with angina pectoris. J Investig Med 2001 Nov;49(6):500-4.

Atallah MM, Demain AD. Cardiac output measurement: lack of agreement between thermodilution and thoracic electric bioimpedance in two clinical settings. J Clin Anesthesia 1995 May;7(3):182-5.

Balestra B, Malacrida R, Leonardi L et al. Esophageal electrodes allow precise assessment of cardiac output by bioimpedance. Crit Care Med 1992 Jan;20(1):62-7.

Barin E, Haryadi DG, Schookin SI et al. Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med 2000 Mar;28(3):698-702.

Barone JE, Tucker JB, Rassias D, Corvo PR. Routine perioperative pulmonary artery catheterization has no effect on rate of complications in vascular surgery: a meta-analysis. Amer Surg 2001;67(7):674-9.

Barry BN, Mallick A, Bodenham AR et al. Lack of agreement between bioimpedance and continuous thermodilution measurement of cardiac output in intensive care unit patients. Crit Care 1997;1(2):71-4. Belardinelli R, Ciampani N, Costantini C et al. Comparison of impedance cardiography with thermodilution and direct Fick methods for noninvasive measurement of stroke volume and cardiac output during incremental exercise in patients with ischemic cardiomyopathy. Am J Cardiol 1996;15;77(15):1293-301.

Belott P. Bioimpedance in the pacemaker clinic. AACN Clin Issues 1999;10(3):414-8.

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307-10.

Bogaard HJ, Hamersma WB, Horsch JL et al. Noninvasive assessment of cardiac output during exercise in chronic obstructive pulmonary disease: comparison of the CO2-rebreathing method and electrical impedance cardiography. Physiological Measurement 1997 Nov;18(4):327-38.

Bowling LS, Sageman WS, O'Connor SM et al. Lack of agreement between measurement of ejection fraction by impedance cardiography versus radionuclide ventriculography. Crit Care Med 1993;21(10):1523-7.

Castor G, Klocke RK, Stoll M et al. Simultaneous measurement of cardiac output by thermodilution, thoracic electrical bioimpedance and Doppler ultrasound. Br J Anaesth 1994 Jan;72(1):133-8.

Charach G, Rabinovich P, Grosskopf I et al. Transthoracic monitoring of the impedance of the right lung in patients with cardiogenic pulmonary edema. Crit Care Med 2001 Jun;29(6):1137-44.

Clancy TV, Norman K, Reynolds R et al. Cardiac output measurement in critical care patients: Thoracic Electrical Bioimpedance versus thermodilution. J Trauma 1991 Aug;31(8):1116-20.

Connors AF, Speroff T, Dawson NV et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 2000;276(11):889-97.

Conway F, Critchley LA, Stuart JC et al. A comparison of the haemodynamic effects of intrathecal meperidine, meperidine-bupivacaine mixture and hyperbaric bupivacaine. Canadian Journal of Anaesthesia 1996 Jan;43(1):23-9.

Critchley LA, Impedance cardiography. The impact of new technology. Anaesthesia 1998; 53(7): 677-84.

Critchley LA, Calcroft RM, Tan PY et al. The effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically ill. Intensive Care Medicine 2000 Jun;26(6):679-85.

Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J of Clin Monitoring 1999;15:85-91.

Critchley LA, Leung DH, Short TG. Abdominal surgery alters the calibration of bioimpedance cardiac output measurement. Int J Clin Monit Comput 1996 Feb;13(1):1-8.

Critchley LA, Short TG, Gin T. Hypotension during subarachnoid anaesthesia: haemodynamic analysis of three treatments. Br J Anaesth 1994 Feb;72(2):151-5.

De Maria AN, Raisinghani A. Comparative overview of cardiac output measurement methods: has impedance cardiography come of age? Congest Heart Fail 2000 Mar;6(2):60-73.

Demeter RJ, Parr KL, Toth PD et al. Use of noninvasive bioelectric impedance to predict cardiac output in open heart recovery. Biol Psychol 1993 Aug;36(1-2):23-32.

Doering L, Lum E, Dracup K et al. Predictors of between-method differences in cardiac output measurement using thoracic electrical bioimpedance and thermodilution. Crit Care Med 1995 Oct;23(10):1667-73.

Drazner MH, Thompson B, Rosenberg PB et al. Comparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol 2002 Apr 15;89(8):993-5.

Executive Committee Working Group. Recommendations for Evaluating Effectiveness. http://www.cms.hhs.gov/coverage/8b1-i9.asp 2001 Feb 23. Felker CM, O'Connor CM. Inotropic therapy for heart failure: an evidence-based approach. Am Heart J 2001;142:393-401.

Fineberg HV, Bauman R, Sosman M. Computerized cranial tomography. Effect on diagnostic and therapeutic plans. JAMA 1977;238(3):224-7.

Fuller HD. The validity of cardiac output measurement by thoracic impedance: a meta-analysis. Clin Invest Med 1992 Apr;15(2):103-12.

Genoni M, Pelosi P, Romand JA et al. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive endexpiratory pressure. Crit Care Med 1998 Aug;26(8):1441-5.

Greenberg BH, Hermann DD, Pranulis MF et al. Reproducibility of impedance cardiography hemodynamic measures in clinically stable heart failure patients. Congest Heart Fail 2000 Mar;6(2):74-80.

Haennel RG, Logan T, Dunne C et al. Effects of sensor selection on exercise stroke volume in pacemaker dependent patients. Pacing & Clinical Electrophysiology 1998 Sep;21(9):1700-8.

Hall JB. Use of the pulmonary artery catheter in critically ill patients: was invention the mother of necessity? JAMA 2000;283(19):2577-8.

Han JH, Lindsell CJ, Tsurov A, Storrow AB. The clinical utility of impedance cardiography in diagnosing congestive heart failure in dyspneic emergency department patients. Acad Emerg Med 2002;9:439a-40a.

Handelsman H. Measuring Cardiac Output by Electrical Bioimpedance. Health Technology Assessment Reports. Rockville, MD: Agency for Health Care Policy and Research; 1992

Hirschl MM, Kittler H, Woisetschlager C et al. Simultaneous comparison of thoracic bioimpedance and arterial pulse waveform-derived cardiac output with thermodilution measurement. Crit Care Med 2000 Jun;28(6):1798-802.

Horstmann E, Konn B. Assessment of cardiac output during exercise. Transthoracic impedance vs. heart rate alone. Med Prog Technol 1993;19(4):173-8. Ivanov R, Allen J, Calvin J. The incidence of major morbidity in critically ill patients managed with pulmonary artery catheters: a meta-analysis. Crit Care Med 2000;28(3):615-9.

Jewkes C, Sear JW, Verhoeff F et al. Non-invasive measurement of cardiac output by thoracic electrical bioimpedance: a study of reproducibility and comparison with thermodilution. Br J Anaesth 1991 Dec;67(6):788-94.

Jonsson F, Madsen P, Jorgensen LG et al. Thoracic electrical impedance and fluid balance during aortic surgery. Acta Anaesthesiol Scand 1995 May;39(4):513-7.

Kasznicki J, Drzewoski J. The importance of impedance cardiography in monitoring cardiac function in patients with hematological malignancies. Acta Haematol Pol 1993;2:123-30.

Kazanegra R, Barcarse EA, Chen AJ, Maisel AS. Plasma levels of B-type natriuretic peptide (BNP) and non-invasive cardiac index in diagnosing congestive heart failure in the emergency department. 8th Scientific Meeting of the Heart Failure Society of America abstracts. J Cardiac Failure 2002 Aug;8(4): Suppl.

Kerkkamp HJ, Heethaar RM. A comparison of bioimpedance and echocardiography in measuring systolic heart function in cardiac patients. Ann N Y Acad Sci 1999 Apr 20;873:149-54.

Kindermann M, Frohlig G, Doerr T et al. Optimizing the AV delay in DDD pacemaker patients with high degree AV block: mitral valve Doppler versus impedance cardiography. Pacing Clin Electrophysiol 1997 Oct;20(10 Pt 1):2453-62.

Kizakevich PN, Teague SM, Nissman DB et al. Comparative measures of systolic ejection during treadmill exercise by impedance cardiography and Doppler echocardiography. Biol Psychol 1993 Aug;36(1-2):51-61.

Lasater, M. Impedance Cardiography: A Method of Noninvasive Cardiac Output Monitoring. American Assn. Of Crit. Care Nurses, Continuing Education 2000 May.

http://www.aacn.org/aacn/conteduc.nsf/e9737804d2e8 882988256635006397cc/87b4e6ef367a23e0882569e0 0082d5ac?OpenDocument

Lasater M. The view within: the emerging technology

of thoracic electrical impedance, Crit Care Nurs Q 1998;21(3):97-101.

Marrocco A, Eskin B, Nashed AH et al. Noninvasive bioimpedance monitoring differentiates cardiogenic from pulmonary causes of acute dyspnea in the emergency department. SAEM annual meeting abstracts. Acad Emerg Med 1998;5(5):476-7.

Mattar JA, Shoemaker WC, Diament D et al. Systolic and diastolic time intervals in the critically ill patient. Crit Care Med 1991 Nov;19(11):1382-6.

Mehlsen J, Bonde J, Stadeager C et al. Reliability of impedance cardiography in measuring central haemodynamics. Clin Physiol 1991 Nov;11(6):579-88.

Milzman DP, Napoli A, Gerace T et al. Acute treatment of heart failure with impedance cardiography monitoring of cardiac index and the ability to improve patient outcome. Society of Critical Care Management abstracts. Crit Care Med 1999;27(12):A47.

Ng HW, Coleman N, Walley TJ et al. Reproducibility and comparison of cardiac output measurement by transthoracic bioimpedance and thermodilution methods in critically ill patients. Clin Intensive Care 1993;4(5):217-21.

Ovsyshcher I, Zimlichman R, Katz A et al. Measurements of cardiac output by impedance cardiography in pacemaker patients at rest: effects of various atrioventricular delays. Journal of the American College of Cardiology 1993a Mar 1;21(3):761-7.

Ovsyshcher I, Gross JN, Blumberg S et al. Variability of cardiac output as determined by impedance cardiography in pacemaker patients. Am J Cardiol 1993b Jul 15;72(2):183-7.

Ovsyshcher I, Gross JN, Blumberg S et al. Precision of impedance cardiography measurements of cardiac output in pacemaker patients. Pacing Clin Electrophysiol 1992 Nov;15(11 Pt 2):1923-6.

Perko MJ, Jarnvig IL, Hojgaard-Rasmussen N et al. Electric impedance for evaluation of body fluid balance in cardiac surgical patients. Journal of Cardiothoracic & Vascular Anesthesia 2001 Feb;15(1):44-8. Permanetter B, Rossy W, Klein G et al. Ubiquinone (coenzyme Q10) in the long-term treatment of idiopathic dilated cardiomyopathy. Eur Heart J 1992 Nov;13(11):1528-33.

Perrino AC, Jr., Lippman A, Ariyan C et al. Intraoperative cardiac output monitoring: comparison of impedance cardiography and thermodilution. Journal of Cardiothoracic & Vascular Anesthesia 1994 Feb;8(1):24-9.

Pickett BR, Buell JC. Validity of cardiac output measurement by computer-averaged impedance cardiography, and comparison with simultaneous thermodilution determinations. Am J Cardiol 1992 May 15;69(16):1354-8.

Polanczyk CA, Rohde LE, Goldman L et al. Right heart catheterization and cardiac complications in patients undergoing noncardiac surgery: an observational study. JAMA 2001;286(3):309-14.

Porter JM, Swain ID. Measurement of cardiac output by electrical impedance plethysmography. J. Biomed Eng 1987; 9:222-231

Raaijmakers E, Faes TJ, Scholten RJ et al. A metaanalysis of three decades of validating thoracic impedance cardiography. Crit Care Med 1999 Jun;27(6):1203-13.

Raaijmakers E, Faes TJ, Kunst PW et al. The influence of extravascular lung water on cardiac output measurements using thoracic impedance cardiography. Physiological Measurement 1998a Nov;19(4):491-9.

Raaijmakers E, Faes TJ, Meijer JM et al. Estimation of non-cardiogenic pulmonary oedema using dualfrequency electrical impedance. Med Biol Eng Comput 1998b Jul;36(4):461-6.

Ritter P, Dib JC, Lelievre T et al. Quick determination of the optimal AV delay at rest in patients paced in DDD mode for complete AV block. Eur J CPE 1994;4(2):A163.

Sageman WS, Riffenburgh RH, Spiess BD. Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 2002 Feb;16(1):8-14.

Sageman WS, Amundson DE. Thoracic electrical bioimpedance measurement of cardiac output in postaortocoronary bypass patients. Crit Care Med 1993 Aug;21(8):1139-42.

Scherhag AW, Stastny J, Pfleger S et al. Evaluation of systolic performance by automated impedance cardiography. Ann N Y Acad Sci 1999 Apr 20;873:167-73.

Scherhag AW, Pfleger S, de Mey C et al. Continuous measurement of hemodynamic alterations during pharmacologic cardiovascular stress using automated impedance cardiography. Journal of Clinical Pharmacology 1997 Jan;37(1 Suppl):21S-8S.

Shoemaker WC, Wo CC, Chan L et al. Outcome prediction of emergency patients by noninvasive hemodynamic monitoring. Chest 2001 Aug;120(2):528-37.

Shoemaker WC, Wo CC, Yu S et al. Invasive and noninvasive haemodynamic monitoring of acutely ill sepsis and septic shock patients in the emergency department. Eur J Emerg Med 2000 Sep;7(3):169-75.

Shoemaker WC, Belzberg H, Wo CC et al. Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 1998 Dec;114(6):1643-52.

Shoemaker WC, Wo CC, Bishop MH et al. Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation. Crit Care Med 1994 Dec;22(12):1907-12.

Spiess BD, Patel MA, Soltow LO et al. Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a secondgeneration bioimpedance device. J Cardiothorac Vasc Anesth 2001 Oct;15(5):567-73.

Springfield C, Sebat C, Sebat et al. Utility of impedance cardiography (BioZ ICG) in the emergency department to evaluate patients with dyspnea and symptomatic hypotension. Am College of Emerg Physicians annual meeting abstracts. Ann Emerg Med 2002;Pt 2 40(4).

Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice.. Am Rev Respir Dis 1982;126:1001-4

Summers RL, Bradley K, Piel CP et al. Myocardial oxygen consumption in patients with acute cocaine intoxication. Acad Emerg Med 2001 May;8(5):559.

Sutton AJ, Abrams KR, Jones DR et al. <u>Methods for</u> <u>Meta-analysis in Medical Research</u>. John Wiley and Sons: New York, 2000. Taler SJ, Textor SC, Augustine JE. Resistant hypertension: comparing hemodynamic management to specialist care. Hypertension 2002 May;39(5):982-8.

Tate P, Seeley RR, Stephens TD., (editors) <u>Understanding the Human Body</u>. Mosby: St. Louis, 1994.

Tatevossian RG, Shoemaker WC, Wo CC et al. Noninvasive hemodynamic monitoring for early warning of adult respiratory distress syndrome in trauma patients. J Crit Care 2000;15(4):151-9.

Thangathurai D, Charbonnet C, Roessler P et al. Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. Journal of Cardiothoracic & Vascular Anesthesia 1997 Jun;11(4):440-4.

Thomas AN, Ryan J, Doran BR et al. Bioimpedance versus thermodilution cardiac output measurement: the Bomed NCCOM3 after coronary bypass surgery. Intensive Care Medicine 1991;17(7):383-6.

Thomas SH, Crowther A. Impedance cardiography during exercise in patients with coronary heart disease. Eur Heart J 1993 Feb;14(2):150-9.

Thomas SH. Impedance cardiography using the Sramek-Bernstein method: accuracy and variability at rest and during exercise. Br J of Clin Pharmacology 1992 Dec;34(6):467-76.

Trupp RJ, Voegtlin L, Abraham WT et al. Transthoracic impedance cardiography for optimization of inter-ventricular timing during cardiac resynchronization therapy. Annual Scientific Sessions of N Am Soc Pacing and Electrophysiol abstracts. Pacing Clin Electrophysiol 2002;25(4) Pt. II: 609.

van der Meer BJ, Vonk NA, Bax JJ et al. Non-invasive evaluation of left ventricular function by means of impedance cardiography. Acta Anaesthesiol Scand 1999 Feb;43(2):130-4.

van der Meer BJ, de Vries JP, Schreuder WO et al. Impedance cardiography in cardiac surgery patients: abnormal body weight gives unreliable cardiac output measurements. Acta Anaesthesiol Scand 1997 Jun;41(6):708-12.

van der Meer BJ, Woltjer HH, Sousman AM et al. Impedance cardiography. Importance of the equation and the electrode configuration. Intensive Care Medicine 1996 Oct;22(10):1120-4. van der Meer NJ, Vonk NA, Kamp O et al. Noninvasive measurement of cardiac output: two methods compared in patients with mitral regurgitation. Angiology 1999 Feb;50(2):95-101.

van der Meer NJ, Oomen MW, Vonk NA et al. Does impedance cardiography reliably estimate left ventricular ejection fraction? Journal of Clinical Monitoring 1996 Jan;12(1):5-9.

Velmahos GC, Wo CC, Demetriades D et al. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents. Western Journal of Medicine 1998 Jul;169(1):17-22.

Weinhold C, Reichenspurner H, Fulle P, Nollert G, Reichart B. Registration of thoracic electrical bioimpedance for early diagnosis of rejection after heart transplantation. J Heart Lung Transplant 1993;12:832-6.

Weiss S, Calloway E, Cairo J et al. Comparison of cardiac output measurements by thermodilution and thoracic electrical bioimpedance in critically ill versus non-critically ill patients. Am J Emerg Med 1995 Nov;13(6):626-31.

Woltjer HH, Bogaard HJ, Bronzwaer JG et al. Prediction of pulmonary capillary wedge pressure and assessment of stroke volume by noninvasive impedance cardiography. Am Heart J 1997 Sep;134(3):450-5.

Woltjer HH, Bogaard HJ, van der Spoel, de Vries PM. The influence of weight on stroke volume determination by means of impedance cardiography in cardiac surgery patients. Intensive Care Med. 1996a Aug; 22(8):766-71

Woltjer HH, Bogaard HJ, Scheffer GJ et al. Standardization of non-invasive impedance cardiography for assessment of stroke volume: comparison with thermodilution. Br J Anaesth 1996b Dec;77(6):748-52.

Wong DH, Onishi R, Tremper KK et al. Thoracic bioimpedance and Doppler cardiac output measurement: learning curve and inter-observer reproducibility. Crit Care Med 1989; 17(11): 1194-8.

Wong KL, Hou PC. The accuracy of bioimpedance cardiography in the measurement of cardiac output in comparison with thermodilution method. Acta Anaesthesiol Sin 1996 Jun;34(2):55-9.

World MJ. Methods of estimating cardiac output in the field. QJM 1996 Jun;89(6):457-62.

Yakimets J, Jensen L. Evaluation of impedance cardiography: comparison of NCCOM3-R7 with Fick and thermodilution methods. Heart & Lung 1995 May;24(3):194-206.

Young C, Smart FW, Ventura HO. Difficult cases in heart failure: Atrioventricular interval optimization utilizing thoracic electrical bioimpedance. Congest Heart Fail. 1999 Sep-Oct;5(5):235-237.

Young JD, McQuillan P. Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 1993 Jan;70(1):58-62.

Yung GL, Fletcher CC, Fedullo PF et all. Non-invasive cardiac index using bioimpedance in comparison to direct fick and thermodilution methods in patients with pulmonary hypertension. Abstract. Chest 1999 Oct Suppl;116(4):281S.

Zacek P, Kunes P, Kobzova E et al. Thoracic electrical bioimpedance versus thermodilution in patients post open-heart surgery. Acta Medica (Hradec Kralove) 1999;42(1):19-23.

Zemel MB, Gualdoni SM, Sowers JR. Reductions in total and extracellular water associated with calcium-induced natriuresis and the antihypertensive effect of calcium in blacks. Am J Hypertens 1988 Jan;1(1):70-2.

Zerahn B, Jensen BV, Olsen F et al. The effect of thoracentesis on lung function and transthoracic electrical bioimpedance. Respir Med 1999 Mar;93(3):196-201.

Zubarev M, Dumler A, Shutov V et al. Assessment of left ventricular systolic function and diastolic time intervals by the bioimpedance polyrheocardiographic system. Ann N Y Acad Sci 1999 Apr 20;873:191-6.