
NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

NATIONAL WEATHER SERVICE
OFFICE of HYDROLOGIC DEVELOPMENT

Science Infusion Software Engineering Process Group (SISEPG)

Korn and Bash Shell Programming Standards and Guidelines

Version 1.7

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

i

Table of Contents

Table of Contents... i
1. Introduction... 1
2. Shell Internal Documentation ... 2
3. Shell Coding Standards... 2

3.1 Structured and Modularized.. 2
3.2 Indentation .. 2
3.3 Inline Comments... 3
3.4 Coding Style.. 4
3.5 Script Naming ... 5
3.6 Using Paths ... 5
3.7 Variables and Constants.. 6
3.8 Test Statements ... 6
3.9 Reusable Code .. 7

4. Shell Coding Guidelines ... 7
4.1 File Naming .. 7
4.2 Line Length... 7
4.3 Wrapping Lines... 8
4.4 Spacing.. 8
4.5 Variable Declaration and Use ... 8
4.6 Script Output... 9
4.7 Meaningful Error Messages.. 9
4.8 Functions... 9
4.9 The . and source Command .. 10

Appendix A - Header Template.. 11
Appendix B - Example.. 12
References... 13

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

1

1. Introduction
The Office of Hydrologic Development (OHD) produces software which NWS
Weather Forecast Offices (WFOs) and River Forecast Centers (RFCs) use to create
hydrologic forecasts for rivers and streams across the country. OHD also develops and
maintains software which runs centrally to acquire and distribute critical data to the
WFOs and the RFCs. As many other organizations, software has become a critical
component supporting the operations of these forecast offices. Because software plays
such an important role, it is essential that it be well-written and maintained.

The OHD Science Infusion Software Engineering Process Group (SISEPG) is
developing standards and guidelines to ensure that programmers follow good, widely
accepted software development practices when coding. It is believed that this will lead
to well-written and better structured programs.

Well-written software offers many advantages. It should contain fewer bugs and run
more efficiently than poorly written programs. It also makes it easier for a programmer
who was not involved in the development of the software to learn how it works.

Software has a life-cycle. A large part of its life-cycle revolves around maintenance.
Software may exist for many years, even decades. Long after the original programmer
has moved on, the software will require maintenance in the form of bug fixes and
enhancements. The time spent doing this and hence the cost is greatly reduced when
the code is developed and maintained according to software standards.

The Office of Hydrologic Development (OHD) produces shell scripting software mainly
for the following reasons:

1. To make wrappers that can run binary executable programs.
2. To make test procedures for OHD developed software.
3. To run operational software continuously 24/7.
4. To create in-house configuration management systems to develop OHD

executables for each Advanced Weather Interactive Processing System (AWIPS)
release cycle.

5. To create miscellaneous user commands for particular needs that may enhance
system commands.

6. To perform routine maintenance, such as routine purges, clearing log files, etc…

Many of the current scripts have been written with little interaction with peers. Thus
significantly different styles have been used, but they do not necessarily reflect a general
shell scripting standard or guideline. This document is intended to establish standards
and guidelines for shell script coding. These standards and guidelines are intended to add
consistency to coding style and to ensure the code is more readable and maintainable for
future keepers of the code. It is important to note that standards are not fixed, but will
evolve over time. Developers are encouraged to provide comments and feedback to the:

SISEPG (sisepg@gateway2.nws.noaa.gov).

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

2

One further and very important aspect of scripting awareness is that increased coding
with scripts would perpetuate the "Unix Philosophy"‡. Often compiled code becomes
very complex and hard to change when addressing the location of data, the use of
pathnames, the use of GUI interfaces, etc...; scripting can be much easier to handle these
operations and easier to modify. The actual mathematical and science procedures for
forecasting should be isolated in the compiled code in easy to use and maintainable
compiled "chunks", but easily tied together by scripts.

2. Shell Internal Documentation
All shell scripts shall contain an internal documentation header at the top of the script.
Please refer to the standards for internal documentation in the document General
Software Development Standards and Guidelines for further details. In addition to
these general standards, the documentation shall include:

• Usage statement
• List of input, output, and other environment changes:

o Input options/arguments
o Input environment variables
o Input interactive use (standard input)
o Output variables
o Output (or changed) environment variables
o Output to standard out and standard error
o Output of error status

• List of required commands (other scripts or programs) called by this script.
• Additional comments such as algorithm description, references, special usage

warnings, etc…
• List of any known scripts that can execute this script

The header shall be isolated from code and at the top of the script.

3. Shell Coding Standards

3.1 Structured and Modularized
Shell coding is much like compiled language programming in the code can be organized
in structured and modularized fashion. The software engineer shall use structured
techniques, such as coding functions when writing shell scripts. In many cases these
functions may be able to be re-used by other scripts. Code re-use is a very valuable
benefit of structured and modularized coding.

3.2 Indentation
Indentation shall be used to distinguish conditional and control blocks of code. A
minimum of three spaces shall be used to indent. Indenting 3 or 4 spaces is generally

‡ For more information about the “Unix Philosophy” go to http://en.wikipedia.org/wiki/Unix_philosophy

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

3

considered to be adequate. Once the developer has chosen the number of spaces in which
to indent, it is important this indentation amount be consistently used throughout the
script. Consistent indentation will make the script more readable and maintainable
Tabs shall not be used to indent, spaces shall be used.

Bad:

for file in $DIR_LISTING
do
 if [-s $file]
 then
 echo “$file exists and has a size greater than zero”
 else
 echo “$file does not exist OR has a size of zero”
 fi
 done

Better:

for file in $DIR_LISTING
do
 if [-s $file]
 then
 echo “$file exists and has a size greater than zero”
 else
 echo “$file does not exist OR has a size of zero”
 fi
done

NOTE: Special “here-documents” and “cat” commands may require a lack of
indentation.

3.3 Inline Comments
Inline comments shall be included to describe a function, block of code, and important
lines of code. These comments shall be isolated from executable lines by indentation,
blank lines, framing, etc…, so that it’s easy to see the code itself. Whatever style is used
for inline comments, consistency shall be used throughout the code.

Bad:

for file in $DIR_LISTING
do
 if [-s $file]
 then
print the filename and noting the file size is > 0
 echo “$file exists and has a size greater than zero”
 else
print the filename and note the file size = 0
 echo “$file does not exist OR has a size of zero”
 fi
done

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

4

Better:

Loop through the directory listing and print the filename and print a
message noting if the file size is greater than zero or equal to
zero.

for file in $DIR_LISTING
do
 if [-s $file]
 then
 echo “$file exists and has a size greater than zero”
 else
 echo “$file does not exist OR has a size of zero”
 fi
done

3.4 Coding Style
A coding style should be developed with a pattern that is consistent throughout the code,
so others will know what to expect when reviewing the code.

When modifying code by another author, identify the style and ensure the style continues.
In the following example note the inconsistent style of the if-then and if-then-else
statements.

Bad:
for file in $DIR_LISTING
do
 if [-s $file];then
 echo “$file exists and has a file size greater than zero”
 if [“$file” = “process.log”]
 then
 mv process.log process.log.old
 elif [“$file” = “backup.log”]
 then
 mv backup.log backup.log.old
 else
 cp $file $file.bak
 fi else
 echo “$file does not exist OR has a file size of zero”
 fi
done

Better:
for file in $DIR_LISTING
do
 if [-s $file]
 then
 echo “$file exists and has a file size greater than zero”
 if [“$file” = “process.log”]
 then
 mv process.log process.log.old

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

5

 elif [“$file” = “backup.log”]
 then
 mv backup.log backup.log.old
 else
 cp $file $file.bak
 fi
 else
 echo “$file does not exist OR has a file size of zero”
 fi
done

3.5 Script Naming
When naming a script, mnemonic names shall be used. Short names should be avoided,
as short names may be used in future operating system releases. Use the “whereis” or
“man” command on the intended script name to make sure the name is not already used
by the operating system.

Bad:
Run_dec

Better:

Run_decoders

Bad:

Cl_logs

Better:

Clear_logfiles

Bad:

cr_bak

Better:

create_backups

3.6 Using Paths
Using paths to other scripts, binary files, or data files may be necessary in scripts,
especially if the script is initiated by crontab. If pathnames are needed, define them once
as a variable near the top of the executable portion of the script and reference this path
variable where necessary. For example a path to Java may be needed. If so, one can
define as follows:

JAVA_HOME=/usr/java/jdk/bin

Then somewhere within the script, the Java program may be run by executing:

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

6

$JAVA_HOME/java theClass

If and when files are moved to other directories, modifying the script to reflect the change
becomes an easier task when using variables for paths.

3.7 Variables and Constants
Variables and constants shall be assigned in a variable and constant section near the top
of the script. If the script spawns a child process which needs any of these variables,
EXPORT should be used to make these variables available to the child process.
EXPORT $JAVA_HOME=/usr/java/jdk/bin

All variables should be initialized even though scripts do not require that they be
initialized. Multiple variables shall NOT be assigned on the same line. Doing so will
reduce readability and the script may not be portable.

Bad:

name=”Suzy” age=22 occupation=”student”

echo "My name is $name, I am $age years old, and I am a $occupation"

Better:
name=”Suzy”
age=22
occupation=”student”

echo "My name is $name, I am $age years old, and I am a $occupation"

3.8 Test Statements
Double quotes should be used on all string variables in test statements. This is absolutely
necessary if a variable is undefined or null.

Not so good:

if [$HOST = “lx1”]
then
 statement 1
 statement 2

 statement n
fi

Better:

if [“$HOST” = “lx1”]
then
 statement 1
 statement 2

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

7

 statement n
fi

3.9 Reusable Code
Code which is repeated in more than one shell script shall be put into its own file/script.
This new script can then be called by any scripts which need this functionality. If the
new script is called using the “.” or “source” command, the environment variables from
the calling script will be maintained.

Consolidating repetitious code into a single file/script will reduce overall lines of code
and make the code easier to maintain.

4. Shell Coding Guidelines

4.1 File Naming
A highly consistent naming convention for scripts should be used. A project with many
scripts should have a common prefix. Adding .bash or .ksh could prove to be a useful
extension to a filename.

 A few examples of a naming convention are listed below:

1. Scripts created for testing could end with the suffix “_testit”. For example, a
script built or modified to test the execution a decoder could be named
run_decoder_testit.

2. The main commands that run binary executables could have the prefix “run_”
3. A convention commonly used in OHD is naming scripts by how they are initiated.

The scripts which are initiated by cron use the prefix “run_” whereas scripts
started manually use the prefix “start_”.

4.2 Line Length
It is considered good practice to keep the lengths of source code lines at or below 80
characters. Lines longer than this may not be displayed properly on some terminals and
could be difficult to print.

Bad:
find /users/hads/shef_reports/abrfc/delivered/via_ftp –name ‘*’ –mtime
+0 –print –exec rm{} \;

NOTE: The command above should be considered on one line, the word processor causes
the long line to wrap and continue on the next line.

Better:
FTP_DIR=/users/hads/shef_reports/abrfc/delivered/via_ftp

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

8

find $FTP_DIR –name ‘*’ –mtime +0 –print –exec rm{} \;

4.3 Wrapping Lines
When a statement cannot fit on a single line, a backslash (\) should be used that will
allow the statement to continue on the next line. The following principles should be
applied:

• break after comma
• break after operator
• prefer high level breaks to low level breaks
• break after switch input
• align the new line with the beginning of the expression from the previous line

Bad:
find /users/hads/shef_reports/abrfc/delivered/via_ftp –name ‘*’ –mtime
+0 –print –exec rm{} \;

NOTE: The command above should be considered on one line, the word processor causes
the long line to wrap and continue on the next line.

Better:
find /users/hads/shef_reports/abrfc/delivered/via_ftp –name ‘*’ \
 –mtime +0 -print –exec rm{} \;

4.4 Spacing
The proper use of spacing within the code can enhance the readability of a script. Good
rules of thumb are as follows:

• a keyword followed by parenthesis should be separated by a space
• a blank space should follow each comma in an argument list

4.5 Variable Declaration and Use
Variables shall have mnemonic or meaningful names that convey to a casual observer,
the intent of its use. Global and exported variables should be in uppercase. All variables
should be defined near the top of the script and shall be initialized prior to its first use.
Variable names should basically follow the same rules as C.

A consistent style for input, output, local, and index variables should be used, especially
when using mixed case and underscores since keywords use lowercase letters.

If variables are related, a common prefix or suffix should be used to show the
relationship. Variables that store directory names could have the prefix or suffix “Dir” or
“DIR”. Variables that store filenames could have the prefix of suffix “Fil” or “FIL”.
Variables that store full pathnames could have the prefix or suffix “Pth” or “PTH”.

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

9

For scripts that call each other, using similar variable names should be considered.

4.6 Script Output
The “echo” or “printf” statement should be used when outputting data from a Korn or
Bash shell script. The “print” statement is not available in Bash and many Korn scripts
may be executed as a bash script.

4.7 Meaningful Error Messages
Inevitably scripts will fail for one reason or another. It is important that the developer
take the time to handle errors and output meaningful error messages. The error messages
should indicate what problem occurred, where it occurred, and possibly the time when it
occurred.

When running scripts from crontab, the developer should try to capture the output from
the script to a log file. Using the redirection character “>” followed by filename will
allow the standard output to be captured to a file.

Example:

 my_script > my_script.out

To also capture the output for standard error, use “2>” followed by a filename. Example:

 my_script > my_script.out 2> my_script.err

To capture all output to one file, use “2>&1”. Example:

 my_script > my_script.out 2>&1

NOTE: If the output files are not specified in crontab, the output will be captured in a
system e-mail and mailed to the user. A further note, there may be cases when the output
from a script is NOT needed due the amount of output OR the frequency in which the
script runs. When this case is encountered, the coder may choose to send all output to
/dev/null. Doing this prevents the unnecessary use of disk space for storing the output.

4.8 Functions
When writing a script, structured programming techniques should be used. Scripts like
other source code should be modularized, making use of function calls.

Functions should be short and written to accomplish a task or small set of related tasks.

Functions can be written using any of the following syntaxes:

function purge_files {

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

10

 statement
}

purge_files () {
 statement
}

function foo
{
 statement
}

Multiple scripts with the same sets of code should be avoided. The code should be
modularized by making separate command or function scripts; or by making code sets in
separate files that will run when inserted with a “.” or “source” command.

4.9 The . and source Command
Using the “.” (dot) or “source” command is an efficient way to include sets of code into
multiple scripts. For example, a rather large list of variables, common to many scripts, is
a good candidate for a separate file to include with the “.” or “source” command.

For example a list of PostgreSQL variables common to many scripts:

export PGUSER=jsmith
export PGHOST=`hostname -s`
export PGTZ=GMT
export PGLIB=/usr/share/pgsql
export PGDATA=/var/lib/pgsql
export PGDATABASE=hydro
export PGPORT=5432

can be placed in a file called postgres_env in the scripts directory of jsmith. The scripts
requiring these variables can load these variables by including:

. /home/jsmith/scripts/postgres_env

The source command can work in a similar fashion in bash only:

source /home/jsmith/scripts/postgres_env

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

11

Appendix A - Header Template

#==
SCRIPT NAME:
ORIGINAL AUTHOR(S):
CREATION DATE:
DEVELOPMENT GROUP:
DESCRIPTION:

USAGE:
COMMAND LINE ARGUMENTS:
Name Type Description

INITIATED BY:

INITIATES/CALLS:

REQUIRED FILES/DATABASES:
GLOBAL VARIABLES:
Name Type Description

LOCAL VARIABLES:
Name Type Description

SCRIPT INPUT:

SCRIPT OUTPUT:

EXIT or RETURN CODES:

FUNCTIONS IN THIS FILE:

#==

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

12

Appendix B - Example

#==
SCRIPT NAME: purge_files
ORIGINAL AUTHOR: John Smith
CREATION DATE: 3-21-2006
DEVELOPMENT GROUP: HSEB
DESCRIPTION:

This script will purge files older than 24 hours.

USAGE: purge_files

COMMAND LINE ARGUMENTS: NONE

INITIATED BY: crontab

INITIATES/CALLS: NONE

REQUIRED FILES/DATABASES: NONE

GLOBAL VARIABLES: NONE

LOCAL VARIABLES:
Name Type Description
SYSTEM string The hostname of the machine

SCRIPT INPUT: NONE

SCRIPT OUTPUT: Output from system commands

EXIT OR RETURN CODES: NONE

FUNCTIONS IN THIS FILE: NONE

#==

SYSTEM=`hostname –s`

Purge files by system.

if [“$SYSTEM” = “lx1”]
then
 cd ~/data
 find . -name '*' -mtime +0 -print -exec rm {} \;
 cd ~/rawdata
 find . -name '*' -mtime +0 -print -exec rm {} \;
elif [“$SYSTEM” = “lx2”]
then
 cd ~/data1
 find . -name '*' -mtime +0 -print -exec rm {} \;
else
 echo “Script cannot purge files on $SYSTEM”
fi

NOAA National Weather Service NWS/OHD
Korn and Bash Shell Programming Standards and Guidelines

 Version 1.7
 1/3/2007

13

References
• Unix in a Nutshell, O’Reilly
• Linux in a Nutshell, O’Reilly

