
National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
 

 
NATIONAL WEATHER SERVICE 
OFFICE of HYDROLOGIC DEVELOPMENT 

 
 
 

 
 
 
 

Science Infusion Software Engineering Group (SISEPG) 
JAVA Programming Standards and Guidelines 

 
Version 2.0 

 

  Version 2.0 
  3/28/2008 



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

Revision History 
 

Date Version Description Author 

03/30/2007 1.9 Initial Version  SISEPG 

03/28/2008 2.0 Introduced Allman style of bracing.  The “One 
True Bracing Style (OTBS) is now correctly 
linked to Kernighan and Ritchie style of 
bracing.  

Added section 2.5 

SISEPG 

    

    

    

 
 

  Version 2.0 
  3/28/2008 



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
 

 
Revision History ................................................................................................................. 2 
1 Introduction................................................................................................................. 1 

1.1 Acknowledgments............................................................................................... 2 
2 Standards..................................................................................................................... 2 

2.1 File Names .......................................................................................................... 2 
2.3 Indentation .......................................................................................................... 2 
2.3 Braces {}............................................................................................................. 2 
2.4 File Organization ................................................................................................ 3 

2.4.1 Java Source Files ........................................................................................ 3 
2.4.2 Package and Import Statements .................................................................. 4 
2.4.3 Class and Interface Declarations................................................................. 4 

2.5 Using Doc Comments to Create Documentation Block ..................................... 5 
2.5.1 Class or Interface Doc Comments .............................................................. 6 
2.5.2 Method Doc Comments .............................................................................. 6 

3 Guidelines ................................................................................................................... 7 
3.1 Line Length......................................................................................................... 7 
3.2 Wrapping Lines................................................................................................... 7 
3.3 Comments ........................................................................................................... 9 

3.3.1 Block Comments....................................................................................... 10 
3.3.2 Single-Line Comments ............................................................................. 10 
3.3.3 Trailing Comments ................................................................................... 11 
3.3.4 End-Of-Line Comments............................................................................ 11 

3.4 Declarations ...................................................................................................... 11 
3.4.1 Number per Line ....................................................................................... 11 
3.4.2 Initialization .............................................................................................. 12 
3.4.3 Placement.................................................................................................. 12 

3.5 Class and Interface Declarations....................................................................... 13 
3.6 Statements ......................................................................................................... 13 

3.6.1 Simple Statements..................................................................................... 13 
3.6.2 Compound Statements .............................................................................. 13 
3.6.3 Return Statements ..................................................................................... 14 
3.6.4 if, if-else, if else-if else Statements........................................................... 14 
3.6.5 for Statements ........................................................................................... 14 
3.6.6 while Statements ....................................................................................... 14 
3.6.7 do-while Statements.................................................................................. 15 
3.6.8 switch Statements ..................................................................................... 15 
3.6.9 try-catch Statements.................................................................................. 15 

3.7 White Space ...................................................................................................... 16 
3.7.1 Blank Lines ............................................................................................... 16 
3.7.2 Blank Spaces............................................................................................. 16 

3.8 Naming Conventions ........................................................................................ 17 
3.8.1 Packages.................................................................................................... 17 
3.8.2 Classes ...................................................................................................... 18 

  Version 2.0 
  3/28/2008 

i



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

3.8.3 Interfaces................................................................................................... 18 
3.8.4 Methods .................................................................................................... 18 
3.8.5 Class Variables or Attributes .................................................................... 18 
3.8.6 Method Variables...................................................................................... 18 
3.8.7 Constants................................................................................................... 19 

3.9 Programming Practices ..................................................................................... 19 
3.9.1 Providing Access to Instance and Class Variables ................................... 19 
3.9.2 Referring to Class Variables and Methods ............................................... 19 
3.9.3 Constants................................................................................................... 19 
3.9.4 Variable Assignments ............................................................................... 20 
3.9.5 Parentheses................................................................................................ 20 
3.9.6 Code Commented Out............................................................................... 20 

References......................................................................................................................... 22 

  Version 2.0 
  3/28/2008 

ii



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

1 Introduction 
The Office of Hydrologic Development (OHD) develops and maintains software which 
the National Weather Service (NWS) Weather Forecast Offices (WFOs) and River 
Forecast Centers (RFCs) use to generate hydrologic forecasts and warnings for rivers and 
streams across the country.  OHD also develops and maintains software which runs 
centrally to acquire and distribute critical data to the WFOs and the RFCs.  Software 
development and maintenance has become a critical component supporting the operations 
of NWS forecast offices and it is essential that it be well written and maintained. 
 
Well written software offers many advantages.  It will contain fewer bugs and will run 
more efficiently than poorly written programs.  Since software has a life cycle and much 
of which revolves around maintenance, it will be easier for the original developer(s) and 
future keepers of the code to maintain and modify the software as needed. This will lead 
to increased productivity of the developer(s). 
 
The OHD Science Infusion Software Engineering Process Group (SISEPG) has 
developed standards and guidelines to ensure that developers follow good and widely 
accepted software development practices when coding.  It is believed this will lead to 
well written and better structured programs, which must be simple, intuitive, and 
uniform. The overall cost of the software is greatly reduced when the code is developed 
and maintained according to software standards. 
 
This document will present standards and guidelines for the Java Programming 
Language. The Java standards are programming techniques which OHD developers are 
expected to follow to assist them in writing high quality software.  The Java standards 
will be enforced through peer reviews and code walkthroughs.  The Java guidelines are 
good programming practices that developers are encouraged to adopt.  
 
The developer should also read the OHD General Software Development Standards and 
Guidelines document to become familiar with the standards and guidelines deemed by 
the SISEPG to be applicable to all programming languages. 
  
It is important to note that standards are not fixed, but will evolve over time.  Developers 
are encouraged to provide feedback to the SISEPG (sisepg@gateway2.nws.noaa.gov). 
Also each project area may derive its own standards and guidelines if special 
requirements are desired.  Finally, the developers are to follow the "OHD General 
Software Development Standards and Guidelines" except where specified in this 
document.  
 
 
. 
 

  Version 2.0 
  3/28/2008 

1

mailto:sisepg@gateway2.nws.noaa.gov


National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
1.1 Acknowledgments 
This document follows a very similar format to the Java Code Conventions document 
from Sun Microsystems.  Much of the text has been taken word for word from that 
document, but some of it was altered to suit the needs of the OHD.  The idea is to use 
most of the recommended conventions by Sun Microsystems.  This will better enable 
future Java programmers in writing and maintaining OHD code. 

2 Standards 

2.1 File Names  
 
File Type   Suffix 
Java Source   .java 
Java Bytecode   .class 

2.3 Indentation 
Three or four spaces shall be used as the unit for indentation and whichever is used, the 
developer shall be consistent. Do not use tabs. 

2.3 Braces {} 
There are two acceptable styles of bracing.  The first and preferred style is known as the 
“Allman” Style”.  The “Allman” style places the open brace ‘{‘ on the it’s own line and 
before a block of code.  The second is the older Kernighan and Ritchie style (a.k.a “One 
True Bracing Style or OTBS” ) which places the open brace on the same line of the 
statement that begins a block of code. Both styles will be show in this section, but only 
the “Allman” will be shown in examples in subsequent sections of this document.   

Examples of the preferred “Allman”: 
 
if ( condition1 )  
{ 
    doSomethingAboutIt(); 
} 
 
if ( condition1 ) 
{ 
    doThis(); 
} 
else  
{ 
    doThat(); 
} 
 
 
for ( i = 0; i < 10; i++ )  
{ 
    initializeThese(); 
} 
 
 

  Version 2.0 
  3/28/2008 

2



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
 
while ( i < 10 ) 
{ 
    initializeThese(); 
} 
 
do  
{ 
    initializeThese(); 
} 
while ( i < 10 ); 
 
Examples of Kernighan and Ritchie Style (or OTBS): 
 
if ( condition1 ) { 
    doSomethingAboutIt(); 
} 

 
if ( condition1 ) { 
    doThis(); 
} 
else { 
    doThat(); 
} 
 
 
for ( i = 0; i < 10; i++ ) { 
    initializeThese(); 
} 
 
while ( i < 10 ) { 
    initializeThese(); 
} 
 
do { 
    initializeThese(); 
} while ( i < 10 ); 
 

Although the “Allman” style is preferred, consult the project leader to verify the bracing 
style being used on a particular project. 
 
Whichever bracing style is used, the developer must be consistent throughout a program. 
 When editing existing code, the developer must adopt the bracing style already in use.  

2.4 File Organization 
A file consists of sections that should be separated by blank lines and optional comments 
identifying each section. A section is considered to be any of the following: 
beginning comments, Package and Import Statements, and Class and Interface 
Declarations (which include variable declarations, constructors, and methods). 
 
Files longer than 2000 lines are cumbersome and should be avoided. 

2.4.1 Java Source Files 
Each Java source file contains a single public class or interface.  When private classes 

  Version 2.0 
  3/28/2008 

3



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
and interfaces are associated with a public class, the developer can put them in the same 
source file as the public class.  The public class should be the first class or interface in the 
file.        
               
Java source files have the following order: 
 

a. Beginning comments should use OHD standards which will apply to all 
languages, though Javadoc comment syntax will be used. 

b. Package and import statements. 
c. Class and interface declarations. 

2.4.2 Package and Import Statements 
The first non-comment line of most Java source files is a package statement.  After that 
comes the import statement. For example: 
 

package java.awt; 
 
import java.awk.per.CanvasPeer; 

 

2.4.3 Class and Interface Declarations 
The class or interface declaration should be in the following order: 
 

1. Class/interface documentation comment (/**...*/) 
 

NOTE: For more information see “How to Write Doc Comments for Javadoc” at 
 
 http://java.sun.com/products/jdk/javadoc/writingdoccomments.html. 
 
  For more information about doc comments and java doc: 

  http://java.sun.com/products/jdk/javadoc
 

2. Class or interface statement 
 

3. Class/interface implementation comment 
(/*...*/), if necessary. 
 
NOTE: This comment should contain any class-wide or interface-wide  
information that was not appropriate for the class/interface documentation  
comment. 

  Version 2.0 
  3/28/2008 

4

http://java.sun.com/products/jdk/javadoc/writingdoccomments.html
http://java.sun.com/products/jdk/javadoc


National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
 

4. Class (static) variables 
 

Declared in the following order:  
• the public class variables 
• the protected class variables 
• the package level (no access modifier) 
• the private class variables. 

 
5. Instance variables 

 
Declared in the following order:   

• the public instance variables 
• the protected instance variables 
• the package level (no access modifier) 
• the private instance variables. 

 
6. Constructors 

 
7. Methods 

 
NOTE: These methods should be grouped by functionality rather than by scope or 
by accessibility.  For example, a private class method can be in between two 
public instance methods.  The goal is to make reading and understanding the code 
easier. 
 

2.5 Using Doc Comments to Create Documentation Block 
 
The General Standards and Guidelines state that each file should have a documentation 
block as well as each module within the file.  In Java, this translates to each Java class 
and interface should have a documentation block as well as each method.  Rather than 
using the typical comment (block, single line) for this documentation block, the 
developer shall use ‘doc’ comments.  This allows the current or any future developer to 
run the Javadoc program to produce API documentation in HTML format.   
 
The next couple of sections will define what is required to be documented.  It is 
important to note brackets are used to denote what the user is to enter.  The brackets are 
not to actually appear in the ‘doc’ comments.  It is also important to note that some block 
tags, such as @param, @author, @exception may have multiple entries.  Finally there are 
more block tags that are available (see 
http://java.sun.com/j2se/javadoc/writingdoccomments/ ), but if they don’t appear in the 
next couple sections, they are considered optional and should be used as needed. 
 

  Version 2.0 
  3/28/2008 

5

http://java.sun.com/j2se/javadoc/writingdoccomments/


National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
2.5.1 Class or Interface Doc Comments 
 
All classes and interfaces shall have the following preceding the class or interface: 
 
/** 
 * [Description of the class/interface] 
 * @author [name] 
 */ 
  

2.5.2 Method Doc Comments 
 
All methods, with the exception of well-named “getters” and “setters” shall have the 
following doc comments: 
 
/** 
 * [Description of method, including any files or database tables 
 *  which may be required by the code] 
 * @param [name] [description of parameter passed] 
 * @return [what] [description of what is return and possibly why] 
 * @throws [exception type] 
 */ 
 
NOTE:  Omit @return for methods that return void and for constructors.  Omit 
@throws if method doesn’t throw any exceptions. 
 
Well-named “getters” and “setters” can be subjective, but listed below are few examples 
of some well-named and poorly named “getters” and “setters”. 
 
Examples of well-named “getters” and “setters”: 
 
void setMaximumAllowedComponents(int maxComponentCount);  
int getMaximumAllowedComponents();  
String getPhysicalElementCode();  
 
Examples of poorly-named “getters” and “setters”: 
 
setMax(); //max of what ?  
setMaximum(); //maximum of what?  
getMax(); //max of what?  
 
setCount(int count); //count of what?  
int getCount();  
 
String getCode(); //what kind of code are we talking about? 

  Version 2.0 
  3/28/2008 

6



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
3 Guidelines 

3.1 Line Length 
When practical, avoid using lines longer than 80 characters since they are not handled 
well by many terminals and tools.  When the line length must exceed 80 characters, be 
sure it does not exceed 120 characters.  Examples for use in documentation should have a 
shorter length, with no more than 70 characters. 

3.2 Wrapping Lines 
When an expression does not fit on a single line, it should be broken according to these 
general principles: 
 

• Break after a comma. 
• Break after an operator. 
• Prefer higher-level breaks to lower-level breaks. 
• Align the new line with the beginning of the expression at the same level as the 

previous line. 
• If the above rules lead to confusing code or to code that is squished up against the 

margin, indent 8 spaces instead. 
 
Here are some examples of breaking method calls: 
 
someMethod (longExpression1, longExpression2, longExpression3, 
            longExpression4, longExpression5);   
 
var = someMethod1 (longExpression1, 
                   someMethod2(longExpression2,longExpression3) ); 
 
The following examples are of breaking an arithmetic expression.  The first is preferred, 
since the break occurs outside the parenthesized expression, which is at a higher level. 
      
Prefer: 
 
longName1 = longName2 * (longName3 + longName4 - longName5) + 
            4 * longName6;  
 
 
Avoid: 
 
longName1 = longName2 * (longName3 + longName4 - 
            longName5) + 4 * longName6;  
 
The following are two examples of indenting method declarations.  The first is the 
conventional case.  The second would shift the second and third lines to the far right if it 
used convention indentation.  Therefore indent only 8 spaces. 
 
// CONVENTIONAL INDENTATION 
 
someMethod (int anArg, Object anotherArg, String yetAnotherArg, 

  Version 2.0 
  3/28/2008 

7



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
            Object andStillAnother)  
{ 
... 
} 
 
//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS 
 
private static synchronized aLongMethodName (int anArg, 
        Object anotherArg, String yetAnotherArg, 
        Object andStillAnother)  
{ 
... 
} 
 
When line wrapping occurs with if statements and the bracing style used is Kernighan 
and Ritchie, ensure the body of the if-statement is easily seen.  For example: 
 
//NOT SO GOOD 
 
if ((condition1 && condition2) || 
    (condition3 && condition4) || 
    !(condition5 && condition6)) {  
    doSomethingAboutIt ();         //MAKES THIS LINE EASY TO MISS 
} 

  Version 2.0 
  3/28/2008 

8



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

 
//INSERTING A BLANK LINE AFTER THE IF MAKES THE 
//BODY OF THE IF MORE EASILY SEEN 
 
if ((condition1 && condition2) || 
    (condition3 && condition4) || 
    !(condition5 && condition6)) { 
 
    doSomethingAboutIt () 
} 
 
When using the “Allman” style of bracing, this same line is easier to see.  This is an 
advantage of using the “Allman” style. 
 
//SAME CODE USING THE ONE-TRUE-BRACING-STYLE 
 
if ((condition1 && condition2) ||  
    (condition3 && condition4) || 
    !(condition5 && condition6))  
{ 
    doSomethingAboutIt ();            
} 
 

3.3 Comments 
Java programs can have two kinds of comments: 1) implementation comments; and 2) 
documentation comments.  Implementation comments are those found in C and C++, 
which are delimited by /*...*/, and //.  Documentation comments (known as doc 
comments) are Java-only, and are delimited by /**...*/.  Doc comments can be extracted 
to HTML files using the javadoc tool. 

Implementation comments are meant for commenting out code or for comments about the 
particular implementation.  Doc comments are meant to describe the specification of the 
code, from an implementation-free perspective to be read by developers who might not 
necessarily have the source code at hand. 
 
Comments should be used to give overviews of code and provide additional information 
that is not readily available in the code itself.  Comments should contain only information 
that is relevant to the program.  For example, information about how the corresponding 
package is built or in what directory it resides should not be included as a comment.  
 
Discussion of nontrivial or non obvious design decisions is appropriate, duplicating 
information that is present in (and clear from) the code should be avoided.  It is too easy 
for redundant comments to get out of date.  In general, avoid any comments that are 
likely to get out of date as the code evolves.  

Programs can have four styles of implementation comments: block, single-line, trailing 
and end-of-line.  

 

  Version 2.0 
  3/28/2008 

9



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
3.3.1 Block Comments  

Block comments are used to provide descriptions of files, methods, data structures, and 
algorithms.  Block comments may be used at the beginning of each file and before each 
method.  They can also be used in other places, such as within methods.  Block 
comments inside a function or method should be indented to the same level as the code 
they describe.  
 
A block comment should be preceded by a blank line to set it apart from the rest of the 
code.  
 
/* 
 * Here is a block comment. 
 */ 
 
Block comments may also use // at the beginning of the lines.  Example: 
 
// Here is the first line of a block comment. 
// Here is the second line. 
 
Block comments can start with /*-, which is recognized by indent (1) as the beginning of 
a block comment that should not be reformatted. Example:  
 
/*-  
 * Here is a block comment with some very special  
 * formatting that I want indent(1) to ignore.  
 *  
 * one  
 *     two 
 *         three 
 */ 

 

Note: If you do not use indent (1), you do not have to use /*- in your code or make any 
other concessions to the possibility that someone else might run indent(1) on your code.  

3.3.2 Single-Line Comments  
Short comments can appear on a single line indented to the level of the code that follows. 
If a comment cannot be written in a single line, it should follow the block comment 
format (see section 3.3.1).  A single-line comment should be preceded by a blank line. 
Here is an example of a single-line comment in Java code:  

 
if (condition)  
{ 
 
    /* Handle the condition. */ 
    ... 
    // Or you can use this format for a single line comment. 
 
} 
 

  Version 2.0 
  3/28/2008 

10



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
3.3.3 Trailing Comments  
Very short comments can appear on the same line as the code they describe, but should 
be shifted far enough to separate them from the statements.  If more than one short 
comment appears in a chunk of code, they should all be indented to the same column.  
 
Here is an example of a trailing comment in Java code:  
 
if ( (a % 2) == 2 )  
{ 
    return TRUE;          /* special case */ 
}  
else  
{ 
    return isPrime(a);    /* works only for odd a */ 
}  
 

3.3.4 End-Of-Line Comments  
The // comment delimiter can comment out a complete line or only a partial line.  
The following example shows complete line comments as well as partial line comments. 
 
// This code has been commented out and replaced with the code 
// code to follow. This code can be deleted is 3 months if still 
// not applicable. 
// 
//if (a == 0) 
//{ 
//    doThis(); 
//} 
 
if ( (a == 0) && ( b == 1 ) ) 
{ 
    doSomething(); 
} 
else 
{ 
    doThat();     // rare case 
} 

3.4 Declarations 

3.4.1 Number per Line  

One declaration per line is recommended since it encourages commenting.  In other 
words,  

 
int level = 1;  // indentation level 
int size = 50;  // size of table 
 
is preferred over  
 
int level = 50, size = 50; 
 

  Version 2.0 
  3/28/2008 

11



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
Both are acceptable, but be consistent throughout your code.  Do not put different types 
on the same line. Example:  
 
int foo, fooarray[]; //WRONG! 
 

3.4.2 Initialization  
Local variables should be initialized where they are declared.  The only reason not to 
initialize a variable where it is declared is if the initial value depends on a needed 
computation that must occur to establish that initial value. 

3.4.3 Placement  
Declarations should only be put at the beginning of blocks.  (A block is any code 
surrounded by curly braces “{“and “}”).  Do not wait to declare variables until their first 
use; it can be confusing.  
 
void myMethod()  
{ 
    int int1 = 0;              // beginning of method block 
 

          if (condition)  
          { 
         int int2 = 0;          // beginning of "if" block 
         ...     
          } 
 } 

 
The one exception to the rule is indexes of for loops, which in Java can be declared in the 
“for statement”:  
 
for (int i = 0; i < maxLoops; i++) { ... } 
 
Avoid local declarations that hide declarations at higher levels. For example, do not 
declare the same variable name in an inner block:  
 
int count; 
... 
void myMethod()  
{ 
    if (condition)  
    { 
        int count; // AVOID! 
        ... 
    } 
    ... 
} 

  Version 2.0 
  3/28/2008 

12



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

 

3.5 Class and Interface Declarations  
When coding Java classes and interfaces, the following formatting rules should be 
followed:  

• No space between a method name and the parenthesis “(“ starting its parameter 
list  

• Open brace “{“ appears at the end of the same line as the declaration statement or 
on the following line when using the “One True Bracing Style”. 

• Closing brace “}” starts a line by itself indented to match its corresponding 
opening statement, except when it is a null statement the “}” should appear 
immediately after the “{“ 

 
class Sample extends Object  
{ 

      int ivar1 = 0; 
      int ivar2 = 0; 
 
      Sample(int i, int j)  
      { 
          ivar1 = i; 
          ivar2 = j; 
      } 
 
      int emptyMethod()  
      { 
      } 
      ... 
} 
 

• Methods are separated by at least 2 blank lines.  

3.6 Statements  

3.6.1 Simple Statements  
Each line should contain at most one statement.  Example:  
 
argv++; // Correct 
argc++; // Correct 
argv++; argc--; // AVOID! 
 

3.6.2 Compound Statements  
Compound statements are statements that contain lists of statements enclosed in braces 
“{statements}”.  See the following sections for examples.  
 

• The enclosed statements should be indented one additional level than the 
compound statement.  

• The opening brace should be on its own line at the same level of indentation as 

  Version 2.0 
  3/28/2008 

13



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

the beginning of the compound statement (preferred Allman style) or at the end of 
the line that begins the compound statement (OTBS); the closing brace should 
begin a line and be indented to the beginning of the compound statement.  

• Braces are used around all statements, even single statements, when they are part 
of a control structure, such as an “if-else” or “for statement”.  This makes it easier 
to add statements without accidentally introducing bugs due to forgetting to add 
braces. 

3.6.3 Return Statements 
A return statement with a value should not use parentheses unless they make the return 
value more obvious in some way.  Example:  
 
return; 
return length; 
r
 
eturn myDisk.size(); 

3.6.4 if, if-else, if else-if else Statements 
     
All ‘if’ statements should use braces, whether using the preferred “Allman” or the 
Kernighan and Ritchie style.  The following error-prone form (no braces) should be 
avoided: 
 
if (condition)  
    statement; 
 

3.6.5 for Statements  
 
An empty for statement (one in which all the work is done in the initialization, condition, 
and update clauses) should have the following form:  
 
for (initialization; condition; update);  
 
When using this form, be sure to comment what is being done in this empty for 
statement. 

 
When using the comma operator in the initialization or update clause of a “for 
statement”, avoid the complexity of using more than three variables.  If needed, use 
separate statements before the “for loop” (for the initialization clause) or at the end of the 
loop (for the update clause).  

3.6.6 while Statements  
As with the ‘if’ statement, the while statement should also use braces, unless it is an 
empty while statement.  Empty while statements should have the following form:  
 
while (condition); 
 

  Version 2.0 
  3/28/2008 

14



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
When using an empty while statement, be sure to comment what the code is doing and 
why an empty while statement was used. 

3.6.7 do-while Statements  

A do-while statement should have the following form:  

 
do  
{      
    statements;  
} while (condition);  

 
An alternative form is: 
 
do { 
    statements; 
}  
while (condition); 

3.6.8 switch Statements  
A switch statement should have the following form: 
 
switch (condition)  
{ 
    case ABC: 
        statements; 
        /* falls through */ 
    case DEF: 
        statements; 
        break; 
    case TUV: 
    case XYZ: 
        statements; 
        break; 
    default: 
        statements; 
        break; 
} 
 
Every time a case falls through (does not include a break statement), a comment should 
be added where the break statement would normally be. This is shown in the preceding 
code example with the /* falls through */ comment.  Also note the case where TUV or 
XYZ will execute the same block of statements and that each case is on its own line.  Do 
NOT place multiple case statements on the same line. 
 
Every switch statement should include a default case.  The break in the default case is 
redundant, but it prevents a fall-through error if later another case is added. 
 

3.6.9 try-catch Statements 
A try-catch statement is a good way to handle exceptions thrown when executing the 
code.  A try-catch statement should have the following format:  

  Version 2.0 
  3/28/2008 

15



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
try  

{ 
    statements; 
}  
catch (ExceptionClass e)  
{ 
    statements; 
} 
 
A try-catch statement may also be followed by “finally”, which executes regardless of 
whether or not the “try block” has completed successfully. 
 
try  
{ 
    statements; 
}  
catch (ExceptionClass e)  
{ 
    statements; 
}  
finally  
{ 
    statements; 
} 

3.7 White Space 

3.7.1 Blank Lines  
Blank lines improve readability by setting off sections of code that are logically related.  
 
Two or more blank lines should always be used between methods. 
 
One blank line should always be used in the following circumstances:  
 

• Between the local variables definitions in a method and its first statement. 
• Before a block (see section 3.3.1) or single-line (see section 3.3.2) comment. 
• Between logical sections inside a method to improve readability. 
• After a comment, before the next statement. 
• Before and after a control structure 

 

3.7.2 Blank Spaces 
Blank spaces should be used in the following circumstances:  
 

• A keyword followed by a parenthesis should be separated by a space. Example: 
 
 while (true) 
      { 
      ... 
 } 
 

  Version 2.0 
  3/28/2008 

16



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

• A blank space should appear after commas in the argument lists.  

• All binary operators except for (.) should be separated from their operands by 
spaces.  Blank spaces should never separate unary operators such as unary minus, 
increment (“++”), and decrement (“--“) from their operands.  

           Example: 
 

a += c + d; 
a = (a + b) / (c * d); 
 
while (d++ = s++){ 
    n++; 
} 
 
printSize ("size is " + foo + "\n"); 
 

• The expressions in a “for” statement should be separated by blank spaces. 
Example:  

 
for (expr1; expr2; expr3) 
 

3.8 Naming Conventions  
Naming conventions make programs more understandable by making them easier to read. 
They can also give information about the function of the identifier for example, whether 
it’s a constant, package, or class which can be helpful in understanding the code.  

3.8.1 Packages 
The prefix of a unique package name is always written in all-lowercase ASCII letters and 
commonly has one of the top-level domain names like com, edu, gov, mil, net, org, or 
one of the English two-letter codes identifying countries as specified in ISO Standard 
3166, 1981.  Subsequent components of the package name vary according to an 
organization’s own internal naming conventions.  Such conventions might specify that 
certain directory name components be division, department and project, machine, or 
login names.  
 
Examples: 
  
com.sun.eng 
com.apple.quicktime.v2 
edu.cmu.cs.bovik.cheese 
 
If OHD developers use this common practice, then package names within OHD would 
begin with gov.nws.ohd.hseb or gov.nws.ohd.hsmb. Using this practice in OHD may be 
excessive.  Package names beginning with ohd.hseb or ohd.hsmb is considered sufficient. 
 

  Version 2.0 
  3/28/2008 

17



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
3.8.2 Classes 
Class names should be nouns, in mixed case with the first letter of each internal word 
capitalized.  Try to keep your class names simple and descriptive.  Whole words should 
be used and acronyms and abbreviations avoided (unless the abbreviation is much more 
widely used than the long form, such as URL or HTML). 
 
Examples: 
  
class Raster; 
class ImageSprite; 
 

3.8.3 Interfaces 
Interface names should be capitalized like class names. 
 
Examples: 
   
interface RasterDelegate; 
interface Storing; 
 

3.8.4 Methods 
Methods should be verbs, in mixed case with the first letter lowercase, with the first letter 
of each internal word capitalized (also know as camelcase). 
 
Examples: 
  
run(); 
runFast(); 
getBackground(); 

 

3.8.5 Class Variables or Attributes 
Class variables, also called attributes, are in mixed case beginning with an ‘_’ followed 
by a lowercase first letter.  Internal words start with capital letters.  Variable names 
should be meaningful.  The choice of a variable name should be mnemonic that is, 
designed to indicate to the casual observer the intent of its use.  One-character variable 
names should be avoided except for temporary “throwaway” variables.  Common names 
for temporary variables are i, j, k, l, m, and n for integers; c, d, and e for characters. 
 
Examples: 
   
String _className; 
int    _windowHeight = 50; 

 

3.8.6 Method Variables 
Same rules as class variables and attributes apply with the exception of use ‘_’ as the first 

  Version 2.0 
  3/28/2008 

18



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
character of the variable name. Examples: 
  
int    i = 0; 
char   c = ‘ ‘; 
float  windowWidth = 99999.9;  

3.8.7 Constants 
The names of variables declared class constants should be all uppercase with words 
separated by underscores (“_”).  
 
Examples: 
 
static final int MIN_WIDTH = 4; 
static final int MAX_WIDTH = 999; 
static final int GET_THE_CPU = 1; 

 

3.9 Programming Practices 

3.9.1 Providing Access to Instance and Class Variables  
Do not make any instance or class variable public without a good reason.  Often, instance 
variables do not need to be explicitly set or gotten; often that happens as a side effect of 
method calls.  
 
One example of appropriate public instance variables is the case where the class is 
essentially a data structure, with no behavior.  In other words, when using a struct instead 
of a class (if Java supported struct), then it’s appropriate to make the class’s instance 
variables public. 

 

3.9.2 Referring to Class Variables and Methods  
Avoid using an object to access a class (static) variable or method.  Use a class name 
instead.  For example: 
 
AClass.classMethod();       //OK 
anObject.classMethod();     //AVOID! 

 

3.9.3 Constants  
Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which 
can appear in a “for loop” as counter values. 

  Version 2.0 
  3/28/2008 

19



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
 

3.9.4 Variable Assignments  
Avoid assigning several variables to the same value in a single statement.  It is hard to 
read. Example:  
 
fooBar.fChar = barFoo.lchar = 'c'; // AVOID! 
 
Do not use the “assignment” operator in a place where it can be easily confused with the 
“equality” operator. Example:  
 
if (c++ = d++)       // AVOID! (Java disallows) 
{ 
    ... 
} 
 
should be written as  
 
if ((c++ = d++) != 0)  
{ 
    ... 
} 
 
Do not use embedded assignments in an attempt to improve run-time performance. This  
is the job of the compiler. Example:  
 
d = (a = b + c) + r; // AVOID! 
 
should be written as  
 
a = b + c; 
d = a + r; 

3.9.5   Parentheses 
It is generally a good idea to use parentheses liberally in expressions involving mixed 
operators to avoid operator precedence problems.  Even if the operator precedence seems 
clear to one programmer, it might not be obvious to others.  It should not be assumed that 
other programmers know precedence equally well.  
 
if (a == b && c == d)           // AVOID! 
i
 
f ( (a == b) && (c == d) )     // USE 

3.9.6 Code Commented Out 
Any code which has been commented out either because it may have become obsolete or 
because it is being updated or rewritten should also include a comment stating why it is 
being commented out.  It is beneficial to also include in the comment when the code may 
be deleted.  
 

  Version 2.0 
  3/28/2008 

20



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  
Example: 
 
/* The following code has been commented out by John Doe on 
   2/1/2007.  It has been determined the code is no longer  
   needed.  If still not needed on or after 10/1/2007, remove 
   this comment block. 
 
   if ( manufacturer.equals (“Synergetics”) ) 
   { 
       getSpecs(); 
       decode(); 
   } 
*/ 

  Version 2.0 
  3/28/2008 

21



National Weather Service/Office of Hydrologic Development 
JAVA Programming Standards and Guidelines  

 

References 
• Java Conventions by Sun Microsystems  (http://java.sun.com/docs/codeconv/) 
• Java Developers Guide by Jamie Jaworski 
• The C Programming Language, Second Edition, Brian Kernighan and Dennis 

Ritchie 
• Indentation Styles (http://en.wikipedia.org/wiki/Indent_style) 
• Just Java by Peter van der Linden 
• Writing Robust Java Code by Scott W. Amble  

(http://www.ambysoft.com/downloads/javaCodingStandards.pdf) 

  Version 2.0 
  3/28/2008 

22

http://java.sun.com/docs/codeconv/
http://en.wikipedia.org/wiki/Indent_style

	 Revision History
	1 Introduction
	1.1 Acknowledgments

	2 Standards
	2.1 File Names 
	2.3 Indentation
	2.3 Braces {}
	2.4 File Organization
	2.4.1 Java Source Files
	2.4.2 Package and Import Statements
	2.4.3 Class and Interface Declarations
	2.5.1 Class or Interface Doc Comments
	2.5.2 Method Doc Comments


	3 Guidelines
	3.3.1 Block Comments 
	3.3.2 Single-Line Comments 
	3.3.3 Trailing Comments 
	3.3.4 End-Of-Line Comments 
	3.4.1 Number per Line 
	3.4.2 Initialization 
	3.4.3 Placement 
	3.6.1 Simple Statements 
	3.6.2 Compound Statements 
	3.6.3 Return Statements
	3.6.4 if, if-else, if else-if else Statements
	3.6.5 for Statements 
	3.6.6 while Statements 
	3.6.7 do-while Statements 
	3.6.8 switch Statements 
	3.6.9 try-catch Statements
	3.7.1 Blank Lines 
	3.7.2 Blank Spaces
	3.8.1 Packages
	3.8.2 Classes
	3.8.3 Interfaces
	3.8.4 Methods
	3.8.5 Class Variables or Attributes
	3.8.6 Method Variables
	3.8.7 Constants
	3.9.1 Providing Access to Instance and Class Variables 
	3.9.2 Referring to Class Variables and Methods 
	3.9.3 Constants 
	3.9.4 Variable Assignments 
	3.9.5   Parentheses
	3.9.6 Code Commented Out
	 


	References

