
National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

NATIONAL WEATHER SERVICE
OFFICE of HYDROLOGIC DEVELOPMENT

Science Infusion Software Engineering Process Group (SISEPG)
FORTRAN Programming Standards and Guidelines

 Version 1.6

 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

Revision History

Date Version Description Author
02/17/2005 1.0 Initial Version Scott Vandemark
03/31/2006 1.1 Edit & Reformat Marylin Andre
04/14/2006 1.2 Incorporated comments from SISEPG

group
Cham Pham

04/20/2006 1.3 Change font on examples M. Andre
05/02/2006 1.4 Additional revisions M. Andre
06/29/2006 1.5 Apply team member revisions M. Andre
08/03/2006 1.6 Apply HSEB Chief comments – remove

reference to FORTRAN 90 standard of 31
characters

M. Andre

 i Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines
 Table of Contents

Revision History .. i
Table of Contents.. ii
1. Introduction... 1
2. General Information.. 2

2.1 Standards... 2
2.2 Guidelines ... 2

3. Non-Executable Statements .. 5
3.1 Standards... 5
3.2 Guidelines ... 6

4. Executable Statements .. 7
4.1. Standards.. 7
4.2. Guidelines .. 8

 ii Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines
1. Introduction
The Office of Hydrologic Development (OHD) produces software which NWS
Weather Forecast Offices (WFOs) and River Forecast Centers (RFCs) use to create
hydrologic forecasts for rivers and streams across the country. Just like many other
organizations, software has become a critical component supporting the operations of
these forecast offices. Because software plays such an important role, it is essential that
it be well-written and maintained.

The OHD Science Infusion Software Engineering Process Group (SISEPG) is
developing standards and guidelines to ensure that programmers follow good, widely
accepted software development practices when coding. It is believed that this will lead
to well-written and better structured programs.

Well-written software offers many advantages. It should contain fewer bugs and run
more efficiently than poorly written programs. It also makes it easier for a programmer
who was not involved in the development of the software to learn how it works.

Software has a life-cycle. A large part of its life-cycle revolves around maintenance.
Software may exist for many years, even decades. Long after the original programmer
has moved on, the software will require maintenance in the form of bug fixes and
enhancements. The time spent doing this and hence the cost is greatly reduced when
the code is developed and maintained according to software standards.

The FORTRAN programming language is a popular and powerful application memory
and system routines which if used improperly can result in unreliable programs which
waste system resources and CPU cycles.

This document presents standards and guidelines for the FORTRAN Programming
Language. The standards are programming techniques which OHD programmers are
expected to follow. Their use will be enforced through peer reviews and code
walkthroughs. The programming guidelines are good programming practices which
developers are encouraged to adopt.

FORTRAN programming standards are a set of FORTRAN programming rules which
must be applied by FORTRAN developers when creating programs. These techniques
are considered best practices which greatly enhance the readability and maintainability of
a program. During a code walkthrough, the software reviewers will be inspecting the
code to make sure that these standards are followed.

FORTRAN programming guidelines are a set of FORTRAN programming practices
which are considered best practices which greatly enhance the readability and
maintainability of a program. While developers are not required to use these techniques,
they are encouraged to integrate them into their programming style.

Programmers should read the OHD Software Development Standards and Guidelines

1 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines
document to become familiar with the standards and guidelines deemed by the
SISEPG to be applicable to all programming languages.

2. General Information
2.1 Standards

• See the OHD General Software Development Standards and Guidelines
document for standards on writing prologue documentation in a source file.

• See the OHD General Software Development Standards and Guidelines
document for standards on how to make files more readable and maintainable.

• Use standard FORTRAN 77. Do not use compiler dependent features.

• FORTRAN 77 data names must consist of one to six characters. Use a letter as
the first character and only letters or numerals for the remaining 5 possible
characters.

2.2 Guidelines

• See the OHD General Software Development Standards and Guidelines document
for guidelines on how to make files more readable and maintainable.

• The names of source files which belong to a common library or an executable
should have a common prefix which identifies them as being part of that library or
executable. This also applies to INCLUDE files. This helps other programs
quickly determine which library a source file belongs to.

Example:

- Source files
pdc_engine_parser.f
pdc_engine_reader.f
pdc_engine_writer.f

- Include file
pdc_engine_parser.inc

• Within a program module that has a group of subprograms the subprograms
should be in alphabetical order.

• Use consistent indentation. See the OHD General Software Development
Standards and Guidelines document for guidelines.

Example:

Bad:

C THIS EXAMPLE DOES NOT USE ANY INDENTATION.

2 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

 PROGRAM MAIN
 PARAMETER (MVAL=10)
 DIMENSION IVAL(MVAL)
 DO 10 I=1,MVAL
C CHECK THE VALUE OF I
 IF (I.LE.5) IVAL(I)=0
 IF (I.GT.5) IVAL(I)=1
10 CONTINUE
 DO 20 I=1,MVAL
 IF (IVAL(I).EQ.0) THEN
C THE VALUE OF I IS 0
 IVAL(I)=1
 WRITE (6,*) 'IVAL CHANGED FROM 0 TO 1'
 ENDIF
 IF (IVAL(I).EQ.1) THEN
C THE VALUE OF I IS 1
 IVAL(I)=0
 WRITE (6,*) 'IVAL CHANGED FROM 1 TO 0'
 ENDIF
20 CONTINUE
 STOP
 END

Better:

C THIS EXAMPLE USES CONSISTENT INDENTATION.
 PROGRAM MAIN
 PARAMETER (MVAL = 10)
 DIMENSION IVAL(MVAL)

 DO 10 I = 1, MVAL
C CHECK THE VALUE OF I
 IF (I .LE. 5) IVAL(I) = 0
 IF (I .GT. 5) IVAL(I) = 1
10 CONTINUE

 DO 20 I = 1, MVAL
 IF (IVAL(I) .EQ. 0) THEN
C THE VALUE OF I IS 0
 IVAL(I) = 1
 WRITE (6,*) 'IVAL CHANGED FROM 0 TO 1'
 ENDIF

 IF (IVAL(I) .EQ. 1) THEN
C THE VALUE OF I IS 1
 IVAL(I) = 0
 WRITE (6,*) 'IVAL CHANGED FROM 1 TO 0'
 ENDIF
20 CONTINUE

 STOP
 END

• Do not use inline comments following an exclamation mark (!) as is allowed by
some compilers.

3 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

• Avoid combining variable initialization with type declarations in one statement as
is allowed by some compilers.

• Do not write more than one statement per line as is allowed by some compilers.

Example:

Bad:

IPSPAG(LP) = 0; CALL UPAGE(LP)

 Better:
 IPSPAG(LP) = 0

CALL UPAGE(LP)

• Use only those intrinsic functions which appear in the standard (and are indicated
as such in most compiler manuals). Do not call host system services directly.

• Use only the standard character set. Avoid lower case characters. Use only the
following special characters:

 blank, . ' : = + * / () $

• Use only the apostrophe (') to delimit character strings.

• Main programs should always begin with the statement PROGRAM [name]
which should have no associated parameter list.

• Use meaningful names.

• Do not use FORTRAN keywords as symbolic names.

• Initialize all variables. Do not assume machine default value assignments. Do not
initialize variables of one type with values of another.

• Do not split a name or keyword between two lines.

Example:

Bad:
 IF (SWORK(IDX).GT.SWORK(IDY)-0.001.AND.SWORK(IDX).LT.S
* WORK(IDY)+0.001) THEN

Better:
 IF (SWORK(IDX) .GT. SWORK(IDY)-0.001 .AND.
* SWORK(IDX) .LT. SWORK(IDY)+0.001) THEN

• If a statement consists of an initial line and one or more continuation lines then

4 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

the lines should be split in a logical manner.

Example:

Bad:
 IF (SWORK(IDX).GT.SWORK(IDY)-0.001.AND.SWORK(IDX).LT.SWORK

 * (IDY)+0.001) THEN

Better:
 IF (SWORK(IDX) .GT. SWORK(IDY)-0.001 .AND.
* SWORK(IDX) .LT. SWORK(IDY)+0.001) THEN

• Check input for errors. An error code should be set that is returned to the

calling routine. Errors should be indicated by printing an error message. An
error handling routine can also be called.

• Whenever possible the value of the 'no error' condition return code variable
should be zero. The variable should be INTEGER and not LOGICAL or some
other type.

• Printed output should be arranged in an easy to read format. For example, line
up columns of numbers. Also identify values printed in clear terms or in terms
of variables defined in the program description.

• Main programs should print a successful completion message such as
"PROGRAM XXX COMPLETED" where XXX is the program name. Any
other stop should produce a print message that indicates the problem and where
the stop occurred. If the stop is in a subroutine then an error statement which
includes the subroutine name should be printed.

3. Non-Executable Statements

3.1 Standards

• Explicitly declare all INTEGER and REAL variables, constants or functions.
Do not use the FORTRAN predefined specification of:

- integer begins with I-N

- real begins with A-H and O-Z

• Avoid using the EQUIVALENCE statement unless there is no other alternative
way to structure the program.

• Group FORMAT statements at the end of each subprogram.

 or

• Group FORMAT statements in the code where they are referenced and number
them in sequence along with other numbered lines. Put a FORMAT statement
following the first I/O statement which refers to it.

5 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines
3.2 Guidelines

• Use only the standard explicit types. Avoid reduced and extended precision
as well as octal, hexadecimal and Hollerith unless essential for the application.
The only standard explicit types are REAL, INTEGER (no size specification),
LOGICAL, CHARACTER, DOUBLE PRECISION and COMPLEX.

 Example: - Use DOUBLE PRECISION instead of REAL*8
 - Use INTEGER instead of INTEGER*4.

• Declaration and DATA statements should immediately follow the
documentation block in logical order. An order such as PARAMETER,
variable type, DIMENSION, COMMON, and DATA is appropriate. Always
use PARAMETER first and DATA last.

• COMMON declarations and INCLUDE statements should follow the
declaration and DATA statements and be in alphabetical order. An array in a
COMMON block should have its dimensions declared in the COMMON
statement.

• Ensure that each COMMON block is defined the same in all subprograms; All
COMMON block names should be different from all subprogram names.

• Do not pass as an argument any variable referenced in a COMMON block in
both the calling and called subprogram.

• Avoid mixing variables of type CHARACTER with variables of other types in
COMMON blocks.

• Avoid using a BLOCK DATA subroutine when DATA statements are used for
initialization of COMMON block variables. The method by which BLOCK
DATA is loaded is system dependent and must be understood on a given
processor. Some systems require explicit linking of the BLOCK DATA
subroutine when used in a library.

• If the dimensions of a variable may be changed, and always when the
dimensions are referred to in other statements (e.g. to keep from overflowing
the array), the dimensions should be declared by defining a variable in a
PARAMETER statement. The actual number should never be referred to in the
code but rather referred to by the variable name used in the PARAMETER
statement.

 Example:
Bad:

 DIMENSION IVAL(10)
 DO 10 I = 1, 10
 IVAL(I) = 0
 10 CONTINUE

Better:
 PARAMETER (MVAL = 10)

6 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines
 DIMENSION IVAL(MVAL)

 DO 10 I = 1, MVAL
 IVAL(I) = 0
 10 CONTINUE

• Use a DATA statement to assign initial values to variables. Arrange DATA
statements so that they can be easily read. Put on separate lines values
pertaining to different dimensions.

• Array subscript expressions should be of type INTEGER only.

• Array references should always contain the same number of subscripts as in the
array declaration and should not assume values outside the lower and upper
bounds of the declared dimensions.

• If a FORMAT specification is stored in an array then the array should be of
type CHARACTER. FORMAT specifiers should be separated by a comma.

4. Executable Statements

4.1. Standards

• Terminate all subprograms by a RETURN and an END statement.

• Avoid the use of multiple STOP statements.

• Use a logical scheme for indicating continuation lines such as a sequence of
numbers 1 through 9 then alphabetical order starting with the letter A or the
same character for all continuation lines.

• Use a logical scheme for a subroutine call sequence. A suggested order is:

a. logical unit number variables

b. other input variables

c. variables used for both input and output or work space

d. output variables ending with an error (return) code

Example:

 PROGRAM MAIN
 IPR = 6
 INVAL = 1
 CALL SUB1 (IPR, INVAL, ISTAT)

 WRITE (IPR,*) 'RETURN 1 ENCOUNTERED IN SUB1'
 WRITE (IPR,*) 'ISTAT=', ISTAT
 STOP
 END

 SUBROUTINE SUB1 (IPR, INVAL, ISTAT)

7 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

 ISTAT = 0
 WRITE (IPR,*) 'IN ROUTINE SUB1'
 IF (INVAL .EQ. 1) ISTAT = 1
 RETURN
 END

• Do not use any other source column format than the standard one:

a. 1-5: label

b. 6: continuation

c. 7-72: statement

4.2. Guidelines

• Do not use more than 19 continuation lines for any one line of code.

• Do not use any nonblank characters in columns 1 through 5 of a continuation
line.

• Avoid using any alternate return symbols (indicated by an asterisk in the
SUBROUTINE statement).

• Each subroutine should have only one entry point. Do not use the ENTRY
statement.

• Do not define external functions having the same name as intrinsic functions.

• Use the asterisk (*) notation to declare the last dimension an array passed as
arguments if the extent in that dimension is unknown to the called routine.

• Use the asterisk (*) notation to declare the length of CHARACTER variables
passed as arguments if their length is unknown to the called routine.

• Statement functions should be contained between comment lines in a manner
which makes clear that they are not the first executable statements.

• Statement numbers should be in ascending order and left-adjusted.

• A statement number should occur only on a CONTINUE or FORMAT statement.

• DO loop control parameters should be of type INTEGER only.

• Terminate each DO loop on a separate CONTINUE statement and indent the body
of the loop.

• Do not pass control into a DO loop, IF block, or ELSE clause other than by the
normal initial statement.

• Avoid abbreviations for .TRUE. and .FALSE.

• Avoid using control statements (e.g. Unconditional transfer (GO TO statement),
the logic IF, the arithmetic IF, computed GO TO, and assigned GO TO
implementation versions of the case statement) unless no other way can be found

8 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

to structure the program.

 Example:
 - Arithmetic IF statement: IF (expression) 10, 20, 30

 - Logical IF statement: IF (expression) GO TO 10

 - Assigned GO TO: ASSIGN 20 TO IVAR
 GO TO IVAR, (10, 20, 30)

 20 CONTINUE

• Use parentheses to control evaluation order in expressions.

• Do not compare arithmetic expressions of different types.

• I/O statements should contain the parameters END= and IOSTAT= as
appropriate.

• Do not make use of the value of the IOSTAT parameter because it may be system
dependent. Use only its sign.

Example:

Bad:
 READ (ICD,*,IOSTAT=IOSTAT)
 IF (IOSTAT .EQ. 900) WRITE (IPR,*) 'IOSTAT 900
* ENCOUNTERED'

Better:
 READ (ICD,*,IOSTAT=IOSTAT)
 IF (IOSTAT .GT. 0) WRITE (IPR,*) 'IOSTAT', IOSTAT,
* ‘ENCOUNTERED'

• Avoid using the parameter ERR= on I/O statements.

• Use WRITE rather than PRINT statements for nonterminal I/O.

• Logical unit numbers in I/O statements should be an INTEGER variable. Avoid
using an asterisk (*). The variable should be given a value in the MAIN program
and passed to subroutines through the argument list or in a COMMON block.

• Do not use nonstandard I/O statements such as ENCODE or DECODE (use
internal files), DEFINE FILE (use OPEN), NAMELIST, PUNCH, buffer
in/buffer out and other asynchronous operations.

• An array with multiple dimensions should be addressed such that the first indices
vary the fastest and the last indices vary the slowest. This can avoid dramatic
losses in efficiency on certain computers under certain conditions. Multi-
dimensional data array is stored in memory using the column-major order.

 Example:

 INTEGER ROW, COL, I, J

 PARAMETER (ROW = 5, COL = 3)

9 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

 INTEGER IVAL(COL, ROW)
 DO 20 J = 1, ROW
 DO 10 I = 1, COL
 IVAL(I,J) = 0

 10 CONTINUE
 20 CONTINUE

10 Version 1.6
 8/7/2006

National Weather Service/Office of Hydrologic Development –
FORTRAN Programming Coding Standards and Guidelines

5. References

1. A summary of Chapters 8 and 9 of the book Effective FORTRAN 77, Michael
Metcalf, Oxford University Press, 1985, ISBN 0198537093 found at the Web site

 http://dbwww.essc.psu.edu/lasdoc/programmer/4fortran.html

2. The National Weather Service Meteorological Development Laboratory
FORTRAN standards found at the Web site

 http://www.mdl.nws.noaa.gov/~qa/pdf_files/MDL_FORTRAN_Standards.pdf

11 Version 1.6
 8/7/2006

http://dbwww.essc.psu.edu/lasdoc/programmer/4fortran.html
http://www.mdl.nws.noaa.gov/%7Eqa/pdf_files/MDL_FORTRAN_Standards.pdf

	Revision History
	 Table of Contents
	1. Introduction
	2. General Information
	2.1 Standards
	2.2 Guidelines
	3.2 Guidelines

	4. Executable Statements
	4.1. Standards
	4.2. Guidelines

