SIV and SHIV CTL Epitopes Identified in Macaques

Todd M. Allen and David I. Watkins

Wisconsin Regional Primate Research Center, 1220 Capitol Court, Madison, WI 53715, USA

There is accumulating evidence to suggest a key role for CTL in the containment of HIV and SIV infections. As such, there is considerable interest in designing vaccines to induce virus-specific CTL responses. Various macaque species, most notably rhesus macaques of Indian origin, have been used extensively to study AIDS virus pathogenesis and vaccine efficacy. Unfortunately, until recently only a few SIV and SHIV CTL epitopes with their restricting MHC class I molecules had been identified. Virtually all of the epitope-specific studies conducted to date in the rhesus macaque have focused on responses to an SIV Gag CTL epitope (Gag_181; CTPYDINQM) restricted by Mamu-A*01. However, it is becoming increasingly difficult for investigators to obtain sufficient numbers of Mamu-A*01 positive animals. Therefore, definition of new CTL epitopes will be critical to both vaccine development, and to construction of MHC class I tetrameric complexes which have revolutionized our ability to measure CTL responses to individual CTL epitopes [1–3].

In the updated list provided in this report, 28 new Mamu-A*01-restricted CTL epitopes have been added (Table I). These new epitopes were defined by scanning all SIV proteins using the Mamu-A*01 motif [4], by peptide binding studies [5–6], and through functional CTL and ELISPOT assays [7–8]. Fortunately, these new Mamu-A*01 epitopes are distributed throughout many different SIV proteins which should facilitate a broad range of studies. Applying this approach to defining multiple SIV-derived CTL epitopes for other rhesus MHC class I molecules will increase the utility of the SIV-infected rhesus macaque as an animal model for studying AIDS virus pathogenesis and vaccine efficacy.

Five newly defined SIV CTL epitopes have also been identified which are restricted by 4 other rhesus MHC class I molecules; Mamu-A*11, -B*03, -B*04, and -B*17 (Table I). These minimal, optimal epitopes were defined using CTL assays [9–10] and peptide binding assays [11] with dilutions of peptides of varying lengths. Hopefully, some of these MHC class I alleles will exist at sufficient frequencies to provide investigators access to additional animals for SIV CTL epitope-related studies, thus alleviating the current difficulties of obtaining sufficient MHC-defined animals. The identification of new SIV epitopes, restricted by high frequency MHC class I molecules, would broaden our ability to examine epitope-specific responses in SIV-infected macaques.

Additional CTL epitopes are also listed for which the restricting MHC class I molecules have yet to be identified (Table II). It will be important to eventually define both the optimal epitope length and restricting MHC class I molecule if they are to be used effectively in vaccination trials or tetramer construction. This updated list, which now contains a total of 39 SIV and SHIV CTL epitopes with known restricting MHC class I molecules, will be useful for both the development and testing of epitope-based vaccines and for monitoring responses to these epitopes in vaccinated and SIV-infected macaques.

If you are aware of additional epitopes which could be added to this listing, please contact:

	Bette Korber	Todd M. Allen	David I. Watkins
phone:	505-665-4453	608-265-3381	608-265-3380
fax:	505-665-3493	608-263-4031	608-263-4031
email:	btk@t10.lanl.gov	tallen@primate.wisc.edu	watkins@primate.wisc.edu

Table I. Defined CTL Epitopes with Known Restricting MHC class I Molecules										
Virus	Protein	Epitope	Restricting MHC class I Allele ¹	Genbank Acc. No.	Reference					
Mamu-A Moleo	cules									
SIVmac251	Gag_149-157	LSPRTLNAW	Mamu-A*01	U50836	[12]					
SIVmac251	Gag_181-189	CTPYDINQM	Mamu-A*01	U50836	[4,13]					
SIVmac251	Gag_254-262	QNPIPVGNI	Mamu-A*01	U50836	[12]					
SIVmac251	Gag_340-349	VNPTLEEMLT	Mamu-A*01	U50836	[12]					
SIVmac251	Gag_372-379	LAPVPIPF	Mamu-A*01	U50836	[12]					
SIVmac251	Pol_51-61	EAPQFPHGSSA	Mamu-A*01	U50836	[12]					
SIVmac251	Pol_143-152	LGPHYTPKIV	Mamu-A*01	U50836	[12]					
SIVmac251	Pol_147-155	YTPKIVGGI	Mamu-A*01	U50836	[12]					
SIVmac251	Pol_359-368	GSPAIFQYTM	Mamu-A*01	U50836	[12]					
SIVmac251	Pol_474-483	IYPGIKTKHL	Mamu-A*01	U50836	[12]					
SIVmac251	Pol_588-596	QVPKFHLPV	Mamu-A*01	U50836	[12]					
SIVmac251	Pol_621-629	STPPLVRLV	Mamu-A*01	U50836	[12, 14]					
SIVmac251	Pol_692-700	SGPKTNIIV	Mamu-A*01	U50836	[12]					
SIVmac251	Env_235-243	CAPPGYAL(L)	Mamu-A*01	U50836	[12,15]					
SHIV-89.6	Env_431-439	YAPPISGQI	Mamu-A*01	U50836	[14]					
SIVmac251	Env_504-512	ITPIGLAPT	Mamu-A*01	U50836	[12]					
SIVmac251	Env_622-630	TVPWPN <u>AS</u> L ²	Mamu-A*01	U50836	[12]					
SIVsmE660	Env_622-630	TVPWPN <u>ET</u> L ²	Mamu-A*01	U50836	[15]					
SIVmac251	Env_728-736	SSPPSYFQT	Mamu-A*01	U50836	[12]					
SIVmac251	Env_729-738	SPPSYFQTHT	Mamu-A*01	U50836	[12]					
SIVmac251	Env_763-771	SWPWQIEYI	Mamu-A*01	U50836	[12]					
SIVmac251	Tat_28-35	TTPESANL	Mamu-A*01	U50836	[12]					
SIVmac251	Vif_14-22	RIPERLERW	Mamu-A*01	U50836	[12]					
SIVmac251	Vif_144-152	QVPSLQYLA	Mamu-A*01	U50836	[12]					
SIVmac251	Vpx_8-18	IPPGNSGEETI	Mamu-A*01	U50836	[12]					
SIVmac251	Vpx_39-48	HLPRELIFQV	Mamu-A*01	U50836	[12]					
SIVmac251	Vpx_102-111	GPPPPPPGL	Mamu-A*01	U50836	[12]					
SIVmac251	Rev_87-96	DPPTNTPEAL	Mamu-A*01	U50836	[12]					
SHIV	Env_99-106	KPCVKLTP	Mamu-A*08		[16]					
SIVmac251	Env_307-314	YNLTMKCR	Mamu-A*02	U50837	[17]					
SIVmac239	Env_497-504	GDYKLVEI	Mamu-A*11		[9–11]					
SIVmac32H-J5	Gag_242-250	SVDEQIQWM	Mafa-A*02		[18]					

Table I cont. Defined CTL Epitopes with Known Restricting MHC class I Molecules

Virus	Protein	Epitope	Restricting MHC class I Allele ¹	Genbank Acc. No.	Reference				
Mamu-B Molecules									
SIVmac251	Env_503-511	EITPIGLAP ³	Mamu-B*01	U42837	[19]				
SIVmac239	Nef_136-146	ARRHRILDMYL	Mamu-B*03	U41825	[9–11]				
SIVmac239	Env_575-583	KRQQELLRL	Mamu-B*03	U41825	[9–11]				
SIVmac239	Nef_62-70	QGQYMNTP	Mamu-B*04	U41826	[9–11]				
SHIV	Env_568-576	NNLLRAIEA	Mamu-B*12		[16]				
SIVmac239	Nef_165-173	IRYPKTFGW	Mamu-B*17		[9–11]				

¹MHC class I allele designations: Rhesus macaque (Macaca mulatta; Mamu) cynomolgus macaque (<u>Ma</u>caca <u>fa</u>scicularis; Mafa)

²This CTL epitope, with amino acid substitutions at positions 6 and 7, has been identified in both SIVmac239 and SIVsmE660 infected macaques.

³Note: We have been unable to detect responses to this CTL epitope in Mamu-B*01-defined, SIV-infected rhesus macaques (Allen, unpublished observations)

Table II. CTL Epitopes without Defined Restricting MHC class I Molecules									
Virus	Protein	Epitope	Restricting MHC class I Allele	Reference					
SIVmac251	Gag_35-59	VWAANELDRFGLAESLLENK- EGCQK	unknown	[20]					
SIVmac251	Gag_246-281	QIQWMYRQQNPIPVGNIYR- RWIQLGLQKCVRMYNPT	unknown	[21–24]					
SIVmac251	Gag_296-315	SYVDRFYKSLRAEQTDAAYK	unknown	[25]					
SIVmac251	Env_21-30	YCTLYVTVFY	unknown	Allen, unpub					
SIVmac239	Env_113-121	CNKSETDRW	unknown	[26]					
SIVmac251	Env_264-283	SCTRMMETQTSTWFGFNGTR	unknown	Allen, unpub					
SIVmac251	Env_294-303	GRDNRTIISL	unknown	Allen, unpub					
SIVmac251	Env_314-333	RRPGNKTVLPVTIMSGLVFH	unknown	Allen, unpub					
SIVmac251	Nef_108-123	LRAMTYKLAIDMSHFI	unknown	[21–24]					
SIVmac251	Nef_128-137	GLEGIYYSAR	unknown	[21–24]					
SIVmac251	Nef_155-169	DWQDYTSGPGIRYPK	unknown	[21–24]					
SIVmac251	Nef_164-178	G <u>IRYPKTFGW</u> LWKLV ¹	unknown	[10, 21–24]					
SIVmac251	Nef_171-179	FGWLWKLVP	unknown	[9]					
SIVmac251	Nef_201-225	SKWDDPWGEVLAWKFDPT-	unknown	[21–24]					
		LAYTYEA							

 $^1Responses to the Mamu-B*17-restricted Nef_165-173 CTL epitope (last line of Table I, and here underlined) may not completely account for responses to this 15mer.$

Ga	g	10	20	20	4.0	ΕO	60	70	0.0	9.0
Car	251	TO MCADNEVI CCK	20 מזסדי דיידמו א	DCCVVVVVI VUI		יכיד א דיכיד דיאיע	ECCOVIL OV			
Gay	201	MGARNSVLSGR	KADELEKIKUK	PGGKKKIMLKHV	VWAANELDEF	GLAESLIEIK	EGCQKILSV.	LAPLVPIGSEI		IWCIHA
Gag	239	v		-N						
		100	110	120	130	140	150	160	170	180
Gag	251	EEKVKHTEEAK	QIVQRHLVVET	GTAETMPKTSRE	TAPSSGRGGN	IYPVQQIGGNY	VHLPLSPRT:	LNAWVKLIEEB	KKFGAEVVPGF	QALSEG
Gag	239			T						
		190	200	210	220	230	240		260	270
Gag	251	CTPYDINQMLN	CVGDHQAAMQI	IRDIINEEAADW	IDLQHPQPAPQ	QGQLREPSGS	DIAGTTSSV	DEQIQWMYRQ	QNPIPVGNIYF	RWIQLG
Gag	239									
Gag	32H-0	J5					SVI	DEQIQWM		
		280	290	300	310	320	330	340	350	360
Gag	251	LQKCVRMYNPT	NILDVKQGPKE	PFQSYVDRFYKS	SLRAEQTDAAV	KNWMTQTLLI	QNANPDCKL	VLKGLG <mark>VNPT</mark> I	LEEMLTACQGV	'GGPGQK
Gag	239									
		370	380	390	400	410	420	430	440	450
Gag	251	ARLMAEALKEA	LAPVPIPFAAA	QKRGPRKPIKCW	INCGKEGHSAR	QCRAPRRQGC	WKCGKMDHVI	MAKCPDRQAGI	FLGLGPWGKKF	RNFPMA
Gag	239			-Q						
		460	470	480) 490	500				
Gag	251	QVHQGLTPTAP	PEDPAVDLLKN	YMQLGKQQ	RESREKPYKE	VTEDLLHLNS	LFGGDQ			

Gag239 -----M-----REKQ-----REKQ------

Figure 1a. Gag CTL Epitopes

Pol 251	10	20	30	40	50	60	70	80	90
	VLELWEGGTLCKA	MQSPKKTGMLE	EMWKNGPCYG	QMPRQTGGFF	RPWSMGKEAP(QFPHGSSASGA	ADANCSPRGPS	SCGSAKELHA	VGQAAER
Pol 239	MR	110	120	130	140	150	160	170	ERKA
Pol 251 Pol 239	KQREALQGGDRGF	AAPQFSLWRR	PVVTAHIEGQI	PVEVLLDTGA	DDSIVTGIEL(GPHYTPKIVGC	GIGGFINTKE	YKNVKIEVLG	KRIKGTI
Pol 251 Pol 239	190 MTGDTPINIFGRN	200 LLTALGMSLNI	210 JPIAKVEPVKV	220 VTLKPGKVGP -AD	230 KLKQWPLSKEI	240 KIVALREICER	250 KMEKDGQLEEA	260 APPTNPYNTP	270 ГFAIKKK
Pol 251 Pol 239	280 DKNKWRMLIDFRE	290 LNRVTQDFTEV	300 /QLGIPHPAGI	310 LAKRKRITVL	320 DIGDAYFSIP	330 LDEEFRQYTAE	340 TLPSVNNAEI	350 PGKRYIYKVLI	360 PQGWKGS
Pol 251	370	380	390	400	410	420	430	440	450
Pol 239	PAIFQYTMRHVLE	PFRKANPDVTI	VQYMDDILIA	ASDRTDLEHD	RVVLQLKELLI	NSIGFSTPEEK	XFQKDPPFQWI	MGYELWPTKWI	KLQKIEL
Pol 251	460	470	480	490	500	510	520	530	540
Pol 239	PQRETWTVNDIQK	LVGVLNWAAQI	YPGIKTKHLO	CRLIRGKMTL	TEEVQWTEMAI	EAEYEENKIII	JSQEQEGCYY(QEGKPLEATV	IKSQDNQ
Pol 251	550	560	570	580	590	600	610	620	630
Pol 239	WSYKIHQEDKILK	VGKFAKIKNTH	HTNGVRLLAHV	VIQKIGKEAI	VIWGQVPKFHI	LPVERDVWEQV	WTDYWQVTW:	IPEWDFISTP	PLVRLVF
Pol 251	640	650	660	670	680	690	700	710	720
Pol 239	NLVKDPIEGEETY	YTDGSCNKQSF	XEGKAGYITDI	RGKDKVKVLE	QTTNQQAELE	AFLMALTDSGE	PKTNIIVDSQ	YVMGIITGCP	FESESRL
Pol 251	730	740	750	760	770	780	790	800	810
Pol 239	VNQIIEEMIKKSE	IYVAWVPAHKO	SIGGNQEIDHI	LVSQGIRQVL	FLEKIEPAQE	EHDKYHSNVKE	ELVFKFGLPR	IVARQIVDTCI	DKCHQKG
Pol 251	820	830	840	850	860	870	880	890	900
Pol 239	EAIHGQVNSDLGT	WQMDCTHLEGF	XIVIVAVHVAS	SGFIEAEVIP	QETGRQTALFI	LLKLAGRWPIJ	THLHTDNGANI	FASQEVKMVAI	WWAGIEH
Pol 251	910 TFGVPYNPQSQGV	920 VEAMNHHLKNÇ	- 930 21DRIREQANS	940 SVETIVLMAV	950 HCMNFKRRGG	960 IGDMTPAERLI	970 INMITTEQEIQ	980 QFQQSKNSKF1	990 KNFRVYY
Pol 251 Pol 239	1000 REGRDQLWKGPGE	1010 LLWKGEGAVII	1020 LKVGTDIKVVI	1030 PRRKAKIIKD	1040 YGGGKEVDSS:	1050 SHMEDTGEARE	EVA		

Figure 1b. Pol CTL Epitopes

IV-49 DEC 99 -

Env	10	20	30	40	50	60	70	80
Env 251 Env 239	MGCLGNQLLIAIL	LLSVYGIYCT	QYVTVFYGVP	AWRNATIPLFC	CATKNRDTWGT	TQCLPDNGDY	SELALNVTES	FDAWEN
Env 251 Env 239 SHIV	90 TVTEQAIEDVWQL	100 FETSIKPCVKI KPCVKI	110 SPLCITMRCI	120 NKSETDRWGLT	130 TKSSTTITTAA IS	140 APTSAPVSEKI STTTA-A-V	150 DMVNETSSCI	160 AQNNCT D
Env 251 Env 239	170 GLEQEQMISCKFT N	180 MTGLKRDKTKI	190 EYNETWYSTD	200 LVCEQGNSTDN N-G-	210 JESRCYMNHCN	220 ITSVIQESCDK	230 HYWDTIRFRY	240 CAPPGY
Env 251 Env 239	250 ALLRCNDTNYSGF	260 MPKCSKVVVS	270 SCTRMMETQT	280 STWFGFNGTRA	290 AENRTYIYWHG	300 FRDNRTIISLN	310 IKYYNLTMKCR	320 RPGNKT
Env 251 Env 239	330 VLPVTIMSGLVFH	340 SQPINDRPKQA	350 AWCWFGGKWKI	360 DAIKEVKQTIV	370 /KHPRYTGTNN	380 ITDKINLTAPG	390 GGDPEVTFMW	400 /TNCRGE
Env 251 Env 239 SHIV-89.6	410 FLYCKMNWFLNWV	420 EDRDVTTQRPF NTAN-K	430 KERHRRNYVP Q-K YAP	440 CHIRQIINTWH PISGQI	450 IKVGKNVYLPE	460 PREGDLTCNST	470 VTSLIANIDW	480 VTDGNQT -I
Env 251 Env 239	490 SITMSAEVAELYR N	500 (LEIGDYKLVE)	<u>510</u> [TPIGLAPTD]	520 VKRYTTGGTSR	530 RNKRGVFVLGF	540 LGFLATAGSA	550 MGAASLTLTA	560 AQSRTLL
Env 251 Env 239 SHIV SIVsmE660	570 AGIVQQQQQLLDV NNLLRA	580 VKRQQELLRL LIEA	590 TVWGTKNLQTI	600 RVTAIEKYLKD	610 DQAQLNAWGCA	620 AFRQVCHTTVF TVF	630 WPNASLTPDW K- WPNETL	640 INNDTWQ E
Env 251 Env 239	650 EWERKVDFLEENI	660 TALLEEAQIQG	670 QEKNMYELQK:	680 LNSWDVFGNWF	690 FDLASWIKYIÇ	700 9YGIYVVVGVI V-I	710 LLRIVIYIVQ	720)MLAKLR
Env 251 Env 239	730 QGYRPVFSSPPSY	740 FQ.THTQQDPA QI	750 ALPTREGKEG R	760 DGGEGGGNSSW	770 VPWQIEYIHFI	780 JIRQLIRLLTW	790 ILFSNCRTLLS	800 SRAYQIL V
Env 251 Env 239	810 QPILQRLSATLRR Q-	820 VREVLRTELTY I	830 LQYGWSYFH	840 EAVQAGWRSAT V	850 CETLAGAWRDI	860 WETLRRGGRW	870 /ILAIPRRIRÇ	880 GLELTLL

Figure 1c. Env CTL Epitopes

IV-50 DEC 99

Nef	10	20	30	40	50	60	70	80
Nef251 Nef239	MGGAISMRRSKPAG	GDLRQKLLRAF	GETYGRLLGE	EVEDGSSQSLG YP-	GLGKGLSSRS	SCEGQKYNQGÇ	YMNTPWRNPA	AEEKEKL
Nef251 Nef239	90 AYRKQNMDDIDEEI *	100 DDDLVGVSVRE	110 PKVPLRAMTYP	120 KLAIDMSHFIK	130 XEKGGLEGIYY	140 /SARRHRILDN 1	150 MYLEKEEGIIE [160 DWQDYT
Nef251 Nef239	SGPGIRYPKTFGW	18 0 LWKLVPVNVSI	190 DEAQEDERHYI	200 LMQPAQTSKWD HQ	210 DPWGEVLAWP	220 KFDPTLAYTYB	230 EAYARYPEELE V>	240 ASQACQ
Nef251	RKRLEEG							

Figure 1d. Nef CTL Epitopes

Tat	1	10	20	30	40	50	60	70	80	90
Tat 251	METPLREQ	ENSLESS	VERSSCILE.	ADATTPESANI	GEEILSQLY	RPLEACYNTC	YCKKCCYHCQ	FCFLKKGLGI	CYEQSRKRRR	ТРККАК
Tat 239		00	S-	S	120					
Tat 251	ANTSSAST	IKT, T PNRTF	TTO TTO	TZO KETVEKAVATZ	ADGI'GB					
Tat 239		-P-S								
Vif	1	10	20	30	40	50	60	70	80	90
Vif 251	MEEEKRWI	AVPTWRIE	PERLERWHS	LIKYLKYKTKI	DLQKVCYVPH	FKVGWAWWTC	SRVIFPLQEG	SHLEVQGYWH	LTPERGWLST	YAVRIT
Vif 239									K	
	1	.00	110	120	130	140	150	160	170	180
Vif 251	WYSRNFWI	'DVTPDYAI	DILLHSTYF	PCFTAGEVRRA	AIRGEQLLSC	CKFPRAHRYQ	VPSLQYLALK	VVSDVRSQGE	NPTWKQWRRDI	NRRGLR
Vif 251 Vif 239	1 MAKQNSRG	.90 DKQRGSKI G	200 PPTKGADFP	210 214 GLAKVLGILA						
Vpx	-	1.0		2.0	10	5.0	C 0	5.0		
• •	1 MODDDED	10	20		40	50		./0	80	90 Kaapat
Vpx 251 Vpx 239	MSDPRERI		LIIGEAFEW.	LNRIVEEINRE	SAVNHLPREL	IFQVWQRSWE	IWHDEQGMSQ	SIVKIRILCL		
Vpx 251 Vpx 239	1 GEGHGAGG	00 WRPGPPPI	110 PPPPGLA				-		_	
Rev	1	10	20	30	40	50	60	70	80	90
Rev 251	MSSHEREE	ELRKRLRI	LIHLLHQTI	DSYPTGPGTAN	JQRRQRRRRW	RRRWQQLLAL	ADRIYSFPDP	PTDTPLDLAI	QQLQNLAIES:	IPDPPT
Rev 239 Rev 251 Rev 239	INTPEALCE	.00 PTKGSRSI ED		NF	K		P		Τ	

Figure 1e. Tat, Vif, Vpx, and Rev CTL Epitopes

IV-52

DEC 99

REFERENCES

- Altman, J. D., P. A. H. Moss, P. J. R. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis. 1996. Phenotypic analysis of antigen-specific Tlymphocytes. *Science* 274:94–96.
- [2] Kuroda, M. J., J. E. Schmitz, D. H. Barouch, A. Craiu, T. M. Allen, A. Sette, D. I. Watkins, M. A. Forman, and N. L. Letvin. 1998. Analysis of gag-specific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I peptide complex. *Journal of Experimental Medicine* 187:1373–1381.
- [3] Doherty, P. C. 1998. Update Immunology the Numbers Game For Virus-Specific CD8(+) T Cells. *Science* 280:227.
- [4] Allen, T. M., J. Sidney, M. F. Delguercio, R. L. Glickman, G. L. Lensmeyer, D. A. Wiebe, R. Demars, C. D. Pauza, R. P. Johnson, A. Sette, and D. I. Watkins. 1998. Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus. *Journal of Immunology* 160:6062–6071.
- [5] Sette, A., A. Vitiello, B. Reherman, P. Fowler, R. Nayersina, W. M. Kast, C. J. Melief, C. Oseroff, L. Yuan, J. Ruppert, J. Sidney, M. F. del Guercio, S. Southwood, R. T. Kubo, R. W. Chesnut, H. M. Grey, and F. V. Chisari. 1994. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. *Journal of Immunology* 153:5586–92.
- [6] Sette, A., J. Sidney, M. F. del Guercio, S. Southwood, J. Ruppert, C. Dahlberg, H. M. Grey, and R. T. Kubo. 1994. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. *Molecular Immunology* **31**:813–22.
- [7] Schmittel, A., U. Keilholz, and C. Scheibenbogen. 1997. Evaluation of the interferon-gamma ELISPOT-assay for quantification of peptide specific T lymphocytes from peripheral blood. *Journal of Immunological Methods* 210:167–74.
- [8] Miyahira, Y., K. Murata, D. Rodriguez, J. R. Rodriguez, M. Esteban, M. M. Rodrigues, and F. Zavala. 1995. Quantification of antigen specific CD8+ T cells using an ELISPOT assay. *Journal of Immunological Methods* 181:45– 54.

- [9] Evans, D. T., P. Jing, T. M. Allen, D. H. OConnor, H. Horton, J. E. Venham, M. Piekarczyk, M. Dykhuzen, J. Mitchen, R. A. Rudersdorf, C. D. Pauza, R. E. Bontrop, R. DeMars, and D. I. Watkins. 1999. Definition of five new SIV CTL epitopes and their restricting MHC class I molecules: Effect on disease progression. *Manuscript submitted*.
- [10] Evans, D. T., D. H. O'Connor, P. Jing, D. J. L., J. Sydney, J. da Silva, T. M. Allen, H. Horton, J. E. Venham, R. A. Rudersdorf, C. D. Pauza, R. E. Bontrop, R. DeMars, A. Sette, A. L. Hughes, and D. I. Watkins. 1999. Virus-specific CTL responses select for amino acid variation in SIV Env and Nef. *Nature Medicine* 5:1270–1276.
- [11] Dzuris, J. L., J. Sidney, D. T. Evans, E. Appella, R. W. Chesnut, D. I. Watkins, and A. Sette. 2000. Conserved MHC class I peptide binding motif between humans and rhesus macaques. *Journal of Immunology* 164:283– 291.
- [12] Allen, T. M., B. R. Mothe, J. Sidney, P. Jing, J. L. Dzuris, T. U. Vogel, D. H. O'Connor, J. D. Altman, D. I. Watkins, and A. Sette. 1999. CD8+ Lymphocytes from SIV-Infected Rhesus Macaques Recognize 27 Different Epitopes Bound by the Single MHC class I Molecule Mamu-A*01: Implications For Vaccine Design and Testing. *Manuscript submitted*.
- [13] Miller, M. D., H. Yamamoto, A. L. Hughes, D. I. Watkins, and N. L. Letvin. 1991. Definition of an epitope and MHC class I molecule recognized by gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. *Journal of Immunology* 147:320–9.
- [14] Egan, M. A., M. J. Kuroda, J. E. Schmitz, W. A. Charini, C. I. Lord, M. A. Forman, and N. L. Letvin. 1999. Use of major histocompatibility complex class I/peptide/β2M tetramers to quantitate CD8(+) cytotoxic T lymphocytes specific for dominant and nondominant viral epitopes in simian-human immunodeficiency virus-infected rhesus monkeys. *Journal* of Virology **73**:5466–5472.
- [15] Furchner, M., A. L. Erickson, T. M. Allen, D. I. Watkins, A. Sette, P. R. Johnson, and C. M. Walker. 1999. The simian immunodeficiency virus envelope glycoprotein contains two epitopes presented by the Mamu-A*01 class I molecule. *Journal of Virology* 73:8035–8039.
- [16] Voss, G., and N. L. Letvin. 1996. Definition of human immunodeficiency virus type 1 gp120 and gp41 cytotoxic T-lymphocyte epitopes and their restricting major histocompatibility complex class I alleles in simianhuman immunodeficiency virus-infected rhesus monkeys. *Journal of Virology* **70**:7335–40.

- [17] Watanabe, N., S. N. McAdam, J. E. Boyson, M. S. Piekarczyk, Y. Yasutomi, D. I. Watkins, and N. L. Letvin. 1994. A simian immunodeficiency virus envelope V3 cytotoxic T-lymphocyte epitope in rhesus monkeys and its restricting major histocompatibility complex class I molecule Mamu-A*02. *Journal of Virology* 68:6690–6.
- [18] Geretti, A. M., E. G. Hulskotte, M. E. Dings, C. A. van Baalen, G. van Amerongen, and A. D. Osterhaus. 1997. CD8+ cytotoxic T lymphocytes of a cynomolgus macaque infected with simian immunodeficiency virus (SIV) mac32H-J5 recognize a nine amino acid epitope in SIV Gag p26. *Journal of General Virology* 78:821–4.
- [19] Yasutomi, Y., S. N. McAdam, J. E. Boyson, M. S. Piekarczyk, D. I. Watkins, and N. L. Letvin. 1995. A MHC class I B locus allele-restricted simian immunodeficiency virus envelope CTL epitope in rhesus monkeys. *Journal* of *Immunology* 154:2516–22.
- [20] Yamamoto, H., M. D. Miller, H. Tsubota, D. I. Watkins, G. P. Mazzara, V. Stallard, D. L. Panicali, A. Aldovini, R. A. Young, and N. L. Letvin. 1990. Studies of cloned simian immunodeficiency virus-specific T lymphocytes. Gag-specific cytotoxic T lymphocytes exhibit a restricted epitope specificity. *Journal of Immunology* 144:3385–91.
- [21] Bourgault, I., A. Venet, and J. P. Levy. 1992. Three epitopic peptides of the simian immunodeficiency virus Nef protein recognized by macaque cytolytic T lymphocytes. *Journal of Virology* **66**:750–6.

- [22] Bourgault, I., F. Chirat, A. Tartar, J. P. Levy, J. G. Guillet, and A. Venet. 1994. Simian immunodeficiency virus as a model for vaccination against HIV. Induction in rhesus macaques of Gag- or Nef-specific cytotoxic T lymphocytes by lipopeptides. *Journal of Immunology* **152**:2530–7.
- [23] Mortara, L., F. Letourneur, H. Gras-Masse, A. Venet, J. G. Guillet, and I. Bourgault-Villada. 1998. Selection of virus variants and emergence of virus escape mutants after immunization with an epitope vaccine. *Journal* of Virology 72:1403–10.
- [24] Mortara, L., H. Gras-Masse, C. Rommens, A. Venet, J. G. Guillet, and I. Bourgault-Villada. 1999. Type 1 CD4(+) T-cell help is required for induction of antipeptide multispecific cytotoxic T lymphocytes by a lipopeptidic vaccine in rhesus macaques. *Journal of Virology* 73:4447–4451.
- [25] Gotch, F., D. Nixon, A. Gallimore, S. McAdam, and A. McMichael. 1993. Cytotoxic T lymphocyte epitopes shared between HIV-1, HIV-2, and SIV. *Journal of Medical Primatology* 22:119–23.
- [26] Erickson, A. L., and C. M. Walker. 1994. An epitope in the V1 domain of the simian immunodeficiency virus (SIV) gp120 protein is recognized by CD8+ cytotoxic T lymphocytes from an SIV-infected rhesus macaque. *Journal of Virology* 68:2756–9.