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INTRODUCTION

Ideally, a vaccine against human immunodeficiency virus type 1 (HIV-1)
would induce neutralizing antibody levels which would provide sterilizing
immunity. The levels of antibody required however may not be achievable by
vaccination (Gauduin et al., 1997; Parren et al., 1997; Moore and Burton, 1999;
Shibata et al., 1999). Nevertheless, neutralizing antibody responses albeit of
lesser, but still significant potency, will likely be essential in an HIV-1 vaccine
in combination with broadly active cellular responses (Burton and Moore it et al.,
1998). The necessity or benefit of stimulating B cells that produce neutralizing
antibodies has been clearly established in murine infection models with
retroviruses and other RNA viruses (Planz et al., 1997; Baldridge et al., 1997;
Dittmer et al., 1998; Parren et al., 1999; Dittmer et al., 1999a; Dittmer et al.,
1999b).

 Effective vaccines have been developed against a number of viral diseases
mostly by using empirical methods. Many of these vaccines, including those
against smallpox, measles and polio, consist of live attenuated viruses. Live
attenuated viruses have consistently provided protection against infection with
simian immunodeficiency virus (SIV) and SIV/HIV-1 chimeras in non-human
primates. Serious safety concerns exist however which preclude the use of such
vaccines in humans (Ezzel, 1997; Baba et al., 1999). The immune correlates of
protection against infection of macaque monkeys by live attenuated SIV have not
been clearly defined and the role of antibodies and cytotoxic T-lymphocytes
(CTL) have been questioned (Stott and Schild, 1996; Stebbings et al., 1998).
Protection against SHIV (SIV/HIV chimeras expressing HIV-1 envelope glyco-
protein) by vaccination with attenuated SIV argues against a role of antibodies
(Shibata et al., 1997; Wyand et al., 1999). A series of elegant experiments in

which protective immune responses against the Friend retroviral complex were
dissected however have shown that T cells (CD4+ and CD8+) and B cells are
required to act in concert to achieve protection against pathogenic challenge in
mice vaccinated with an attenuated retrovirus (Dittmer et al., 1999a). Further-
more, whereas CTL were required to protect against lethal infection, neutralizing
antibody responses appeared necessary to prevent persistent infection (Dittmer
et al., 1999b).

 Understanding neutralization of HIV-1 primary isolates is important for
a knowledge-based approach for the development of a vaccine against HIV-1.
Here we review HIV-1 neutralizing antibodies and their epitopes.

STRUCTURE AND FUNCTION OF THE ENVELOPE
GLYCOPROTEIN COMPLEX

 The HIV-1 mature envelope glycoprotein complex plays a pivotal role in
the early events of virus attachment and entry into the target cell. Neutralizing
antibodies found in the sera of infected individuals are primarily directed against
this complex. The complex is arranged in a trimeric configuration of heterodimers,
each consisting of a gp120 surface subunit non-covalently associated with a gp41
transmembrane subunit, i.e., (gp120-gp41)3. By comparing the amino acid
sequence of gp120 subunits of different HIV-1 isolates, five variable regions
(V1-V5) and five conserved regions (C1-C5) have been identified (Starcich et
al., 1986; Modrow et al., 1987). A crystal structure of gp120 lacking the V1, V2
and V3 loops and the C and N termini suggests that the gp120 core is structurally
organized into two major domains, the inner and outer domain, and a mini-
domain termed the bridging sheet (Fig. 1A) (Kwong et al., 1998). The inner
domain harbors both the N and C termini of gp120, which are involved in the
interaction with gp41 (Wyatt et al., 1997), and is the probable site of trimer
packing (Kwong et al., 1998). The outer domain displays an extensively
glycosylated surface and as such is effectively concealed from the humoral
response. The bridging sheet is composed of four antiparallel β-sheets extruding
from the distal ends of the inner and outer domains. Together with additional
contributions from the base of the V1/V2 stemloop structure this domain forms
the conserved co-receptor binding-site. The CD4 binding-site (CD4bs) is located
within a depression at the interface of the three domains and is relatively well
conserved between HIV-1 isolates. Although coordinates for the V1, V2, V3 and
V4 loops are missing from the structure, either because they were deleted from
the gp120 core (V1, V2 and V3) or because of poor resolution (V4), their
approximate positions can be placed in a model of gp120 based on experimental
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data in combination with the position of the bases of the loops (Fig. 1B)(Parren
et al., 1999).

 The aminoterminal ectodomain of the gp41 glycoprotein consists of two
α-helical regions that are connected by an extended disulfide-stabilized loop
region. The aminoterminus of gp41 (residues 1–29) contains the hydrophobic,
glycine rich “fusion peptide” which plays a critical role in the fusion of viral and
target cell membrane. Three-dimensional structural analysis of peptides corre-
sponding to portions of the ectodomain of gp41 reveal a symmetrical trimer in
complex (Lu et al., 1995; Tan et al., 1997; Weissenhorn et al., 1997; Chan et al.,
1997). In this oligomeric configuration, which probably represents the state after
triggering of the fusion process (often referred to as the “hairpin” state), the
aminoterminal α-helices form a central parallel coiled coil, around which the
carboxyterminal α-helices are packed in an antiparallel arrangement.

 The infection process is initiated by attachment of the virus to the target
cell via the interaction between the gp120 subunit with the cellular receptor CD4.
The subsequent interactions between gp120 and its co-receptors are complex and
require conformational changes induced by binding to CD4 (Sattentau and
Moore, 1991; Sattentau et al., 1993; Thali et al., 1993). Presumably, the V1 and
V2 loops partially mask both CD4 and chemokine binding sites (Wyatt and
Sodroski, 1998), and this masking is fully manifested only in mature oligomeric
gp120 (Fig. 1B). Thus, conformational changes triggered by multivalent binding
of oligomeric gp120 to a cluster of CD4 molecules displaces the V1, V2 and V3
loops and expose the co-receptor binding-site. The flexibility of the CD4
molecule allows the gp120, with its co-receptor binding-site exposed, to come
near the co-receptor for interaction and thus bringing the viral and target cell
membranes in close proximity. Upon binding to the co-receptor further confor-
mational changes result in the destabilization of the gp120-gp41 interaction.
This triggers gp41 to undergo its transition to form a “prehairpin” intermediate
(Chan and Kim, 1998), which includes the insertion of the fusion peptide of gp41
into the target cell membrane and the possible dissociation of the gp120 subunits.
The gp41 than undergoes additional conformational changes resulting in the
formation of the “hairpin” structure and the fusion of the viral and target cell
membranes, which finally results in the introduction of the nucleocapsid with the
viral genome into the host-cell.

MATURE OLIGOMERIC ENVELOPE VERSUS VIRAL DEBRIS

 The HIV-1 envelope exists in a number of antigenically distinct forms. It

is synthesized as an envelope precursor molecule gp160, which oligomerizes
and is cleaved into gp120 and gp41 (Allan et al., 1985; Robey et al., 1985). The
mature functional (gp120-gp41)3 oligomer on the virion surface tends to disso-
ciate (shed) (Poignard et al., 1996a) resulting in the release of monomeric gp120
and exposure of gp41 spikes on the virion or infected cell surface. Antibodies
against HIV-1 envelope in seropositive individuals may be elicited by any of
these configurations. The following observations have led us to conclude that the
majority of the response is elicited against the unprocessed gp160 or disas-
sembled envelope (i.e., viral debris) rather than the mature oligomer (Parren et
al., 1997). 1. Antibodies against HIV envelope retrieved from HIV-1-infected
individuals in general have a much higher affinity for unprocessed envelope than
for mature oligomeric envelope (Parren et al., 1997). 2. Neutralization correlates
with antibody binding to mature oligomeric envelope (Roben et al., 1994;
Sattentau and Moore, 1995; Fouts et al., 1997; Parren et al., 1998), and primary
isolate (see below) neutralizing antibody titers in sera from HIV-1 seropositive
individuals are generally poor (Moore et al., 1996; Moog et al., 1997; Pilgrim et
al., 1997). Viral debris rather than virions therefore appears to be the primary
antigen specificity of antibodies against HIV-1 envelope in HIV-1 infected
individuals.

T CELL LINE ADAPTED VIRUSES VERSUS PRIMARY ISOLATES

 One of the most noticeable influences on HIV-1 neutralization is that of
the origin of the virus producer cell (reviewed in Moore and Ho, 1995; Poignard
et al., 1996b). The adaptation of HIV-1 to growth in immortalized CD4+ cell
lines selects for HIV-1 variants that tend to have a strongly basic V3 loop
(Fouchier et al., 1992), preferentially utilize CXCR4 as a co-receptor (reviewed
in D’Souza and Harden, 1996; Moore et al., 1997; Berger, 1997), and have a high
affinity for CD4 (Platt et al., 1997; Kozak et al., 1997). These T cell line adapted
(TCLA) viruses are readily neutralized by sCD4 and a large spectrum of different
monoclonal antibodies (mAbs) (reviewed in Moore and Ho, 1995). By contrast
primary isolates, i.e., viruses obtained by limited passage in primary cultures of
activated peripheral blood mononuclear cells (PBMC), may use CXCR4 (termed
X4 viruses), CCR5 (R5 viruses) or CXCR4 in combination with CCR5 (R5X4
viruses) (Berger et al., 1998). They generally have a reduced affinity for sCD4
and neutralizing mAbs, and generally display a high degree of resistance to
neutralization by these ligands (Stamatatos et al., 1997; Fouts et al., 1997 and
reviewed in Moore and Ho, 1995) (Fig. 2).
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stemloop structure is less evident. Presumably, the oscilation of mature oligomeric gp120
of primary isolates has an equilibrium biased in favor of the closed state, whereas mature
oligomeric gp120 of TCLA viruses is biased toward the open state. Neutralization
correlates with antibody binding to oligomeric envelope (Roben et al., 1994; Sattentau
and Moore, 1995; Parren et al., 1998) and can be understood in terms of epitope
accessibility. Epitopes of the CD4bs, V3 loop and CRbs are accessible on TCLA envelope
and antibodies against these sites neutralize TCLA viruses. These epitopes are relatively
inaccessible on primary isolate envelope and primary isolates are therefore mostly
resistant to neutralization by such antibodies. An immunoglobulin molecule (IgG1) is
depicted next to the oligomeric envelope complex to demonstrate the relative size of the
neutralizing agent and the accessible surface. With an accessible surface of approximately
3000 Å2 on the neutralizing face of gp120, excluding the variable loops (Kwong et al.,
1998), it can be hypothesized that there is space for three non-competing antibodies per
gp120 molecule (with a binding area of approximately 800–900 Å2).

Fig. 1. A model for the structure of monomeric and oligomeric gp120. The schematic
representation of monomeric gp120 is based on the X-ray crystal structure of the HIV-1
gp120 (HxBc2) core in complex with CD4 and mAb 17b (Wyatt et al., 1998; Kwong et
al., 1998) and reviewed in Parren et al., 1999). A) The viewpoint of the model is from the
target-cell membrane. Three structural elements are shown: the outer domain, the inner
domain and the bridging sheet. The CD4bs (red oval) is located at the interface of the three
domains. The conserved co-receptor binding-site (CRbs; yellow circle) is comprised of
the bridging sheet with additional contributions from the base of the V2 loop. B) The
location of the variable loops can be placed on the gp120 core, based on experimental data
from mAb mapping and mutagenesis studies in combination with the position of the bases
of the loops. The V1/V2 stemloop structure partially masks the CRbs and the CD4bs. The
inner domain is involved in the interaction with gp41 and is the probable site of trimer
packing. The outer domain is extensively glycosylated as indicated by the blue dots. The
2G12 epitope (purple oval) is located at the base of the V3 and V4 loop and probably
involves carbohydrate structures. C) Model of mature oligomeric envelope from a target-
cell viewpoint. The main characteristic of this model is that oligomeric gp120 can exist
in different conformational states of which the two extremes (a closed state and an open
state) are shown. In the closed state the masking of the CRbs and the CD4bs by the V1/
V2 stemloop structure is fully manifested. The V3 loop also partially obscures the CRbs
and the tip of the V3 loop is relatively inaccessible in this configuration. In the open state,
the V3 loop is well exposed and the masking of the CD4bs and CRbs by the V1/V2



IV-21
DEC 99

Neutralizing Epitopes of HIV-1
R

eview
s

T cell line-
adapted
isolates

HighMedium

Neutralization Resistance

N
u

m
b

er
 o

f 
H

IV
-1

 Is
o

la
te

s

Low

BZ167
92US077

93US143

IIIB Ba-L

MN SF2 JR-CSFSF162

89.6

Primary
isolates

Fig. 2. An idealized depiction of neutralization resistance of HIV-1 isolates. TCLA
isolates are highly sensitive to neutralization by antibodies and sCD4 in contrast to
primary isolates which are relatively neutralization resistant. A bell-shaped curve was
drawn to depict the fact that the degree of neutralization sensitivity can differ significantly
between isolates. Some primary isolates (e.g., BZ167) (Moore and Montefiori, 1997) are
just as sensitive to antibody mediated neutralization as TCLA isolates. Others may be

extraordinarily resistant (e.g., 93US143 and 92US077) (Parren et al., 1998). In the
evaluation of neutralization data, it is critical to note the neutralization phenotype of the
isolate used. Neutralization of highly neutralization sensitive isolates by an antibody does
not predict neutralization of relatively resistant isolates more representative of isolates
encountered in human infection, and may therefore have little value for the evaluation of
candidate vaccines.
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 The structural basis for the large difference in neutralization sensitivity
between TCLA viruses and the majority of primary isolates can be understood
as follows. It seems likely, based on the gp120 structure that the CD4bs on the
primary isolate gp120 trimer is more completely masked by the V1 and V2
loops than that of TCLA viruses. The idea that gp120 oscillates between
‘closed’ and ‘open’ states is consistent with the dichotomy of primary and
TCLA viruses: thus gp120 of primary isolates would have the equilibrium
biased in favor of a ‘closed’ conformation, whereas TCLA gp120 would be
biased towards ‘open’ (Fig. 1C). In this way, the virus in vivo would sacrifice
some efficiency in receptor binding for increased resistance to antibody attack,
whereas cell line-passaged virus would dispense with some now unnecessary
antibody resistance mechanisms and adapt for more efficient receptor interac-
tions instead. This notion appears to be generally applicable to lentiviruses, in
that SIV, feline immunodeficiency virus (FIV) and equine infectious anaemia
virus (EIAV) adapt to passage in cell lines in the same way as HIV-1 does
(Baldinotti et al., 1994; Moore et al., 1995; Cook et al., 1995; Means et al.,
1997; Montefiori et al., 1998).

 Neutralization sensitivity is an important factor to take into account when
evaluating HIV-1 neutralization studies. TCLA viruses are highly neutralization
sensitive (Fig. 2) and it is well recognized that this has misled the HIV-1 vaccine
field for many years (Cohen, 1993). These viruses nevertheless can be valuable
as they can be used to eliminate a concept from further consideration, as a failure
to inactivate TCLA HIV-1 in vitro or in vivo would be very discouraging (Burton
and Moore, 1998). Success with TCLA HIV-1 however should not be overem-
phasized as inactivation of TCLA HIV-1 by an antibody in a neutralization assay
or an in vivo challenge experiment would be encouraging, but would not predict
activity against a primary isolate. It is important to note than neutralization
sensitivities may also differ significantly between primary isolates, as indicated
by the bell-shaped curve in Fig. 2. Some primary isolates are almost as sensitive
as TCLA strains (e.g., BZ167)(Moore and Montefiori, 1997), whereas others
may be exceptionally neutralization resistant (e.g., 92US077)(Parren et al.,
1998). Arguably, the efficacy of HIV-1 neutralization particularly when evalu-
ating candidate vaccines should be assessed with primary isolates of intermedi-
ate neutralization sensitivity and not with one of the outliers.

THE NEUTRALIZING ANTIBODY RESPONSE TO THE HIV-1
ENVELOPE COMPLEX

 With the recent elucidation of the X-ray crystal structure of gp120

(Kwong et al., 1998), together with earlier mutagenic and antibody competition
studies (Moore and Sodroski, 1996; Ditzel et al., 1997), an antigenic surface map
could be constructed, on which the spatial positioning of the neutralizing and
non-neutralizing epitopes are revealed (Wyatt et al., 1998). Neutralizing epitopes
on gp120 map to the surface of the envelope complex that is exposed in the
oligomeric configuration and faces the target cell. For TCLA HIV-1 isolates
strains the neutralizing epitopes include the CD4 and the co-receptor binding-
sites, the V2 and V3 loops and the unique 2G12 epitope (Table 1). Far fewer
epitopes are accessible on the mature envelope of primary isolates and neutral-
ization of a range of isolates has only been observed with mAb b12 which
recognizes the CD4bs and residues of the V2 loop (Burton et al., 1994; Roben
et al., 1994; Mo et al., 1997) and mAb 2G12 which recognizes an epitope at the
base of V3 and V4 loop.

Table 1. Neutralizing epitopes exposed on HIV-1 mature oligomeric
envelope

Neutralization of
Epitope TCLA Primary
recognized Antibodies strains isolates

gp120
V3 loop2, 19b, 447/52D Yes No

CD4bs F105, 21h, 15e Yes No
CD4bs/V2 b12 Yes Yes

CD4i 17b, 48d Yes No

V2 C108G Yes No1

L15, 697D No No2

base of V3 2G12 Yes Yes
 and V4 loop

gp41
ELDKWA (residues 2F5 Yes Yes
 662–667)

1 Strain specific neutralization
2 Some weakly
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 An antigenic surface map has also been proposed for gp41 albeit less
complete than for gp120 (Binley et al., 1996; Earl et al., 1997). These studies
identified at least three conformational dependent epitope clusters present on
native gp41, termed cluster I-III. Antibodies to epitope clusters I and II are
readily detectable in sera from HIV-1 infected individuals, but most studies show
that none of the three clusters neutralize TCLA strains or primary isolates at
biologically relevant concentration (Sattentau et al., 1995; Binley et al., 1996).
Presumably these epitopes are masked by the gp120 molecules in the mature
oligomeric envelope complex and thus inaccessible for antibody binding. The
only epitope that is exposed on mature oligomeric (gp120-associated) gp41 is
defined by the neutralizing mAb 2F5 and is located in the membrane proximal
part of the ectodomain of gp41 (Table 1 and Muster et al., 1993; Muster et al.,
1994; Sattentau et al., 1995). Studies from one lab have suggested a neutralizing
epitope within the cytoplasmic domain of gp41 (Chanh et al., 1986; Dalgleish et
al., 1988; Evans et al., 1989), however this has not been confirmed by others
(D’Souza et al., 1994; D’Souza et al., 1995).

NEUTRALIZING EPITOPES

 V3

The third variable (V3) loop of gp120 was originally termed the principal
neutralizing domain (PND), due to its dominant role in the neutralization of
TCLA strains by sera from HIV-1 infected individuals and gp120 vaccine
recipients. In contrast to the dominant role V3 loop specific mAbs play in TCLA
strain neutralization, their role in primary isolate neutralization is insignificant
(VanCott et al., 1995; Spenlehauer et al., 1998). This inability of V3 loop
specific mAbs to neutralize primary isolates is thought to result from the relative
inaccessibility of the V3 loop in the native oligomeric envelope complex of
primary isolates as compared to that of TCLA strains (Bou-Habib et al., 1994).
Furthermore, because of the hyper-variability of the V3 loop, the mAbs to this
epitope display a highly strain-specific neutralizing activity.

 Binding studies with monomeric gp120-CD4 complexes have demon-
strated that mAbs to the V3 loop inhibit the interaction of this complex with the
co-receptor (Wu et al., 1996; Trkola et al., 1996a; Hill et al., 1997). Although
this would suggest neutralization at a post-attachment stage on intact virions,
anti-V3 loop antibodies neutralize TCLA viruses by inhibiting HIV-1 attach-
ment to the target cell (Ugolini et al., 1997; Valenzuela et al., 1997).

 CD4bd
The majority of antibodies to gp120 recognizes discontinuous or confor-

mationally sensitive epitopes, of which the CD4 binding domain (CD4bd) is the
most prevalent (Moore and Ho, 1993). This epitope is defined by mAbs that
competitively inhibit sCD4 binding to monomeric gp120. As with the anti-V3
loop antibodies, early neutralization experiments were biased by the use of
neutralization sensitive TCLA strains. It has become evident that the majority of
CD4bd antibodies that could neutralize TCLA strains were unable to neutralize
primary isolates, with the exception of mAb b12. MAb b12 recognizes a
conformation dependent epitope that overlaps the CD4bs with some involve-
ment of the V2 loop (Roben et al., 1994; Mo et al., 1997). Uniquely among the
CD4bd specific mAbs, b12 binds equivalently or better to the oligomeric form
of the envelope glycoprotein (Roben et al., 1994; Fouts et al., 1997).

 CD4i
A highly conserved but poorly immunogenic epitope is defined by mAbs

that bind better to gp120 upon complexation with CD4. These antibodies, like
17b and 48d (Thali et al., 1993; Wyatt et al., 1995), were shown to inhibit the
interaction of the gp120-CD4 complex with CCR5 (Wu et al., 1996; Trkola et
al., 1996a), suggesting that the epitope was located in or near the co-receptor
binding site. Mutational studies later confirmed that residues within the CD4i
epitopes were crucial for co-receptor binding (Rizzuto et al., 1998). These
residues are located primarily in the bridging sheet and may involve some
residues in the V3 loop. Next to the obvious blocking of co-receptor binding,
antibodies to CD4i epitopes have been shown to induce gp120 dissociation from
gp41 (Poignard et al., 1996a). Like the V3 loop, the CD4i epitope is a
neutralizing epitope only on TCLA strains of HIV-1. Neutralization of primary
isolates by mAbs against the CD4i epitope has not been observed.

 V2
MAbs to the V1/V2 stemloop structure generally recognize conforma-

tional epitopes which are located in the central region of the V2 loop (Moore et
al., 1993; McKeating et al., 1993; Gorny et al., 1994) and have been shown to
neutralize TCLA strains relatively well (Warrier et al., 1994). So far mAbs to the
V1 part of the stemloop structure have not been identified. Two mAbs directed
against the V2 loop have been reported to be able to neutralize primary isolates
(Gorny et al., 1994; Vijh-Warrier et al., 1996), although the range of isolates that
can be neutralized is very limited (Pinter et al., 1998). The sequence variability,
as with the V3 loop, and additionally a substantial length polymorphism make
this epitope very strain specific (Wang et al., 1995).
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2G12
Antibody competition studies identified a unique competition group that

included a single antibody, 2G12 (Trkola et al., 1996b). Based on results from
studies involving glycosidase treatment of gp120 and mutagenic alteration of
N-linked carbohydrate sites, the epitope of this antibody is located at the base
of the V3 and V4 loop and probably involves carbohydrate structures in the C2,
C3, C4 and V4 domains (Trkola et al., 1996b). The inclusion of carbohydrate
structures in the epitope might explain the rarity of this mAb. The 2G12 epitope
is predicted to be oriented towards the target cell upon CD4 binding. This would
allow the antibody to sterically impair further interactions of the membrane
complex with the target cell.

 2F5
The only gp41 specific mAb that displays neutralizing activity is 2F5

(Muster et al., 1993; Muster et al., 1994; Conley et al., 1994; Burton, 1997).
This antibody recognizes an epitope that has been mapped to the linear sequence
ELDKWA, which is located in the membrane proximal part of the ectodomain
(residues 662–667) (Muster et al., 1993) and is the only epitope on gp41 that is
exposed on the native oligomeric conformation of the HIV-1 envelope glyco-
protein complex (Muster et al., 1993; Muster et al., 1994; Sattentau et al., 1995).
MAb 2F5 does not interfere with virus attachment to the target cell, but
neutralizes at a later stage (Ugolini et al., 1997).

 NEUTRALIZATION MECHANISMS

The principal mechanism of antibody-mediated neutralization for
HIV-1 is the inhibition of attachment of the virus to the target cell (Ugolini
et al., 1997). This was found to be independent of the epitope cluster
recognized by the neutralizing mAb (Parren et al., 1998).

 Several mechanisms to inhibit attachment can be envisioned and
have been proposed (Dimmock, 1995). Aggregation has been shown to be
effective in neutralizing poliovirus or human rhinovirus (reviewed in
Dimmock, 1995), however the observations that monovalent ligands neu-
tralize as well as bivalent ones argues against a role of this mechanism in
HIV-1 neutralization (Parren et al., 1998). Furthermore, the bell-shaped
curve associated with this mechanism has not been described for HIV-1
(McLain and Dimmock, 1994) and aggregates could not be recovered in
neutralizing antibody-treated HIV-1 preparations (McDougal et al., 1996).
The absence of neutralization of amphotropic murine leukemia virus

(AMLV) envelope-mediated infection of AMLV/HIV-1 envelope
pseudotyped virions by a neutralizing antibody against HIV-1 finally
suggests that virion aggregation is not a neutralization mechanism for
HIV-1 (Schønning et al., 1999).

 With one observed exception all effectively HIV-1-neutralizing
mAbs block virus attachment to the target cell either by inhibiting the
interaction with CD4 or the co-receptor (Wu et al., 1996; Trkola et al.,
1996a; Ugolini et al., 1997). The absence of an epitope bias suggests that
any antibody capable of binding to the limited surface of gp120 that is
exposed in the mature oligomer (Fig. 1C) can effectively block interaction
with the receptor binding sites (Parren et al., 1998). For attachment of
virus to the target cell to occur, presumably multiple contacts in a localized
area must be established. Coating of the viral surface with antibodies
obstructs the close approach of the virus to the target cell, thereby
preventing attachment and initiation of a fusion event (Parren et al., 1998).
Such a mechanism is in good agreement with an elegant study on stoichi-
ometry of mAb mediated neutralization. In this study, neutralization could
be explained with an incremental model in which neutralization occurs
incrementally as each envelope molecule binds mAb (Schønning et al.,
1999). Although the studies above were performed with TCLA strains of
HIV-1 rather than primary isolates for practical reasons, there is no
indication that the general conclusions from these studies do not apply to
primary isolates. To explain the relative neutralization resistance of
primary isolates compared to TCLA strains, a theoretical model has been
proposed (Klasse and Moore, 1996). It predicts that neutralization is the
result of the reduction of the number of functional envelope molecules
below a critical threshold. Neutralization resistance of primary isolates is
explained by affinity of antibodies to primary isolate envelope and a
higher number of envelope spikes per primary isolate virion (Klasse and
Moore, 1996). Envelope density as a modifier of neutralization however
is not consistent with an incremental model (Schønning et al., 1999). It has
been demonstrated furthermore that neither increased spike density nor
spike stability could account for the neutralization resistance of primary
isolates (Karlsson et al., 1996). The mechanism of primary isolate neutral-
ization and neutralization resistance therefore require further study. Con-
vincing data however support an incremental mechanism in which coating
of virions with antibody prevent attachment to the target cell and neutral-
ization potency is determined by antibody affinity for the mature envelope
oligomer.
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 The one exception on the principal neutralization mechanism is consti-
tuted by the gp41 specific mAb 2F5, which does not inhibit virus attachment to
the target cell, but neutralizes at a later stage (Ugolini et al., 1997). The exact
mechanism by which this epitope mediates neutralization of the virus is unclear,
but the epitope is located near a conserved tryptophan-rich region that has been
implemented in env-mediated fusion (Salzwedel et al., 1999). Mutations in the
epitope had only a limited effect on cell-cell fusion, which makes it unlikely that
this epitope is directly involved in the fusion process (Salzwedel et al., 1999). A
hypothetical mechanism for neutralization could be that 2F5 interferes at some
stage with the completion of the transition of the non-fusogenic state to the post-
fusion state (Binley and Moore, 1997; Chan and Kim, 1998).

RELEVANCE OF IN VITRO NEUTRALIZATION DATA

 The neutralizing activity of a mAb is measured in vitro in the absence
of complement and antibody-dependent cell-mediated cytotoxicity. This
would suggest an underestimation of the neutralizing efficacy of a mAb in
vivo. However with the emergence of more data on the inactivation of the
virus in animal models, it has become clear that there is generally a good
correlation between the in vitro and in vivo results (Parren et al., 1995;
Gauduin et al., 1995; Gauduin et al., 1997; Mascola et al., 1999; Shibata et
al., 1999). The studies show that when a mAb is capable of neutralizing the
challenge virus in vitro , sterilizing immunity can be obtained at concentra-
tions in the order of 1–2 logs greater than those needed for 90 neutralization
in vitro (Parren et al., 1997). To achieve protection, serum neutralizing
antibody levels that are sufficient to inactivate virtually all the virus in an
in vitro assay need to be achieved. Failure to obtain adequate antibody titers
leads to establishment of infection and cell-to-cell virus transmission,
which requires considerable higher antibody concentrations than those
needed to block cell-free virus (Pantaleo et al., 1995). Once HIV-1 infection
is established, even high levels of neutralizing antibody have no or only very
limited effects on an ongoing infection (Poignard et al., 1999). This is not
to say that pre-existing neutralizing antibody concentrations below the
levels that would provide sterilizing immunity have no effect upon viral
challenge. Studies on murine retroviruses and other RNA viruses have
indicated that a reduction of the viral inoculum by neutralizing antibodies
may provide a benefit by giving time to the cellular immune response to
develop (Planz et al., 1997; Baldridge et al., 1997; Dittmer et al., 1998;
Parren et al., 1999; Dittmer et al., 1999a; Dittmer et al., 1999b). A reduction

of pathogenicity has furthermore been observed in passive neutralizing
antibody transfer studies in macaques and chimpanzees. (Conley et al.,
1996; Mascola et al., 1999).

ADDITIONAL EFFECTS OF POLYCLONALITY

 The HIV-1 neutralizing activity found in the polyclonal antisera from
infected individuals is the combined result of the neutralizing abilities of the
distinct Abs. A handful of studies have looked at the combined effects of mAbs
with different specificities on the neutralization of TCLA strains (Kennedy et al.,
1991; McKeating et al., 1992; Tilley et al., 1992; Potts et al., 1993; Laal et al.,
1994; Vijh-Warrier et al., 1996) and primary isolates (Mascola et al., 1997) in
vitro. These studies demonstrate a neutralizing effect that is greater than the sum
of separate neutralizing abilities of the tested Abs, or synergy. However, the
observed synergy is generally weak and could only be shown with mathematical
models. The biological relevance of this mechanism is unknown, as it is hard to
interpret the situation in vivo. One passive antibody transfer study which
assessed the combination of two neutralizing mAbs (2F5 and 2G12) together
with HIVIG in a model with SHIV89.6PD in pigtail macaques, demonstrated a
general correlation between the synergistic effects on neutralization observed in
vitro and the protection in vivo (Mascola et al., 1997; Mascola et al., 1999). In
severe combined immunodeficient mice reconstituted with human peripheral
blood lymphocytes (hu-PBL-SCID mice), a cocktail of 2F5, 2G12 and b12
reduced the viral RNA titer during established infection, whereas b12 alone had
no detectable effect (Poignard et al., 1999). This synergy however can be
explained by the necessity of individual viruses to acquire multiple amino acid
mutations for neutralization escape rather than by binding cooperativity effects.

NOVEL NEUTRALIZING EPITOPES

 The primary isolate neutralizing antibodies identified so far are directed
to epitopes which are present on the resting oligomeric envelope. It may be
envisioned that epitopes which are exposed on the activated (after CD4 binding)
or fusogenic state of the membrane complex (after complexation with the co-
receptor) are interesting targets for antibody neutralization. The main epitope
that becomes exposed after interaction with CD4 is the CD4i epitope overlapping
the co-receptor binding-site. MAbs to this epitope isolated to date do not display
primary isolate neutralizing activity at relevant concentrations. It can however
not be excluded that more potent antibodies do exist.
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 The fusiogenic state of gp41 has previously been identified as a target for
neutralization by studies using peptides that mimic the carboxyterminal helices
of gp41 (Jiang et al., 1993; Wild et al., 1994). The peptides were able to inhibit
the fusion process quite efficiently. It is possible that the dimensions of a full
immunoglobulin molecule are a limiting factor in the accessibility of these
neutralization sensitive sites. However, a recent study in which fusing cells were
fixed using formalin, suggests the presence of yet unidentified neutralizing
epitopes on the fusogenic state of the membrane complex (LaCasse et al., 1999).
This observation suggests that the rarity of these types of antibodies may be due
to a temporal rather than a physical constraint. However, to date no definite proof
has been provided that the mouse sera recognize epitopes on the viral proteins
and not cellular antigens (Montefiori and Moore, 1999).

NON-ENVELOPE MEDIATED NEUTRALIZATION

 Several examples of neutralization in vitro have been described, which are
mediated by antibodies that are not directed to the envelope complex. The
majority of non-envelope neutralizing antibodies is directed at cellular mem-
brane proteins. During the budding process HIV-1 acquires a variety of cellular
proteins on its membrane (Arthur et al., 1992; Tremblay et al., 1998), although
the diversity of the proteins present on the membrane is probably an overestima-
tion due to contamination of the virion preparations with microparticles (Raposo
et al., 1996; Gluschankof et al., 1997; Bess et al., 1997; Dettenhofer and Yu,
1999). Antibodies to several of these host cell derived proteins have been shown
to neutralize in vitro. Most notable are the antibodies to the receptor-ligand pair
ICAM-1 (intercellular adhesion molecule-1; CD54) and LFA-1 (leukocyte
function-associated molecule-1; CD11a/CD18) (Gomez and Hildreth, 1995;
Rizzuto and Sodroski, 1997). Also antibodies to HLA-DR, β2-microglobuline
and HLA class I have been shown to neutralize in vitro (Arthur et al., 1992). As
inhibition of attachment is a major mechanism of neutralization of HIV-1
(Ugolini et al., 1997) it may be that antibodies to these proteins present on the
virion membrane interfere with binding of the envelope complex to the receptors
on the target cell. Alternatively, the incorporation of MHC class II enhances
virus entry into the target cell (Cantin et al., 1997). By blocking this interaction
the infection process is less effective, which may contribute to the neutralizing
activity observed.

 Protection against infection with SIV grown in human cells has been
consistently observed in monkeys after active or passive immunization against
host cell components (Arthur et al., 1995; Stott and Schild, 1996). The impor-

tance of antibody mediated neutralization via these self-antigens in humans is
unclear. It is suggestive that the extent of HLA mismatch between mother and
child and relative rarity of certain HLA haplotypes in commercial sex workers
have been shown to correlate with the risk for seroconversion. However,
antibodies against HLA class I allotypes do not appear to contribute to resistance
against HIV-1 infection in exposed uninfected sex workers (reviewed in Plummer
et al., 1999).

 Host-derived cyclophilin A is specifically incorporated into HIV-1 viri-
ons through interactions with the gag protein and is required for infection. It has
been suggested that cyclophilin A may play a role in virus-cell fusion and that
antibodies against cyclophilin A may inhibit HIV-1 infection (Sherry et al.,
1998). Additional studies however are necessary to explain how cyclophilin A,
which is localized inside the virion, may become accessible to neutralizing
antibodies. It has been suggested that anti-cyclophilin A antibodies could play
a role in a vaccine against HIV-1 (Sherry et al., 1998). As cyclophilin A is a self-
protein, however, it is very unlikely that effective and safe responses could be
elicited.

 During natural infection the viral regulatory protein Tat is released from
productively infected cells (Ensoli et al., 1993; Westendorp et al., 1995; Chang
et al., 1997) where in turn it may transactivate virus replication in the neighbor-
ing cells (Frankel and Pabo, 1988; Ensoli et al., 1993). Extracellular Tat also
induces co-receptor expression and thereby facilitating HIV-1 transmission (Li
et al., 1997; Huang et al., 1998). Antibodies against Tat were shown to inhibit
HIV-1IIIb replication in vitro and correlate with non-progression in vivo (Re et
al., 1995; Zagury et al., 1998). These results indicate a possible role for anti-Tat
antibodies in controlling HIV-1 infection. In a study in cynomolgus monkeys
vaccinated with a Tat vaccine however control of pathogenic SHIV89.6P infection
did not correlate with Tat-neutralizing antibody levels (Cafaro et al., 1999).

CONCLUSIONS

 HIV-1 sensitivity to neutralization is determined to some extent by the cell
in which the virus was grown, less so by the target cell and co-receptor used.
Increased accessibility of epitopes on the mature oligomeric envelope of TCLA
viruses probably determines their relative sensitivity to neutralization as com-
pared to primary isolates (summarized in Fig. 1). The principal mechanism of
neutralization of HIV-1 most likely is an incremental mechanism in which
coating of virions with antibody prevents attachment to the target cell and
neutralization potency is determined by antibody affinity for the mature enve-
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lope oligomer.
 A number of common neutralizing epitopes have been identified on

TCLA HIV-1 gp120. Most of these epitopes, however, including relatively
immunogenic epitopes overlapping the CD4bs and V3 loop have shown to be
mostly irrelevant for the neutralization of HIV-1 primary isolates. Only two
epitopes on gp120 appear to be accessible on primary isolate envelope and
conserved on a broad spectrum of isolates: an epitope which involves residues
of the CD4bs and the V2 loop recognized by mAb b12 and an epitope at the base
of V3 and V4 loop recognized by mAb 2G12. Both these epitopes are poorly
immunogenic and antibodies with b12 and 2G12 specificity are rarely elicited in
the humoral response after HIV-1 infection. A single neutralizing epitope has
been defined on HIV-1 gp41. This epitope recognized by mAb 2F5 is relatively
conserved, poorly immunogenic and is accessible on TCLA as well as primary
isolate oligomeric envelope.

 Neutralization of HIV-1 in vitro is a good measure of the antiviral activity
of a given antibody preparation. There is a good correlation between neutraliza-
tion in vitro and protection: antibody concentrations that neutralize all the
challenge virus in an in vitro assay can provide sterilizing immunity in vivo. Pre-
existing neutralizing antibody concentrations at insufficient levels to provide
sterilizing immunity may decrease pathogenicity by reducing the viral inoculum
and clearing infected cells, thereby allowing more time for the cellular immune
response to mature. Once HIV-1 infection is established, however, even high
levels of neutralizing antibody have no or only very limited effects on an ongoing
infection.

 There are many indications that a vaccine that would effectively elicit
high affinity antibodies against conserved epitopes accessible on mature oligo-
meric envelope of HIV-1 primary isolates would have a major impact on HIV-
1 transmission. Poorly immunogenic epitopes defined by mAb b12, 2G12 and
2F5, represent the relevant vaccine targets on the HIV-1 envelope structure
identified to date.
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