Table 3: **p24** | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|--|--|---|-------------------------------------|-----------------------------------|--|--| | p24(8–20) | p24(140–152 IIIB) • Fine specificity of hu | GQMVHQAISPRTL
man Cw3 restricted Gag CTL epitope | HIV-1 infection | human(Cw3) | [Littaua (1991)] | | | | p24(8–27) | p24(140–159) • CTL specific for this | GQMVHQAISPRTLNAWVKVV epitope were found in the peripheral b | HIV-1 infection lood but not cervical m | human(B14)
nucosa of one donor | [Musey (1997)] | | | | p24(11–32) | p24(143–164 BH10) | VHQAISPRTLNAWVKVV-
EEKAF | HIV-1 infection | human(Bw57) | [Johnson (1991)] | | | | | Gag CTL response st | udied in three individuals | | | | | | | p24(12–20) | Gag(146–154) | HQAISPRTL | HIV-1 infection | chimpanzee(Patr-B*02) | [Balla-Jhagjhoorsingh
(1999b)] | | | | p24(13–23) | p24(145–155 LAI) | Patr-B*02 are distinctive QAISPRTLNAW this is a A*2501 epitope in the 1999 of | latabase, Pers. Comm. | human(A*2501) I. Kurane and K. West | [Kurane & West(1998)] | | | | p24(13–23) | | | latabase, Pers. Comm. | | [Kurane & West(1998)] | | | | p24(15–23) | p24(147–155 IIIB) | ISPRTLNAW | HIV-1 infection | human(B*5701,
B*5801) | [Goulder (1996b)] | | | | | Five slow progressors made a response to this epitope, and in two it was the dominant response Peptide defined on the basis of B*5801 binding motif, yet not cross-restricted except at high concentrations Described as B*5701 in C. Brander <i>et al.</i>, this database, 1999 | | | | | | | | p24(15–23) | Gag(147–155 LAI) | ISPRTLNAW | HIV-1 infection | human(B*5701
B*5801) | [Klein (1998)] | | | | | | ted with long term non-progression in I CTL response in HLA B*5701 LTS | | | | | | | p24(16-24) | p24(148–156) • Optimal peptide map | SPRTLNAWV | | human(B7,B*0702) | [Brander & Walker(1997b)] | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | | |----------------------|--|--|---|--|--|--|--|--| | p24(16–24) | Seroprevalence inMost isolated HIV however stronger in | SPRTLNAWV were found in exposed seronegative pr this cohort is 90-95% and their HIV-1 of strains are clade A in Nairobi, although responses are frequently observed using served among A, B, and D clade virus | exposure is among the high clades C and D are also g A or D clade versions of | ghest in the world
found – B clade epitopes | | | | | | p24(19–27) | p24(151–159) • Study of sequence | TLNAWVKVV motifs preferred for peptide binding to | HIV-1 infection | human(A2) | [Parker (1992), Parker (1994)] | | | | | p24(19–27) | p24() TLNAWVKVV HIV-1 exposure human(A2, A*0202) [Rowland-Jones (1998b)] • HIV specific-CTL were found in exposed seronegative prostitutes from Nairobi – these CTL may confer protection • Seroprevalence in this cohort is 90-95% and their HIV-1 exposure is among the highest in the world • Most isolated HIV strains are clade A in Nairobi, although clades C and D are also found – B clade epitopes are often cross-reactive, however stronger responses are frequently observed using A or D clade versions of epitopes • This epitope is conserved among A, B and D clade viruses | | | | | | | | | p24(21–40) | 12 subjects had C7One of these 12 ha | NAWVKVVEEKAFSPEVIPMF ost had CTL specific for more than 1 HI ΓL that could recognize vaccinia express ad CTL response to this peptide bject was HLA-A2, B21 | • | human() | [Lieberman (1997a)] | | | | | p24(21–40) | p24(153–172 SF2) |) NAWVKVVEEKAFSPEVIPMF | HIV-1 Pr55gag
VLP with anchored
gp120 or V3+CD4
linear domains | Macaca mulatta() | [Wagner (1998b)] | | | | | | to either gp120 or
gp120 and was eli
Ab response, imm | nfectious virus-like particle self-assem V3+CD4 linear domains – gag and encited, but the gp120 neutralizing respounized macaques were infected by intenis epitope could be found both before | w specific CTL were stim
use occurred only with w
rvenous challenge with Si | nulated in each case, and
whole gp120, not V3+CD4
HIV chimeric challenge s | Ab response to gag and 4 – despite the CTL and | | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|---|--|---|---------------------| | p24(21–40) | them • The transferred CTI | NAWVKVVEEKAFSPEVIPMF effector cells was studied by expanding Ls migrated to the lymph nodes and trappropriate target sites and mediate anti- | nsiently reduced circulati | | | | p24(21–42) | p24(153–174 BH10 • Gag CTL response | NAWVKVVEEKAFSPEVI-
PMFSA
studied in three individuals | HIV-1 infection | human(Bw57) | [Johnson (1991)] | | p24(28–47) | p24(160–179) • Cervical and periph | EEKAFSPEVIPMFSALSEGA eral blood derived CTL clones from an | HIV-1 infection
HIV infected woman rec | human(B27)
cognized this epitope | [Musey (1997)] | | p24(30–37) | p24(162–170 LAI) • Described as B*570 | KAFSPEVI
33 in C. Brander <i>et al.</i> , this database, 19 | HIV-1 infection
1999, P. Goulder, submitted | human(B*5703,B57) | | | p24(30–40) | Peptide defined on tThis epitope is high | KAFSPEVIPMF cognized by CTL from five slow progrethe basis of B*5801 binding motif, yet ly conserved 01 in C. Brander <i>et al.</i> , this database, 19 | not cross-restricted excep | human(B*5701) of at high concentrations | [Goulder (1996b)] | | p24(30–40) | p24(162–172 LAI) • Described as B*570 | KAFSPEVIPMF
3 in C. Brander <i>et al.</i> , this database, 19 | HIV-1 infection
999, P. Goulder, submitted | human(B*5703,B57) | | | p24(31–50) | p24(163–182) • HIV-specific CTL li | AFSPEVIPMFSALSEGATPQ ines developed by <i>ex vivo</i> stimulation w | HIV infection with peptide | human() | [Lieberman (1995)] | | p24(31–50) | 12 subjects had CTIOne of these 12 had | AFSPEVIPMFSALSEGATPQ
t had CTL specific for more than 1 HIV
L that could recognize vaccinia express
I CTL response to this peptide
ject was HLA-A2, B21 | * | human() | [Lieberman (1997a)] | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|--|--|--------------------------------------|---------------------------------------|------------------------------|--| | p24(31–50) | p24(163–182 SF2) • CTL expanded <i>ex viv</i> | AFSPEVIPMFSALSEGATPQ vo were later infused into HIV-1 infect | HIV-1 infection ed patients | human() | [Lieberman (1997b)] | | | p24(35–43) | Relatively conservedSuspected binding m | EVIPMFSAL epitope within Gag sequence AFSPE' epitope within B clade and in other claotif for HLA-A26 includes T or V and t this is a A*2601 epitope in the 1999 | ades
chor at position 2, negative | human(A*2601) e charge at position 1 | [Goulder (1996a)] | | | p24(36–43) | p24(168–175 LAI) | VIPMFSAL | | human(Cw*0102,Cw1) | [Goulder (1997c)] | | | p24(37–52) | • ' | IPMFSALSEGATPQDL
24 CTL epitopes recognized in 29 HIV | HIV-1 infection infected people | human(B12(44)) | [Buseyne (1993b)] | | | p24(37–52) | Vertical transmission Primary assays show Epitopes recognized | IPMFSALSEGATPQDL of HIV ranges from 13% to 39% ed cytotoxic activities against at least in five children were mapped using sy P2A+C+D2), had a CTL response to the | nthetic | human(B12) ected in 70% of infected c | [Buseyne (1993a)]
nildren | | | p24(41–60) | p24(173–192 SF2) SALSEGATPQDLNTMLNTVG HIV-1 infection human() [Lieberman (1997a)] • Of 25 patients, most had CTL specific for more than 1 HIV-1
protein • 12 subjects had CTL that could recognize vaccinia expressed LAI gag • Three of these 12 had CTL response to this peptide • The responding subjects were HLA-A3, A32, B7, B14; and HLA-A2, A3, B14, B44 | | | | | | | p24(41–60) | p24(173–192 SF2) • CTL expanded <i>ex viv</i> | SALSEGATPQDLNTMLNTVG vo were later infused into HIV-1 infect | HIV-1 infection ed patients | human() | [Lieberman (1997b)] | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|--|--|--------------------------------------|---|---------------------|--| | p24(41–60) | CTL responses in three infections all originate This CTL epitope is prallele found in African | SALSEGATPQDLNMMLNIVG e individuals with non-clade B infecti d in East Africa resented by B*8101 in one of the pati s, and the epitope has yet to be mappe in subtype A relative to subtypes B, C | ents with an A subtype ed precisely | infection – B*8101 is a n | ewly discovered HLA | | | p24(41–62) | p24(173–194 BH10) • Gag CTL response study | SALSEGATPQDLNTMLN-
TVGGH
died in three individuals | HIV-1 infection | human(B14) | [Johnson (1991)] | | | p24(44–52) | p24(176–184) ■ Noted by C. Brander <i>e</i> | SEGATPQDL <i>t al.</i> , this database 1999, to be a B*40 | 01,B60 epitope, Pers. C | human(B*4001,B60)
Comm. A. Trocha and S. K | alams | | | p24(47–58) | p24(181–192) • HIV-2 epitope defined | CTPYDINQMLNC from an infection in the Gambia, Bert | HIV-2 infection coletti, Pers. Comm. | human(B58) | [Bertoletti(1998)] | | | p24(48–56) | had no delta 32 deletioIn Gambia there is expo
and the B35 allele seer | osure to both HIV-1 and HIV-2, CTL re | sponses to B35 epitopes | | | | | p24(48–56) | p24(180–188 IIIB) TPQDLNTML HIV-1 infection human(B7,B*0702) [Wilson (1999a)] • This study describes maternal CTL responses in the context of mother-to-infant transmission • Detection of CTL escape mutants in the mother was associated with transmission, but the CTL susceptible forms of the virus tended to be found in infected infants • No variants of this epitope were found in a non-transmitting mother that had a CTL response to this epitope • Noted in Brander 1999, this database, to be B*0702 | | | | | | | p24(48–56) | p24(180–188 LAI) • Defined as B*8101 in (| TPQDLNTML
C. Brander, 1999, this database, P. Go | HIV-1 infection ulder, submitted | human(B*8101,B81) | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|--|---|--|---|--| | p24(48–56) | Gag(173–181 HIV-2) • Noted in Brander 199 | TPYDINQML
9, this database, to be B*5301, B. Wi | HIV-2
lkes and D. Ruhl, Pers. | human(B*5301,B53)
Comm. | [Gotch (1993)] | | p24(49–57) | A sustained Gag, Env response Despite this being a w either it or p24 RAEQ | PQDLNTMLN L clones from 5 long term non-progre and Nef response was observed, and rell defined conserved epitope, none of ASQEV es that B14 and Cw8 are in linkage displacements. | clones were restricted b | y multiple HLA epitopes,
ones from a B-14 positive s | indicating a polyclonal | | p24(51–59) | p24(183–191 LAI) | DLNTMLNTV | HIV-1 infection | human(C*0802,
Cw8) | [McMichael &
Walker(1994)] | | | Recent evidence indictor to distinguish (P. Gould | epitopes – defined by B14 motif foundates this is a Cw8 epitope; B14 and Colder, personal communication) by C. Brander <i>et al.</i> , 1999, this datab | w8 are in linkage disequ | | enting molecule is hard | | p24(51–59) | | DLNTMLNTV ates this is a Cw8 eptiope; B14 and C | HIV-1 infection w8 are in linkage disequ | human(B14, Cw8) ilibrium and the HLA pres | [Nixon (1988), Johnson
(1992)]
enting molecule is hard | | p24(51–59) | p24() • A CTL response was a to be conserved in A a both subtypes are circ • The A subtype consen • The D subtype consen • Recent evidence indic | sus is identical to the B clade epitope | ould protect against both | A and D and confer prote | ection in Nairobi where | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|---|---|---|------------------------------| | p24(51–59) | p24() | DLNTMLNTV | HIV-1 exposure | human(Cw8,
B*1402) | [Rowland-Jones (1998b)] | | | Seroprevalence in the Most isolated HIV however stronger remains the This epitope is continuous. The Clade A version Recent evidence in the Clade A. | were found in exposed seronegative pathis cohort is 90-95% and their HIV-1 strains are clade A in Nairobi, althougesponses are frequently observed using served among B and D clade viruses on of the epitope, DLNNMLNIV, was dicated this is a Cw8 eptiope; B14 and foulder, personal communication) | exposure is among the high clades C and D are also g A or D clade versions of preferentially recognized | ghest in the world
found – B clade epitope
f epitopes
by CTL | es are often cross-reactive, | | p24(51–70) | 12 subjects had CTOne of these 12 ha | DLNTMLNTVGGHQAAMQM st had CTL specific for more than 1 HCL that could recognize vaccinia expred CTL response to this peptide bject was HLA-A26, A30, B38 | IIV-1 protein | human() | [Lieberman (1997a)] | | p24(61–69) | p24(193–201 LAI) • Optimal peptide de pers. comm. | GHQAAMQML efined by titration, noted by C. Brande | er et al., this database 1999 | human(B*3901,B39
9, to be a B*3901 epitop | , - | | p24(61–71) | p24(193–203 BRU • 1 of 4 epitopes firs | GHQAAMQMLKE
t predicted, then shown to stimulate H | HIV-1 infection ILA-A2 restricted CTL lin | human(A2) | [Claverie (1988)] | | p24(61–80) | 12 subjects had CTOne of these 12 ha | GHQAAMQMKETINEEAAEW
st had CTL specific for more than 1 H
L that could recognize vaccinia expre
d CTL response to this peptide
bject was HLA-A26, A30, B38 | IIV-1 protein | human() | [Lieberman (1997a)] | | p24(61–82) | p24(193–214 BH1 • Gag CTL response | 0) GHQAAMQMLKETINEEA-
AEWDR
studied in three individuals | HIV-1 infection | human(Bw52) | [Johnson (1991)] | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|--|---|---------------------------------|--|--|--| | p24(62–70) | p24(194–202 LAI) • P. Goulder, pers. co | HQAAMQMLK
mm. | | human(B52) | [Brander & Walker(1997a)] | | | p24(65–73) | p24(199–207 SF2) | AMQMLKETI | DNA plasmid immunization | murine(H-2K ^d) | [Selby (1997)] | | | | bacteriophage T7 pr | se to peptide observed after immuniza
comoter
red coadministration of rec vaccinia vir | - | | | | | p24(65–73) | p24(199–207 SF2) | AMQMLKETI | vaccinia expressing gag and pol | murine(H-2K ^d) | [Doe & Walker(1997)] | | | | Immunodominant nOptimal peptide wa | nurine CTL response to this peptide ob s defined | served after immunization | on with vaccine VVgagp | ool | | | p24(69–86) | Vertical transmissio Primary assays show Epitopes recognized | LKETINEEAAEWDRVPV n of HIV ranges from 13% to 39% wed cytotoxic activities against at least l in five children were mapped using sy C P2A) had a CTL response to four epi | ynthetic peptides and sec | | [Buseyne (1993a)]
d children | | | p24(71–80) | p24(203–212) ETINEEAAEW HIV-1 infection human(A*2501) [Klenerman (1996)] • The epitope was defined through direct
stimulation of PBMC with 20-mer peptides • It is in a conserved region, ETINEEAAEW is found in most B, D, and E subtype isolates • DTINEEAAEW is found in A and some D subtype sequences • C. Brander notes that this is a A*2501 epitope in the 1999 database | | | | | | | p24(71–80) | over this region wer | ETINEEAAEW B and D subtypes, variable in other cle not recognized by CTL recognizing at this is a A*2501 epitope in the 1999 | the index peptide | human(A*2501)
des A,C, F, G, and H an | [van Baalen (1996)]
d a peptide of HIV-2ROD | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|--|--|---|--------------|---|--| | p24(71–80) | had no delta 32 deIn Gambia there is and the B35 allele | eletion in CCR5 | ed African female sex workers i
V-2, CTL responses to B35 epito
vity, [van Baalen (1996)] | | | | | p24(71–90) | 12 subjects had COne of these 12 has |) ETINEEAAEWDRVHPV ost had CTL specific for more the TL that could recognize vaccinited CTL response to this peptide abject was HLA-A2, B21 | nan 1 HIV-1 protein
a expressed LAI gag | human() | [Lieberman (1997a)] | | | p24(83–92) | LHPVHAGPVA,LHPVHAGPIA, aLHPVHAGPIT, a | were used to define the range of a variant found in HIV-1 PH136 a variant found in HIV-1 RF, wa variant found in HIV-1 MN, wa | s also recognized | | [Sipsas (1997)]
lly infected with HIV-1 IIIB | | | p24(87–101) | | J) HAGPIAPGQMREPRG edicted then shown to stimulate | HIV-1 infection
HLA-A2 restricted CTL line | human(A2) | [Claverie (1988)] | | | p24(87–101) | Gag(219–233 LAI) HAGPIAPGQMREPRG HIV-1 infection human() [Buseyne (1993a)] • Vertical transmission of HIV ranges from 13% to 39% • Primary assays showed cytotoxic activities against at least one HIV protein was detected in 70% of infected children • Epitopes recognized in five children were mapped using synthetic peptides and secondary cultures • Patient EM28 (CDC P2A) had a CTL response to four epitopes in Gag | | | | | | | p24(91–110) | 12 subjects had COne of these 12 has |) IAPGQMREPRGSDIAGT ost had CTL specific for more the TL that could recognize vaccinicated CTL response to this peptide abject was HLA-A2, A24, B13, | nan 1 HIV-1 protein
a expressed LAI gag | human() | [Lieberman (1997a)] | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|---|---|--|---|--|--| | p24(101–120) | 12 subjects had CTIOne of these 12 had | GSDIAGTTSTLQEQIGWMTN t had CTL specific for more than 1 HIV L that could recognize vaccinia express I CTL response to this peptide tject was HLA-A26, A30, B38 | | human() | [Lieberman (1997a)] | | | | p24(108–117) | p24(240–249 LAI) | TSTLQEQIGWF | HIV-1 infection | human(B*5701,
B*5801) | [Goulder (1996b)] | | | | | For one donor (fron This epitope can be | itope was found in 4 slow progressing In Zimbabwe) this was defined as the oppresented in the context of the closely 11 in C. Brander <i>et al.</i> , this database, 19 | timal peptide related HLA molecules | | ry strong | | | | p24(108–117) | p24(241–250) TSTVEEQQIW HIV-2 infection human(B*5801,B58) [Bertoletti(1998)] • HIV-2 epitope defined from an infection in the Gambia, Bertoletti, Pers. Comm. • All HIV-2 sequences from the database are TSTVEEQIQW in this region, not TSTVEEQQW as in the paper • This epitope is specified as B*5801 in C. Brander <i>et al.</i> , 1999, this database | | | | | | | | p24(108–117) | p24() TSTLQEQIGW HIV exposure human(B58) [Rowland-Jones (1999)] CTL responses in seronegative highly HIV-exposed African female sex workers in Gambia and Nairobi were studied – these women had no delta 32 deletion in CCR5 In Gambia there is exposure to both HIV-1 and HIV-2, CTL responses to B35 epitopes in exposed uninfected women are cross-reactive, and the B35 allele seems to be protective HIV-2 sequence: TSTVEEQIQW, CTL are cross-reactive, [Bertoletti (1998)] | | | | | | | | p24(108–117) | dysregulation – suc populationNo direct CTL wasEpitope sequences | TSTLQEQIGW on six rare long term survivor HIV-infects th immunologically normal HIV-infects found in any of the six INHIs, but above were deduced from larger reactive peptivity against TSTLQEQIGW has been to | ed (INHI) cases occur at
we background CTLp act
tides based on HLA bind | t a frequency between 0.1
ivity was founded in 3/6 I
ding motifs – XSXXXXX | and 1% in the infected NHIs XXW is a B57 binding | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|--|--|---|--|--|--| | p24(108–117) | tution, thus HLA-B³ This can be an improgression [Goulde HIV-2 sequence: He cross-reactive with left to the epitope is TSTI | *5801+ individuals may have a
nunodominant eptiope in HL.
er (1996b)]
IIV-2 ROD has the epitope so
HIV-1 epitopes
LQEQIGW in HIV-1 B clade, | HIV-2 infection affected individuals have a dominan enhanced potential for cross- A-B57 and B*5801 infected in equence TSTVEEQIQW, and a and TSTVEEQIQW in HIV-2 R IIV-1 and HIV-2 cross-reactive of | protection between HIV
adividuals, and is associated CTL from a person | V-1 and HIV-2 ciated with long term non- | | | | p24(109–117) | Gag(241–249 LAI) | STLQEQIGW | HIV-1 infection | human(B*5701
B*5801) | [Klein (1998)] | | | | | | ated with long term non-progred CTL response in HLA B*5' | ression in the Amsterdam cohor
701 LTS were to RT and Gag | t | | | | | p24(121–135) | p24(253–267) • High frequency of n | NPPIPVGEIYKRWII nemory and effector Gag speci | HIV-1 infection ific CTL | human(B8) | [Gotch (1990)] | | | | p24(121–135) | p24(255–274 SF2) NPPIPVGEIYKRWII HIV-1 infection human(B8) [Phillips (1991), Goulder (1997a)] • Longitudinal study of CTL escape mutants – little variation was observed in the immunodominant B27 epitope, relative to B8 epitopes, which varied over time, in people with the appropriate HLA types • [Goulder (1997a)] is a review of immune escape that points out that there may be a protective effect associated with B27, and that HLA-B8 individuals tend to progress more rapidly than HLA B27 patients | | | | | | | | p24(121–140) | p24(253–272) • HIV-specific CTL li | NPPIPVGEIYKRWIILGLN nes developed by <i>ex vivo</i> stime | | human() | [Lieberman (1995)] | | | | p24(121–140) | 12 subjects had CTITwo of these 12 had | NPPIPVGEIYKRWIILGLN thad CTL specific for more th that could recognize vaccinia CTL response to this peptide jects were HLA-A2, A3, B8, E | an 1 HIV-1 protein
a expressed LAI gag | human() | [Lieberman (1997a)] | | | | p24(121–140) | p24(253–272 SF2) • CTL expanded <i>ex vi</i> | NPPIPGEIKRWIILGNIK vo were later infused into HIV | HIV-1 infection
7-1 infected patients | human() | [Lieberman (1997b)] | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---
--|--|--|-------------------------------| | p24(121–140) | p24(255–274 SF2) • Gag CTL epitope pre | NPPIPVGEIYKRWIILGLNK ecursor frequencies were estimated and | HIV-1 infection
I peptide mapping was | human()
performed | [van Baalen (1993)] | | p24(121–142) | 1 ' | NPPIPVGEIYKRWIILGLNKIV audied in three individuals | HIV-1 infection | human(B8) | [Johnson (1991)] | | p24(122–130) | p24(260–268 LAI) | PPIPVGDIY | HIV-1 or -2 infection | human(B*3501,B35) | [Rowland-Jones (1995)] | | | - | peptide by titration curve, PPIPVGEIY 99, this database, to be B*3501 | and HIV-2 form NPV | PVGNIY are also recogniz | ed | | p24(122–130) | this protocol does no with peptide-Class IThis peptide was one | PPIPVGDIY cocol was optimized for restimulation of stimulate a primary response, only stetramers e of the B35 presented test peptides us healthy B35 seronegative donors | econdary – peptide-spo | ecific CTLp counts could be | be obtained via staining | | p24(122–130) | p24(260–268 LAI) • Review of HIV CTL | PPIPVGDIY
epitopes | HIV-1 infection | human(B35) | [McMichael &
Walker(1994)] | | p24(122–130) | Seroprevalence in thi Most isolated HIV st
however stronger res This epitope is conse | PPIPVGEIY ere found in exposed seronegative prosess cohort is 90-95% and their HIV-1 exprains are clade A in Nairobi, although a ponsess are frequently observed using a rived among B and D clade viruses of the epitope, PPIPVGDIY, was prefer | posure is among the hi
clades C and D are also
A or D clade versions o | ghest in the world
found – B clade epitopes a
f epitopes | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|---|--|---------------------------------------|--| | p24(122–130) | had no delta 32 del In Gambia there is eand the B35 allele HIV-2 version of the | etion in CCR5 exposure to both HIV-1 and seems to be protective | posed African female sex workers in HIV-2, CTL responses to B35 epitopd: NPVPVGNIY, but the CTLs are c [1995)] | es in exposed uninfected | women are cross-reactive, | | p24(122–130) | p24(245–253 HIV- | 2) NPVPVGNIY | HIV-1 infection | human(B*3501) | [Rowland-Jones (1995)] | | p24(124–138) | p24(256–270 LAI) • Clustering of Gag p | | HIV-1 infection and in 29 HIV infected people | human(B8) | [Buseyne (1993b)] | | p24(124–138) | Primary assays shoEpitopes recognize | on of HIV ranges from 13%
wed cytotoxic activities ag
d in five children were map | | condary cultures | | | p24(127–135) | p24(261–269) • Predicted epitope b | GEIYKRWII based on B8 binding motifs | HIV-1 infection , from larger peptide NPPIPVGEIYI | human(B8)
KRWII | [Sutton (1993)] | | p24(127–135) | p24(259–267 LAI) • Naturally occurring | GEIYKRWII
g variant GDIYKRWII may | HIV-1 infection y act as antagonist | human(B8) | [Klenerman (1994)] | | p24(127–135) | p24(259–267) • Longitudinal study | GEIYKRWII
of CTL response and study | HIV-1 infection
y of immune escape – GDIYKRWII | human(B8)
could also stimulate CTI | [Nowak (1995)]
L, reactivity fluctuated | | p24(127–135) | p24(259–267) • Equivalent sequence | GEIYKRWII
ce GDIYKRWII also recog | HIV-1 infection nized by CTL from some donors | human(B8) | [McAdam (1995)] | | p24(127–135) | p24(259–267 SF2) • GDIYKRWII speci | GDIYKRWII ific CTL clone also recogni | HIV-1 infection ized GEIYKRWII | human(B*0801) | [McAdam (1998)] | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | | |---------------|---|---|---|--|---|--|--|--| | p24(127–135) | immature dendritic | GEIYKRWII virus CTL epitopes were used to stuce cells (iDC) and mature dendritic cellritic cells were superior to macropha | ls (mDC)) to prime CD8+ | lymphocytes | [Zarling (1999)]
nting cells (macrophages, | | | | | p24(128–135) | • | EIYKRWII of the B8 binding motif 1999, this database, to be B*0801 | | human(B*0801,B8) | [Goulder (1997g)] | | | | | p24(129–136) | p24(263–270 SF2) IYKRWIIL HIV-1 infection human(A*2402) [Ikeda-Moore (1997)] Defined using reverse immunogenetics – 59 HLA-A*2402 binding peptides were predicted by searching for A*2402 anchors in HIV proteins, (Tyr at 2, and Phe, Leu or Ile at the C term) – 53 of the 59 peptides bound A*2402 This peptide induced CTL in 1/4 HIV-1+ people tested IYKRWIIL bound to A*2402 with medium strength, the epitope can be processed in a vaccinia construct and presented – two specific CTL clones were obtained | | | | | | | | | p24(129–138) | p24(263–272 SF2) IYKRWIILGL HIV-1 infection human(A*2402) [Ikeda-Moore (1997)] • Defined using reverse immunogenetics – 59 HLA-A*2402 binding peptides were predicted by searching for A*2402 anchors in HIV proteins, (Tyr at 2, and Phe, Leu or Ile at the C term) – 53 of the 59 peptides bound A*2402 • This peptide induced CTL in 1/4 HIV-1+ people tested • IYKRWIILGL bound to A*2402 with medium strength, the epitope can be processed in a vaccinia construct and presented – two specific CTL clones were obtained | | | | | | | | | p24(130–148) | | YKRWIILGLNKIVRMYSPT control for HLA specificity | HIV-1 infection | human(B27) | [Dadaglio (1991)] | | | | | p24(131–139) | Gag(265–273) | KRWIILGLN | HIV-1 infection | chimpanzee(Patr-B*03) | [Balla-Jhagjhoorsingh
(1999b)] | | | | | | Of more than 150 c CTL responses were conserved epitopes The human HLA p | es are have been associated with long chimpanzees that have been reported re studied in two HIV-1 infected chims that are recognized in humans in the protein which presents this Patr-B*03 and Patr-B*03 are distinctive | to be infected with HIV-1, aps that have strong CTL recontext of HLA-B*27 and | only one has developed esponses, and they were fold HLA-B*57 | AIDS
ound to respond to highly | | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|--|--|---------------------------------------|--------------------------------|--|--| | p24(131–140) | | RRWIQLGLQK
, S. Rowland-Jones, Pers. Comm.
9, this database, to be B*2703, Pers. C | Comm. S. Rowland-Jone | human(B*2703,B27) | [Brander & Walker(1997a)] | | | | p24(131–140) | p24(263–272 LAI) • The capacity of dendard | KRWIILGLNK itic cells to process and present antiger | HIV-1 infection and stimulate anti-HIV | human(B27)
7-1 CTL memory response | [Fan (1997)]
es was studied | | | | p24(131–140) | p24(263–272 SF2) • Epitope invariant acro | KRWIILGLNK oss clades A, B, C, and D | HIV-1 infection | human(B*27) | [McAdam (1998)] | | | | p24(131–140) | expansion of HIV-speSeven HIV+ people v
controls | KRWIILGLNK re followed longitudinally using MHe cific T cells was followed in vivo were studied, and all showed expansion ollowed in detail, TCR VB expansions | ons of particular TCR I | 3V clones, often several, | relative to uninfected | | | | p24(131–140) | p24() • Described in this review | KRWIILGLNK ew as the first identified HIV CTL epit | HIV infection ope | human(B27) | [Rowland-Jones (1997)] | |
| | p24(131–140) | p24(263–272 LAI) KRWIILGLNK HIV-1 infection human(B*2705,B27) [Goulder (1997e), Goulder (1997a)] • HLA-B*2705 is associated with slow HIV disease progression • 11/11 HLA-B*2705 donors make a response to this epitope, usually an immunodominant response • This is a highly conserved epitope • The HLA-B*2705 binding motif includes R at position 2, and L in the C-term position • [Goulder (1997a)] is a review on CTL immune escape that discusses this epitope in the context of the difficulty in detection of immune escape – KRWIILGLNK and a R2K change, KKWIILGLNK, show little difference in titration curves, yet the K2 variants fail to bind to targets for more than 1 hour, while the R2 form can sensitize lysis by CTL for over 24 hours – minigene transfection experiments confirmed the importance of this for the CTL response | | | | | | | | p24(131–140) | | KRWIILGLNK
4 CTL epitopes recognized in 29 HIV i
9, this database, to be B*2705, Pers. C | | human(B*2705,B27) | [Buseyne (1993b)] | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | | |---------------|--------------------------------------|---|---------------------------------------|---|--|--|--|--| | p24(131–140) | p24(263–272 LAI) | KRWIILGLNK | HIV-1 infection | human(B27) | [McMichael &
Walker(1994)] | | | | | | • Review of HIV CTI | L epitopes | | | | | | | | p24(131–140) | p24(263–272) • Naturally occurring | KRWIIMGLNK variant KRWIILGLNK may act as ant | HIV-1 infection agonist | human(B27) | [Klenerman (1994)] | | | | | p24(131–140) | p24(263–272) • Naturally occurring | KRWIIMGLNK
variant KRWIILGLNK may act as ant | HIV-1 infection agonist | human(B27) | [Klenerman (1995)] | | | | | p24(131–140) | TCR usage showed | p24(265–274) KRWIILGLNK HIV infection human(B27) [Moss (1995)] • In one individual, TCR usage changed over time indicating that new populations of CTL can be recruited • TCR usage showed a CTL clonal response to this epitope that persisted over 5 years • CTL clones specific for HIV epitopes may represent between 0.2 and 1% of the total CD8+ population of T cells | | | | | | | | p24(131–140) | p24(265–276) • Included in HLA-B2 | KRWIILGLNK 27 binding peptide competition study | | human(B27) | [Carreno (1992)] | | | | | p24(131–140) | • [Goulder (1997a)] is | KRWIILGLNK of CTL escape mutants – little variation s a review of immune escape that poin s tend to progress more rapidly than HI | ts out that there may be | 1 1 | | | | | | p24(131–140) | abrogates binding to | KRWIILGLNK ons were introduced and viral viability b B27, but doesn't change viral viability s a review of immune escape that sumn | y in vitro | human(B27)
ted – an Arg to Lys chang | [Nietfeld (1995), Goulder (1997a)] e at anchor position P2 | | | | | p24(131–140) | p24(263–272) • Longitudinal study of | KRWIIMGNK of CTL response and immune escape – | HIV-1 infection
the form KRWIILGNK | human(B27)
was also found, and both | [Nowak (1995)]
forms stimulate CTL | | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|--|---|---|-----------------------------|--|--| | p24(131–140) | recombinant in expressed in va. Pol reactivity: Gag reactivity: Nef reactivity: Env reactivity: | fections) and one A subtype ccinia 8/8 had CTL to A subtype, an 7/8 reacted with A or B subtype, a reacted with A subtype, a | and 5/8 with B subtype, none with 1/8 with B subtype, none with HIV | n France originally from
was not tested
HIV-2 Nef | | | | | p24(131–140) | p24(263–272) KRWIIMGLNK HIV-1 infection human(B27) [Goulder (1997f), Gou (1997a)] • Six HLA-B27 donors studied make a strong response to this epitope • In 4/6 cases, this was the immunodominant or only CTL response • Two of the cases had an epitope switch to the form KKWIIMGLNK during a period of rapid decline to AIDS, following their asymptomatic period • The arginine to lysine switch is in an anchor residue, and results in immune escape due to severely diminished binding to the B27 molecule | | | | | | | | p24(131–140) | [Goulder (1997a)] is a review of immune escape that summarizes this study in the context of CTL escape to fixation p24() KRWIILGLNK human(B27) [Rowland-Jones (199 CTL responses in seronegative highly HIV-exposed African female sex workers in Gambia and Nairobi were studied – these women had no delta 32 deletion in CCR5 In Gambia there is exposure to both HIV-1 and HIV-2, CTL responses to B35 epitopes in exposed uninfected women are cross-reactive and the B35 allele seems to be protective HIV-2 sequence: RRWIQLGLQK – this epitope was not HIV-1 and HIV-2 cross-reactive | | | | | | | | p24(131–140) | Based on EpiM binding, and 122 of these 12 pe | fatrix predictions, 28 peptides of these were shown to bind eptides had been previously in | none, computer prediction prediction to identify possible HL s were synthesized and tested using to the predicted HLA molecule dentified as CTL epitopes: HLA-B geen clades, but is found in most B | ng a T2 binding assays 27 KRWILGLNK and 1 | for potential HLA A2 or B27 | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|--|---|---|--|--------------------------------------| | p24(131–140) | dysregulation – suc populationNo direct CTL was | KRWIILGLNK on six rare long term survivor HIV- h immunologically normal HIV-in found in any of the six INHIs, but were deduced from larger reactive p | fected (INHI) cases occur
above background CTLp a | at a frequency between
ctivity was founded in | 0.1 and 1% in the infected 3/6 INHIs | | p24(131–140) | Primary assays showEpitopes recognized | KRWILLGLNK In of HIV ranges from 13% to 39% Wed cytotoxic activities against at l I in five children were mapped usin C P2A) had a CTL response to four | east one HIV protein was days and set some set one HIV protein was days and set one was a HIV protein was days and | | [Buseyne (1993a)] | | p24(131–142) | p24(265–276) •
Epitope examined in | KRWIILGLNKIV n the context of peptide binding to | no CTL shown
HLA-B27 | human(B27) | [Jardetzky (1991)] | | 524(131–142) | p24(263–274 LAI) • The capacity of den | KRWIILGLNKIV
dritic cells to process and present a | HIV-1 infection antigen and stimulate anti-H | human(B27)
HIV-1 CTL memory res | [Fan (1997)]
ponses was studied | | p24(131–145) | | KRWIILGLNKIVRMY apped with rec gag-vaccinia and s IV-1 epitope to be mapped | rec gag-vaccinia
ynthetic peptides | human(B27) | [Nixon (1988)] | | 524(131–145) | p24(263–277 LAI) • Clustering of Gag p | KRWIILGLNKIVMRY
24 CTL epitopes recognized in 29 | HIV-1 infection
HIV infected people | human(A33) | [Buseyne (1993b)] | | p24(131–145) | p24(266–277 LAI) • Longitudinal study | KRWIILGLNKIVMRY showing persistence of epitope des | HIV-1 infection pite CTL activity | human(B27) | [Meyerhans (1991)] | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|--|--|--|------------------------|--|--|--| | p24(131–145) | p24(265–279) | KRWIILGLNKIVRMY | HIV-1 infection | human(B27) | [Nixon (1990), Rowland-
Jones (1999)] | | | | | | ross-reactive CTL clone, highly conser
and-Jones99, notes that it did not appea | | IV-2 in Rowland-Jones9 | 8, HIV-2 form: RRWIQL- | | | | p24(131–146) | p24(265–279)
• HLA-B27 restricted | KRWIILGLNKIVRMYC
d epitope also binds to HLA-A2 and H | HIV-1 infection
LA-B37 in solid phase | human(B27)
assay | [Bouillot (1989)] | | | | p24(131–150) | p24(265–284 SF2) • Gag CTL epitope p | KRWIILGLNKIVRMYSPTSI precursor frequencies estimated | HIV-1 infection | human(Bw62?) | [van Baalen (1993)] | | | | p24(131–150) | p24(263–282 SF2) KRWIILGLNKIVRMYSPTSI HIV-1 infection human() [Lieberman (1997a • Of 25 patients, most had CTL specific for more than 1 HIV-1 protein • 12 subjects had CTL that could recognize vaccinia expressed LAI gag • One of these 12 A-2 had CTL response to this peptide • The responding subject was HLA-A3, A32, B51, B62 | | | | | | | | p24(131–152) | - | 0) KRWIILGLNKIVRMYSPTSILD studied in three individuals | HIV-1 infection | human(Bw62) | [Johnson (1991)] | | | | p24(134–143) | p24() IILGLNKIVR HIV-1 exposure human(A33) [Rowland-Jones (199)] • HIV specific-CTL were found in exposed seronegative prostitutes from Nairobi – these CTL may confer protection • Seroprevalence in this cohort is 90-95% and their HIV-1 exposure is among the highest in the world • Most isolated HIV strains are clade A in Nairobi, although clades C and D are also found – B clade epitopes are often cross-reactive, however stronger responses are frequently observed using A or D clade versions of epitopes • This epitope is conserved among A, B and D clade viruses | | | | | | | | p24(136–145) | p24(268–277 LAI) | | Predicted from larger peptide | human(Bw62) | [McMichael &
Walker(1994)] | | | | | Review of HIV CTAlso P. Johnson, Pe | | | | | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |----------------------|--|---|---|--------------------------------------|-------------------------------|--|--| | p24(136–146) | A sustained Gag, Er responseA subject who was l | LGLNKIVRMYS TL clones from 5 long term non-prog av and Nef response was observed, and B62+ had CTL that recognized this perecognized this epitope used two differ | d clones were restricted beptide, p17 KIRLRPGGK | by multiple HLA epit | opes, indicating a polyclonal | | | | p24(137–145) | p24(272–280 LAI) GLNKIVRMY HIV-1 infection human(B62,B*1501) [Goulder (1997a)] • This paper is a review of CTL and immune evasion, but it presents a study of a shift from an HLA-A*0201 response to SLYNTVATL, to a B62 response to GLNKIVRMY • As long as a strong CTL response to SLYNTVATL was evident, the epitope variants SLFNTVATL or SLYNTIATL dominanted the viral population – eventually the CTL response to the index peptide became undetectable, the CTL response shifted to a focus on GLNKIVRMY, and the index peptide SLYNTVATL once again established itself as the dominant form • Noted in Brander 1999, this database, to be B*1501, Pers. Comm. P. Goulder | | | | | | | | p24(143–150) | | | | | | | | | p24(151–170) | p24(283–302 SF2) | LDIRQGPKEPFRDYVDRFYK | HIV-1 infection | human() | [McAdam (1998)] | | | | p24(155–177) | • The amino acids sho | QGPKEPFRDYVDRFYKT-
LRAEQA
th this synthetic peptide generated spe
own in the epitope field were based on
as shown to be located in positions 29 | the numbering provided | | | | | | p24(157–178) | p24(290-309) | PKEPFRDYVDRFYKTLRAEQAS eral blood derived CTL clones from a | HIV-1 infection | human(B14)
ecognized this epitope | [Musey (1997)] | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |----------------------|--|---|---|-------------------------------|---------------------| | p24(161–170) | p24() • Noted in Brander 199 | FRDYVDRFYK
99, this database, to be B*1801, FRDYV | HIV-1 infection
/DRFY | human(B*1801) | [Ogg (1998a)] | | p24(161–180) | 12 subjects had CTLOne of these 12 had 0 | FRDYVDRFYKTLRAEQASQD had CTL specific for more than 1 HIV-1 that could recognize vaccinia expressed CTL response to this peptide ect was HLA-A2, A3, B8, B62 | | human() | [Lieberman (1997a)] | | p24(161–180) | p24(293–312 SF2) • CTL expanded <i>ex viv</i> | FRDYVDRFYKTLRAEQASQD o were later infused into HIV-1 infected | HIV-1 infection l patients | human() | [Lieberman (1997b)] | | p24(161–180) | p24(293-312 SF2) | FRDYVDRFYKTLRAEQASQD | HIV-1 infection | human(B71) | [McAdam (1998)] | | p24(162–172) | p24(293–312 LAI) | RDYVDRFYKTL | HIV-1 infection | human(B*4402,B44,A
or B70) | .24(Ogg (1998a)] | | p24(162–172) | p24(296–306 Clade A | et al., 1999, this database, to be B*4402 A) RDYVDRFFKTL | HIV-1 infection | human(A*2402) | [Dorrell (1999)] | | | infections all originalThis epitope is similar additional Arg – the l | ree individuals with non-clade B infection in East Africa for to the A24 DYVDRYFKT epitope for B clade sequence change from F to Y distributes it a A*2402 epitope in the 1999 days | und for B subtype, but of minished CTL reactivity | CTL from this A subtype | •• | | p24(164–172) | infections all originat This CTL epitope is ovariants showed strop CTL reacted with targ | tee individuals with non-clade B infection ted in East Africa conserved in A and C subtype, and B classifications. | ade sequences tend to ha | we a change from F to Y, | YVDRFYKTL – both | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | | |---------------|--|--|--------------------------------------|---------------------------|---------------------------------|--|--|--| | p24(166–174) | • DRFYKILRA, a nati | DRFYKTLRA se
context of the Pediatric AIDS Foun surally occurring variant, was found in turally occurring variant, was found in | mother, and is recognize | ed although less reactive | [Wilson (1996)]
ission study | | | | | p24(166–174) | * * | DRFYKTLRA
de for clades B and D is DRFYKTLR
de for clades A and C is DRFFKTLR. | | human(B14) | [Cao (1997)] | | | | | p24(166–174) | A chimeric universal
the T cell receptor ch The response using
responses of CTL-ch | p24(298–306 HXB2) DRFYKTLRA HIV-1 infection human(B14) [Yang (1997b)] A chimeric universal T-cell receptor was created by linking CD4 or an HIV-specific anti-gp41 Ig sequence to the signaling domain of the T cell receptor chain ζ, and transducing into CD8+ cells The response using universal-receptor-bearing CD8+ cells to lyse infected cells <i>in vitro</i> was comparable to the natural occuring responses of CTL-clones from HIV+ individuals in terms of kinetics and efficiency A CTL clone specific for this epitope was used for the comparison | | | | | | | | p24(166–174) | to be conserved in A both subtypes are cir | ensus is identical to the B clade epitop | could protect against both | | | | | | | p24(166–174) | p24(298–306 LAI) • Noted in Brander 19 | DRFYKTLRA
99, this database, to be B*1402 | HIV-1 infection | human(B*1402,B14) | [Harrer (1996b)] | | | | | p24(166–174) | p24(298–306) DRFYKTLRA HIV-1 infection human(B14) [Yang (1996)] • CD4+ cell lines acutely infected with HIV were studied to determine their susceptibility to lysis by CTL • Clones specific for RT lysed HIV-1 infected cells at lower levels than Env or Gag specific clones • The distinction was thought to be due to lower expression of RT relative to Env and Gag • CTL can lyse infected cells early after infection, possibly prior to viral production | | | | | | | | | p24(166–174) | • CTL produced HIV- | DRFYKTLRA eplication at effector cell concentratio 1-suppressive soluble factors – MIP-1 eplication more efficiently in HLA-m | α , MIP-1 β , RANTES, a | | [Yang (1997a)]
tion | | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|---|--|---|---|--|--| | p24(166–174) | immature dendrition | cells (iDC) and mature den | in vitro stimulation sed to study the relative abilities of dritic cells (mDC)) to prime CD8+ lynacrophages in the primary stimulation | mphocytes | [Zarling (1999)]
senting cells (macrophages, | | | | p24(166–174) | Seroprevalence in Most isolated HIV however stronger r This epitope is cor The Clade A version | this cohort is 90-95% and the
strains are clade A in Nairol
esponses are frequently obsesserved among B and D clade
on of the epitope, DRFFKLT | HIV-1 exposure negative prostitutes from Nairobi – their HIV-1 exposure is among the high oi, although clades C and D are also ferved using A or D clade versions of e viruses RA, was preferentially recognized by exposed and uninfected prostitutes | nest in the world
ound – B clade epito
epitopes | protection | | | | p24(166–174) | had no delta 32 deIn Gambia there is and the B35 allele | etion in CCR5 exposure to both HIV-1 and H seems to be protective | osed African female sex workers in C
IIV-2, CTL responses to B35 epitopes
ve, [T (1993)] | | | | | | p24(166–174) | HIV-2 sequence: DRFYKSLRA is cross-reactive, [T (1993)] p24(298–306 IIIB) DRFYKTLRA HIV-1 infection human(B14) [Wilson (1999a)] This study describes maternal CTL responses in the context of mother-to-infant transmission Detection of CTL escape mutants in the mother was associated with transmission, but the CTL susceptible forms of the virus tended to be found in infected infants DRFYKILRA and DQFYKTLRA were escape mutants | | | | | | | | p24(166–175) | The immunodomin By testing mutation abolished viral info The epitope in this onco-viruses and y | ns in an HXB2 background, in the sectivity is study overlaps the major I | HIV-1 infection term survivor was to this highly constit was found that all mutations within nomology region for which highly columns. | the epitope that abro | gated CTL recognition also | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|--|---|---|--|--| | p24(173–181) | | RAEQASQEV
d as HLA-B14 restricted, but subsequen
A-Cw8 restricted (C. Brander and B. Wa | | human(Cw8) nted by cells transfected v | [Johnson (1991)]
with B14 | | p24(173–181) | to be conserved in both subtypes are c The A subtype con The D subtype con | RAEQASQEV ras found in exposed but uninfected pros A and D clades – such cross-reactivity of circulating asensus is RAeQAtQEV asensus is RAEQsQdV A-Cw8 restricted, not B14 as originally | could protect against both | h A and D and confer prot | ection in Nairobi where | | p24(173–181) | | RAEQASQEV released by HIV-1 specific activated CA-Cw8 restricted, not B14 as originally | | human(B14?) Walker, and S. Rowland-J | [Price (1995)] Jones, personal commu- | | p24(173–181) | A sustained Gag, I response Despite this being B-14 positive subjections | RAEQASQEV CTL clones from 5 long term non-progrems and Nef response was observed, and a well defined conserved epitope, and the ect could recognize either it or p24 PQEA-Cw8 restricted, not B14 as originally | I clones were restricted by
hought to be presented bo
DLNTMLN | by multiple HLA epitopes, by B14, none of the 11 gag | indicating a polyclonal g-specific clones from a | | p24(174–184) | p24(306–316 LAI) • Pers. Comm. from | AEQASQDVKNW D. Lewinsohn to C. Brander and B. Wa | alker, C Brander <i>et al.</i> , th | human(B*4402,B44)
nis database, 1999 | [Brander & Walker(1997b)] | | p24(174–184) | them • The transferred CT | AEQASQEVKNW Leffector cells was studied by expanding TLs migrated to the lymph nodes and tra appropriate target sites and mediate anti | nnsiently reduced circula | • | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|--|---|--|---------------------------|--|--| | p24(175–186) | with CD4 greater tTwo CTL lines froIsolation of CTLs | EQASQEVKNWMT men both as cell-associated and cell- han 500 – 3 of the men were analyzed m one donor recognized this eptiope specific to HIV in both male and fem osa, and the authors speculate that Coon | d in detail and had broad
al urinal tracts provide e | CTL to gag, env and pol vidence that virus-specifi | c lymphocytes come from | | | | p24(176–184) | p24(309–317 LAI) QASQEVKNW HIV-1 infection human(B*5701) [Goulder (1996b)] Recognition of this peptide by two long term non-progressors Peptide defined on the basis of B*5801 binding motif, yet not cross-restricted except at high concentrations Described as B*5701 in C. Brander <i>et al.</i>, this database, 1999 | | | | | | | | p24(176–184) | p24(308–316 LAI) QASQEVKNW HIV-1 infection human(B53) [Buseyne (1997)] Minimal sequence determined through epitope mapping This is a relatively conserved epitope HLA-Cw*0401 was defined as the restricting element, but
cells that carry Cw*0401 varied in their ability to present this epitope – this could be the result of diminished cell-surface expression of Cw*0401 in some cells The HLA presenting molecule for this epitope was originally described as Cw*0401, but subsequent experiments with a HLAB53+C4-cell line and with C1R cells transfected with HLA-B53 have shown that the HLA restricting element is HLA-B53 (Pers. Comm., Dr. Florence Buseyne, 2000) | | | | | | | | p24(181–190) | p24(313–322 LAI) | | | human(B8) | [Brander & Walker(1997a)] | | | | p2-4(101 170) | • P. Johnson pers. co | omm. | | | | | | | p24(191–205) | p24(323–337) | VQNANPDCKTILKAL defined (see also p17(21-35)) | HIV-1 infection | human(B8) | [Nixon & McMichael(1991)] | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|--|---|-----------------------------|----------------------------|---------------------|--|--| | p24(191–210) | p24(323–342 SF2) VQNANPDCKTILKALGPAAT HIV-1 infection human() [Lieberman (1997a)] • Of 25 patients, most had CTL specific for more than 1 HIV-1 protein • 12 subjects had CTL that could recognize vaccinia expressed LAI gag • Three of these 12 had CTL response to this peptide • The responding subjects were HLA-A3, A24, B8, B55; HLA-A1, A11, B8, B27 | | | | | | | | p24(191–210) | * ' | VQNANPDCKTILKALGPAAT vo were later infused into HIV-1 infect | HIV-1 infection ed patients | human() | [Lieberman (1997b)] | | | | p24(193–201) | Gag(327–335 SF2) NANPDCKTI HIV-1 infection human(B*5101) [Tomiyama (1999)] • HLA-B27, -B51, and -B57 are associated with slow progression to AIDS while HLA-B35,-B8,-B24 are associated with a rapid progression to AIDS (Nat. Med. 2:405, 1996; Lancet 22:1187, 1986; Hum Immunol 22:73, 1988; Hum Immunol 44:156, 1995) • 15% of Japanese populations carry HLA-B51 while HLA-B27 and -B57 are detected in less than 0.3% • Of the 172 HIV-1 peptides with HLA-B*5101 anchor residues, 33 bound to HLA-B*5101, seven of these peptides were reactive with CTL from 3 B*5101 positive individuals, and six were properly processed • Four of the six epitopes were highly conserved among B subtype sequences, NANPDCKTI is conserved | | | | | | | | p24(193–201) | p24(324–335 IIIB) NANPDCKTI HIV-1 infection human(B51) [Wilson (1999a)] This study describes maternal CTL responses in the context of mother-to-infant transmission Detection of CTL escape mutants in the mother was associated with transmission, but the CTL susceptible forms of the virus tended to be found in infected infants No variants of this epitope were found in a non-transmitting mother that had a CTL response to this epitope | | | | | | | | p24(195–202) | p24(323–342) NPDCKTIL HIV-1 infection human(B35) [Bernard (1998)] This study focuses on six rare long term survivor HIV-infected people who were infected for many years without exhibiting immune dysregulation – such immunologically normal HIV-infected (INHI) cases occur at a frequency between 0.1 and 1% in the infected population No direct CTL was found in any of the six INHIs, but above background CTLp activity was founded in 3/6 INHIs Epitope sequences were deduced from larger reactive peptides based on HLA binding motifs – XPXXXXXL is a B35 binding motif | | | | | | | | p24(197–205) | | DCKTILKAL used on B8 binding motifs, from larger 199, this database, to be B*0801 | peptide VQNANPDCKT | human(B*0801,B8)
TILKAL | [Sutton (1993)] | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|---|--|---|--|--|--| | p24(197–205) | p24(329–337) • In a longitudinal sturecognized | DCKTILKAL ady of CTL response and immune esc | HIV-1 infection
cape – the variant DCF | human(B8)
RTILKAL was also fo | [Nowak (1995)]
und, binds to B8, but is not | | | p24(197–205) | p24(329–337) • Defined as minimal | DCKTILKAL epitope by titration and binding studie | s | human(B8) | [McAdam (1995)] | | | p24(197–205) | p24(197–205) • Included in a study of | DCKTILKAL of the B8 binding motif | | human(B8) | [Goulder (1997g)] | | | p24(211–230) | p24(345–364 SF2) • Gag CTL epitope pr | LEEMMTACQGVGGPGHKARV recursor frequencies estimated, peptide | HIV-1 infection mapping | human() | [van Baalen (1993)] | | | p24(211–230) | p24(343–362 SF2) | LEEMMTACQGVGGPGHKARV | HIV-1 infection | human(B7) | [McAdam (1998)] | | | p24(211–231) | p24(343–362 SF2) LEEMMTACQGVGGPGHK- HIV-1 infection human() [Lieberman (1997a)] ARVL Of 25 patients, most had CTL specific for more than 1 HIV-1 protein 12 subjects had CTL that could recognize vaccinia expressed LAI gag One of these 12 had CTL response to this peptide The responding subject was HLA-A1, A2, B50, B57 | | | | | | | p24(217–227) | p24(349–359 IIIB) ACQGVGGPGHK HIV-1 infection human(A11) [Sipsas (1997)] HIV IIIB proteins were used to define the range of CTL epitopes recognized by three lab workers accidentally infected with HIV-1 IIIB ACQGVGGPSHK, a variant found in HIV RF, was also recognized C. Brander notes that this is a A*1101 epitope in the 1999 database | | | | | | | p24(223–231) | p24(355–363 LAI) GPGHKARVL HIV-1 infection human(B7) [Goulder (1997b), Goulder (1997a)] • Identical twin hemophiliac brothers were both infected with the same batch of factor VIII • One had a strong response to this peptide, the other a weak response • [Goulder (1997a)] is a review of immune escape that summarizes this study | | | | | | | p24(369–377) | p24(369–377) • Noted by C. Brande | IEELRQHLL ret al., this database 1999, to be a B*4 | 1001,B60 epitope, Pers | human(B*4001,Bo
. Comm. P. Goulder an | , | |