Table 1: **p17** | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|--|--|----------------------------|--| | p17(18–26) | | | HIV-1 infection AIDS Foundation ARIEL Project urring variants, were found in managers. | | | | p17(18–26) | immature dendriti | c cells (iDC) and mature dend | in vitro stimulation ed to study the relative abilities dritic cells (mDC)) to prime CD8 acrophages in the primary stimu | 3+ lymphocytes | [Zarling (1999)] esenting cells (macrophages, | | p17(18–26) | • The transferred C | • | HIV-1 infection vexpanding autologous HIV-1 Godes and transiently reduced circulation anti-viral effects | - 1 | - | | p17(18–26) | Detection of CTL to be found in info KIRLRPGGR and This epitope was | escape mutants in the mother ected infants I RIRLRPGGR were escape m | mutants were detected in an HI | on, but the CTL susception | | | p17(18–26) | | - | HIV-1 infection infected with the same batch of immune escape that summarizes | | [Goulder (1997b), Goulder (1997a)] response to this epitope, the | | p17(18–26) | p17(18–26 IIIB) • C. Brander notes | KIRLRPGGK that this is a A*0301 epitope in | n the 1999 database | human(A*0301) | | | p17(18–27) | p17(18–27 LAI) • D. Lewinsohn, pe | KIRLRPGGKK rs. comm. | | human(B27) | [Brander & Walker(1997a)] | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|--|---|--|--------------------------------------|--| | p17(18–27) | | KIRLRPGGKK
tion considering known p17 epitopes
e pressure from CTLs | HIV-1 infection and individuals with k | human(B27)
nown HLA types reveale | [Birk (1998)]
d that p17 evolution is | | p17(18–31) | A sustained Gag, Environment | KIRLRPGGKKKYKL CL clones from 5 long term non-progrey and Nef response was observed, and LA-B62+ had CTL that recognized this | clones were restricted b | y multiple HLA epitopes, | indicating a polyclonal | | p17(18–31) | • • | KIRLRPGGKKKYKL
tion considering known p17 epitopes
e pressure from CTLs | HIV-1 infection and individuals with k | human(A3)
nown HLA types reveale | [Birk (1998)]
d that p17 evolution is | | p17(18–42) | p17(18–42 IIIB) • Epitope recognized b | KIRLRPGGKKKYKLKHI-
VWASRELE
y CTL clone derived from CSF | HIV-1 infection | human(A3) | [Jassoy (1992)] | | p17(18–42) | p17(18–42 BH10) • Gag CTL response w | KIRLRPGGKKKYKLKHI-
VWASRELE
as studied in three individuals | HIV-1 infection | human(Bw62) | [Johnson (1991)] | | p17(18–42) | p17(18–42 PV22) • HIV-1 specific CTLs | KIRLRPGGKKKYKLKHI-
VWASRELE release γ -IFN, and α - and β -TNF | HIV-1 infection | human(A3) | [Jassoy (1993)] | | p17(19–27) | p17(19–27 LAI) • Noted in Brander 199 | IRLRPGGKK
99, this database, to be B*2705, Pers. | Comm. D. Lewinsohn | human(B*2705,B27) | [Brander & Walker(1997a)] | | p17(19–27) | the CTL rapidly disaNo escape mutants wControl CTL were lo | IRLRPGGKK were infused in infected human PBL- ppeared through target interaction ere observed ng lived in both infected and uninfected 9, this database, to be B*2705, Pers. | ed mice, showing the rap | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|--|---|---------------|---------------------------------------| | p17(20–28) | p17(20–28) | RLRPGGKKK | HIV-1 infection | human(A*0301) | [Goulder (1997b), Goulder (1997a)] | | | One had a respon[Goulder (1997a) | nophiliac brothers were both infective to gag A3 epitope RLRPGGKK is a review of immune escape that that this is a A*0301 epitope in the | K, the other non-responder of t summarizes this study | | , , , , , , , , , , , , , , , , , , , | | p17(20–28) | p17(20–28) • A control CTL lin | RLRPGGKKK ne that reacts with this peptide was | HIV-1 infection included in the study | human(A3) | [Goulder (1997f)] | | p17(20–28) | | RLRPGGKKK ptide of A, B, and D clade viruses ptide of C clade viruses is RLRPG | | human(A3) | [Cao (1997)] | | p17(20–29) | | RLRPGGKKKY In the context of the Pediatric AIDS a naturally occurring variant, was and Bw62 as well | | | [Wilson (1996)]
nsmission study | | p17(20–29) | p17(20–29)
• Unpublished, C. J | RLRPGGKKKY assoy and Beatrice Culman, pers. | HIV-1 infection comm. | human(A3.1) | [Brander & Walker(1995)] | | p17(20–29) | p17(20–29 LAI) • Review of HIV C • Also P. Johnson, J | | | human(Bw62) | [McMichael &
Walker(1994)] | | p17(20–29) | p17(20–29 LAI) • Pers. comm., B. V | RLRPGGKKKY
Wilkens and D. Ruhl | HIV-1 infection | human(A3.1) | [Wilkens & Ruhl(1999)] | | p17(20–35) | 12 subjects had COne of these 12 h | CLRPGGKKKYKLKHIV ost had CTL specific for more than TL that could recognize vaccinia e ad CTL response to this peptide ubject was HLA A-2, A-24, B-13, | expressed LAI gag | human() | [Lieberman (1997a)] | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|---|--|----------------------------------|---------------------------|--|--| | p17(21–35) | p17(21–35) • Two CTL epitopes | LRPGGKKKYKLKHIV
defined (see also p24(191-205)) | | human(B8) | [Nixon & McMichael(1991)] | | | | p17(21–35) | p17(21–35) • Unknown HLA spe | LRPGGKKKYKLKHIV ecificity, but not B8 | HIV-1 infection | human(not B8) | [van Baalen (1996)] | | | | p17(21–35) | 12 subjects had CTOne of these 12 had | LRPGGKKKYKLKHIV st had CTL specific for more than 1 HIV L that could recognize vaccinia express d CTL response to this peptide oject was HLA-A1, A2, B50, B57 | - | human() | [Lieberman (1997a)] | | | | p17(21–40) | CTL responses in t infections all origirThis epitope was de | hree individuals with non-clade B infect
tated in East Africa
efined in an A subtype infection – the B c
rm, and the CTL from this patient were | elade variant (LRPGGK | (KKYKLKHIVWASRE) | | | | | p17(24–31) | p17(24–31) GGKKKYKL human(B8) [Goulder (1997g)] • The crystal structure of this peptide bound to HLA-B8 was used to predict new epitopes and the consequences of epitope variation • The predictions were experimentally confirmed • The anchors for HLA-B8 epitopes, as defined by peptide elution data, are P3 (K), P5 (K/R), and P8 (L) • Structural data suggests that a positive charge at P5 is essential, but that the constraints on P3 may be less severe • Small hydrophobic residues at P2 may be favorable for binding • A spacious F-pocket favors mid-sized hydrophobic residues in the C-term anchor | | | | | | | | p17(24–31) | p17(24–31 SF2) • CTL from a patient | GGKKKYKL infected with clade B virus did not rec | HIV-1 infection
ognize Ugandan varian | human(B8)
its of this epitope | [McAdam (1998)] | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|--|---|---|---|--| | p17(24–31) | Crystal structures 3R has been detended MHC main chair 7Q and 7R alter to Reactivity of 5R | GGKKKYRL, 7Q: GGKK s were obtained to study the ected in 3 patients, and it an imposement the TCR exposed surface, a depends on the T cell clone. | HIV-1 infection KYQL, 5R: GGKKRYKL, and 3R: 6 ese peptides in the context of HLA-B bolishes recognition causing extensi and retain some recognition e, this amino acid is embedded in the sitions 3, 5, and 8 are the anchor resi | 8, and CTL binding and ac
ve conformational changes
C pocket of B8 when the | ctivity were determined s upon binding including | | p17(24–31) | | ponse to the index peptide | HIV-1 infection was observed in an HLA-B8+ infecte oint showed that a variant at position | | [Price (1997)] KKQYKL, was present | | p17(24–32) | p17(24–32 LAI) • Exploration of H | GGKKKYKLK
LA-B8 binding motif throu | HIV-1 infection agh peptide elution | human(B8) | [Sutton (1993)] | | p17(24–32) | | GGKKKYKLK
vidual with partially defecti
r 1999, this database, to be | | human(B*0801,B8) | [Rowland-Jones (1993b)] | | p17(24–32) | p17(24–32) • Naturally occurr | GGKKKYKLK
ing variants GGKKKYQLF | HIV-1 infection K and GGKKRYRLK may act as anta | human(B8)
agonists | [Klenerman (1994)] | | p17(24–32) | p17(24–32) • Naturally occurr | GGKKKYKLK
ing antagonist GGKKKYQ | HIV-1 infection
LK found in viral PBMC DNA and F | human(B8)
RNA | [Klenerman (1995)] | | p17(24–32) | p17(24–32) • Longitudinal stud | GGKKKYKLK
dy of CTL response and im | HIV-1 infection
mune escape – the variant GGRKKY | human(B8)
YKLK binds to HLA-B8 bu | [Nowak (1995)] at is not reactive | | p17(24–32) | been infected wit | • | HIV-1 infection
a 1.5- to 1.3-year period in members
n of HIV-1 which was nef-defective.
viral load. | • • | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|---|---|----------------------------------|--| | p17(24–32) | had no delta 32 dIn Gambia there i and the B35 allel | leletion in CCR5 | osed African female sex workers in IIV-2, CTL responses to B35 epitopeactivity [Phillips (1991)] | | | | p17(24–35) | which varied ove
• [Goulder (1997a) | r time, in people with the appr | pe that points out that there may be | - | | | p17(24–35) | • • | GGKKKYKLKHIV variation considering known pmune pressure from CTLs | HIV-1 infection
o17 epitopes and individuals with | human(B8)
known HLA types rev | [Birk (1998)]
ealed that p17 evolution is | | p17(28–36) | p17(28–36 LAI) D. Lewinsohn, pe C. Brander notes | | in the 1999 database | human(A24) | [Brander & Walker(1997a)] | | p17(28–36) | p17(28–36 LAI) • P. Goulder, pers. | | | human(A23) | [Goulder(1999)] | | p17(28–36) | HLA A24 is veryThis epitope was | common in Japanese (70% ca
detected by looking for peptide | HIV-1 INFECTION
d in 2/3 HIV-infected individuals warry it) and is common globally
es with appropriate A24 anchor resi
was found to be a naturally process | idues (Y at position 2, c | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|--|--|--|---| | p17(36–44) | • Dominant CTL res | WASRELERF efined from within p17(30-44), LKHI sponse in an HIV+ asymptomatic don- erm anchor is distinct from the previo | or was to this epitope | human(B*3501) 501 C-term anchors | [Goulder (1997d)] | | p17(36–44) | | WASRELERF uriation considering known p17 epito nune pressure from CTLs | HIV-1 infection pes and individuals with | human(B35)
n known HLA types reveal | [Birk (1998)]
ed that p17 evolution is | | p17(69–93) | p17(69–93 BH10) • Gag CTL response | QTGSEELRSLYNTVATL-
YCVHQRIE
e studied in three individuals | HIV-1 infection | human(A2) | [Johnson (1991)] | | p17(71–79) | p17(71–79 LAI) • P. Goulder, pers. c | GSEELRSLY
omm. | | human(A1) | [Brander & Walker(1997a)] | | p17(71–79) | | GSEELRSLY ariation considering known p17 epito nune pressure from CTLs | HIV-1 infection pes and individuals with | human(A1)
n known HLA types reveal | [Birk (1998)]
ed that p17 evolution is | | p17(71–85) | p17(71–85 SF2) GSEELRSLYNTVATL HIV-1 infection human() [Lieberman (1 • Of 25 patients, most had CTL specific for more than 1 HIV-1 protein • 12 subjects had CTL that could recognize vaccinia expressed LAI gag • One of these 12 had CTL response to this peptide • The responding subject was HLA-A1, A11, B8, B27 | | | | | | p17(74–82) | • | ELRSLYNTV
of the B8 binding motif
1999, this database, to be B*0801 | | human(B*0801,B8) | [Goulder (1997g)] | | p17(74–82) | | ELRSLYNTV uriation considering known p17 epito une pressure from CTLs | HIV-1 infection pes and individuals with | human(B8)
n known HLA types reveal | [Birk (1998)]
ed that p17 evolution is | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|---|---|--|--|---|--| | p17(77–85) | and ILKEPVHGLevels of CTL ef | SLYNTVATL els were measured after potent ARV the V in seven patients, and the B*3501 ep fectors typically decline for 5-7 days a actuation, there was a steady exponenti | itope DPNPQEVVL in or
and then rebound, fluctuation | ne additional patienting during the first two week | • | | | p17(77–85) | HLA-A2 tetrame CD8+ cell lines i The highest frequency of | SLYNTVATL uces the tetramer methodology which p rs were prepared that can stain CTL lin n freshly isolated PBMCs nency of tetramer staining was found to for the Gag epitope (0.28%) – three ot | es specific for ILKEPVHo
the Pol epitope, 0.77% | GV and SLYNTVATL, and of the CD8+ lymphocytes | quantitate HIV-specific in one patient who also | | | p17(77–85) | • • | SLYNTVATL variation considering known p17 epito mune pressure from CTLs | HIV-1 infection pes and individuals with | human(A2)
known HLA types reveale | [Birk (1998)]
ed that p17 evolution is | | | p17(77–85) | p17(77–85 SF2) • CTL from a patie | SLYNTVATL ent infected with clade B virus did not r | HIV-1 infection ecognize the clade A anal | human(A*0201)
og of this epitope | [McAdam (1998)] | | | p17(77–85) | p17(77–85) SLYNTVATL HIV-1 infection human(A*0201) [Wilson (1998a)] • HIV+ individuals were followed longitudinally using MHC tetramers in combination with 14 anti-BV chain MAbs, and clonal expansion of HIV-specific T cells was followed <i>in vivo</i> • Seven HIV+ people were studied, and all showed expansions of particular TCR BV clones, often several, relative to uninfected controls • Three patients were followed in detail, TCR VB expansions persisted for 2 to 3 years, with occasional transient increases • An A2-Gag specific line from one patient was found to be BV8, and at its highest level represented 17.5% of the patients CD8+ T cells | | | | | | | p17(77–85) | p17(77–85) • Included as a neg | SLYNTVATL sative control in a tetramer study of A2- | HIV-1 infection
EBV CTL response | human(A2) | [Callan (1998)] | | | p17(77–85) | inverse relationshInclusion of both | SLYNTVATL complexes were used in a cross-section ip between HIV Gag and Pol specific of the p17 SLYNTVATL and RT ILKEPV as observed between the CTLe and CD | CTL effector cells (CTLe)
HGV epitopes gives a goo | and viral load
d representation of HLA A* | *0201-restricted activity | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | | |---------------|---|--|--|--------------------------------------|---|--|--| | p17(77–85) | | 7-1 inhibitory chemokines MIP- | HIV-1 infection that the mediators of both the α and RANTES were used a | | | | | | p17(77–85) | | ecognize this epitope, but not the s MHC class I molecules, which | HIV-1 infection the NL4-3 form of the epitope SI with inhibits CTL killing, and this | | [Collins (1998)] be partially compensated for | | | | p17(77–85) | p17(77–85) SLYNTVATL HIV-1 infection human(A2) [Durali (1998)] • Cross-clade CTL response was studied by determining the CTL activity in seven patients from Bangui, (6 A subtype, and 1 AG recombinant infections) and one A subtype infection from a person living in France originally from Togo, to different antigens expressed in vaccinia • Pol reactivity: 8/8 had CTL to A subtype, and 7/8 to B subtype, and HIV-2 Pol was not tested • Gag reactivity: 7/8 reacted with A or B subtype gag, 3/8 with HIV-2 Gag • Nef reactivity: 7/8 reacted with A subtype, and 5/8 with B subtype, none with HIV-2 Nef • Env reactivity: 3/8 reacted with A subtype, 1/8 with B subtype, none with HIV-2 Env • Patient B18 had the greatest breadth and diversity of response, and recognized Gag SLYNTVATL and Nef PLTFGWCFKL | | | | | | | | p17(77–85) | p17(77–85) SLYNTVATL HIV-1 infection human(A2) [Kundu (1998b)] • Allogeneic dendritic cells (DCs) were obtained from HLA-identical siblings, pulsed with rgp160 MN or A2 restricted HIV-1 epitope peptides, and infused monthly into six HIV-infected patients • 1/6 showed increased env-specific CTL and increased lymphoproliferative responses, 2/6 showed increase only in proliferative responses, and 3/6 showed no change – pulsed DCs were well tolerated • SLYNTVATL is a conserved HLA-A2 epitope included in this study – 3/6 patients had this sequence as their HIV direct sequence, one had the form SLYNTVAVL and all four of these had a detectable CTL response – the other two had either the sequence SLFSAVAVL or SLFSAVAAL and no detectable CTL response | | | | | | | | p17(77–85) | • SLYNTVAVL, a va | SLYNTVATL were used to define the range o ariant found in HIV-1 MANC, v ariant found in HIV-1 NY5CG, | C | human(A2)
I lab workers accidenta | [Sipsas (1997)]
lly infected with HIV-1 IIIB | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|---|--|---|--|--| | p17(77–85) | to be conserved in both subtypes are • The A subtype con | A and D clades – such cross-r | HIV-1 infection
ected prostitutes from Nairobi usi
eactivity could protect against bo | | | | p17(77–85) | • The HLA-A2-pep | tide complex elicited HLA-A2 | none ressed in <i>E. coli</i> were refolded in peptide specific CTL response in second provide an alternate to interpret int | cells lacking HLA-A2 | | | p17(77-85) | The following var FV-, All variants bound Antagonism could | riants were found in HIV-1 inf
S, -SF,L
I to A2 with at least half the aff | HIV-1 infection ped killing and acted as antagonis fected patients who mounted a standard of SLYNTVATL except the ations, abrogating lysis at an antabut not another | rong response against to the root response against the rong response against the root response against the root response against | FI-V-,F-A
-V- | | p17(77–85) | the T cell receptorThe response using responses of CTL. | sal T-cell receptor was created chain ζ , and transduced into ζ universal-receptor-bearing ζ | CD8+ cells to lyse infected cells in terms of kinetics and efficience | s in vitro was comparal | | | p17(77–85) | p17(77–85) • Keyhole limpit he induction of pepti | | in vitro stimulation epitope co-expression with peptic | human(A2) de CTL epitopes on the s | [Stuhler & Schloss-
man(1997)]
same APC was required for | | p17(77–85) | this protocol does
with peptide-Class | not stimulate a primary respon | HIV-1 infection timulation of CTLp using optimizense, only secondary – peptide-spanizing the protocol | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |----------------------|--|---|--|--|---| | p17(77–85) | | SLYNTVATL n rate is associated with immunogen by in vitro stimulation of PBMC deri | | human(A*0201) | [van der Burg (1996)] | | p17(77–85) | p17(77–85) • CD4+ cell lines a • Clones specific f • The distinction v | SLYNTVATL acutely infected with HIV were stud for RT lysed HIV-1 infected cells at 1 was thought to be due to lower expre. Fected cells early after infection, poss | HIV-1 infection
ied to determine their suscep
lower levels than Env or Gag
ssion of RT relative to Env ar | human(A2)
tibility to lysis by CTL
specific clones
nd Gag | [Yang (1996)] | | p17(77–85) | CTL produced H | SLYNTVATL 7-1 replication at effector cell concen IIV-1-suppressive soluble factors – N IV replication more efficiently in HI | MIP-1 α , MIP-1 β , RANTES, | | [Yang (1997a)]
vation | | p17(77–85) | p17(77–85 LAI) • Examined in the | SLYNTVATL context of motifs important for HLA | HIV-1 infection A-A2 binding | human(A2) | [Parker (1992), Parker (1994)] | | p17(77–85) | p17(77–85 LAI) • Review of HIV (| | HIV-1 infection | human(A2) | [McMichael &
Walker(1994)] | | p17(77–85) | p17(77–85) • CTL clones reco | SLYNTVATL gnize naturally processed peptide | HIV-1 infection | human(A2) | [Tsomides (1994)] | | p17(77–85) | p17(77–85) • A three cell-type of CTLs | SLYNTVATL cluster consisting of APCs, Th, and | Peptide stimulation in vitro d CTLs is the minimal regula | human(A2) atory unit required for Th | [Stuhler & Schloss-
man(1997)]
cell-dependent induction | | p17(77–85) | p17(77–85) • The consensus p | SLYNTVATL eptide of B and D clade viruses and eptide of A and some C strains is SL | - | | [Cao (1997)] | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | |---------------|--|--|--|---|---| | p17(77–85) | p17(77–85) | SLYNTVATL | HIV-1 infection | human(A*0201) | [Goulder (1997b), Goulder (1997a)] | | | One had a respo Viral sequencin 71% of an addit Those individua An additional su | onse to gag A2 epitope SLY. g from the twin that had no ional set of 22 HIV-1 infect als with a pol ILKEPVHGV abject went from SLYNTVA | oth infected with the same batch of fa
NTVATL, the other to pol A2 epitoporesponse to SLYNTVATL indicated
and HLA-A*0201 positive donors pre-
response tended to have mutations in
ATL responder to non-responder coin
scape that summarizes this study | e ILKEPVHGV his virus had the substitu eferentially responded to n or around SLYNTVAT | nted form SLHNAVAVL
gag SLYNTVATL
L | | p17(77–85) | to a B62 respon • As long as a struiral population | se to GLNKIVRMY
ong CTL response to SLYN
- eventually the CTL resp | HIV-1 infection evasion, but it presents a study of a shart TVATL was evident, the epitope variouse to the index peptide became un NTVATL once again established itsel | riants SLFNTVATL or Sindetectable, the CTL res | LYNTIATL dominanted the | | p17(77–85) | determine the fr • 17/18 asympton | requency of Class I HLA-rest
natic patients had CTL to or | HIV-1 infection
d SLYNTVATL or ILKEPVHGV w
stricted anti-HIV CD8+ T cells
ne or both epitopes – 72% had a CTL
specific CTL were apparently memor | response to SLYNTVA | - | | p17(77–85) | been infected w | | HIV-1 infection r a 1.5- to 1.3-year period in members n of HIV-1 which was nef-defective. viral load. | | | | p17(77–85) | Seroprevalence Most isolated H
however stronge This epitope is of
The Clade A ve | in this cohort is 90-95% and IV strains are clade A in Nature responses are frequently conserved among B and D consistency of the epitope, SLFNT | HIV-1 exposure eronegative prostitutes from Nairobi d their HIV-1 exposure is among the tirobi, although clades C and D are all observed using A or D clade versions clade viruses EVATL, was preferentially recognized the exposed seronegative prostitutes | highest in the world
lso found – B clade epito
s of epitopes | protection | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|---|---|------------------------------------|------------------------------------|------------|--| | p17(77–85) | p17(77–85 Clade A) SLFNTVATL HIV-1 infection human(A*0201) [Dorrell (1999)] CTL responses in three individuals with non-clade B infections were studied, 2 with subtype A infections, 1 with subtype C – their infections all originated in East Africa This epitope is most commonly SLYNTVATL in B subtype, and CTL from the C subtype infection did not recognize B clade gag or the 3Y form of the epitope, but do recognize the predominant A and C clade form, SLFNTVATL | | | | | | | p17(77–85) | p17(77–85) SLYNTVATL HIV-1 infection human(A*0201) [Brander (1998a)] Of 17 infected HLA A*0201 subjects, 13 had CTL responses against the p17 SLYNTVATL, epitope, six recognized ILKEPVHGV and five recognized VIYQYMDDL, and there was no correlation between viral load and recognition of a specific epitope Only one subject had CTL against all three There was significant heterogeneity in the CTL response to this immunodominant epitope The overall variation in this epitope among the 17 who had a CTL response and 11 non-HLA A*0201 HIV-1+ individuals was similar, suggesting a lack of immune pressure Subjects were part of the San Fransisco City Clinic Cohort, the ARIEL project and from the Boston area | | | | | | | p17(77–85) | p17(77–85) SLYNTVATL HIV-1 infection human(A2) [Harrer (1998)] • Two overlapping epitopes were recognized in a long term survivor, restricted by two different HLA molecules, HLA-A11(TLYCVHQR) and -A2 (SLYNTVATL) • Viral sequence substitutions were present in this individual which did not affect viral replication and did not alter CTL-recognition of the A2 epitope, but reduced recognition of the A11 epitope, indicative of immune escape | | | | | | | p17(77–85) | p17(77–85 HXB2) SLYNTVATL HIV-1 infection human(A*0201) [Hay (1999)] CTL response to IPRRIRQGL was the immunodominant response in a rapid progressor – there was an subdominant response to SPAIFQSSM in Pol, and interestingly, no response to commonly immunodominant HLA A*0201 epitope SLYNTVATL, although this individual was HLA-A*0201 The individual showed a strong initial CTL response at the time of the initial drop in viremia, but it was quicly lost, although memory cells persisted Despite the initial narrow response to two epitopes, no other CTL responses developed No HIV-specific lymphoproliferative responses were detected in this patient, and neutralizing antibody response was weak A variant of this epitope was observed <i>in vivo</i> (FV-), but this mutation is recognized by SLYNTVATL-specific CTL, and in this case the patients own cells could present the peptide to SLYNTVATL-specific CTL | | | | | | | p17(77–85) | p17(77–85)
• C. Brander <i>et al</i> . in | SLYNTVATL this database 1999, note that | t this epitope can be presented by | human(A*0202)
A*0201 and A*0202 | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|---|---|--|---------------------------------------|---|--| | p17(84–91) | p17(83–91) TLYCVHQR HIV-1 infection human(A11) [Harrer (1998)] Two overlapping epitopes were recognized in a long term survivor, restricted by two different HLA molecules, HLA-A11(TLYCVHQR) and -A2 (SLYNTVATL) Viral sequence substitutions were present in this individual which did not affect viral replication and did not alter CTL-recognition of the A2 epitope, but reduced recognition of the A11 epitope, indicative of immune escape A Q90E substitution resulted in a loss of the ability of the peptide to induce lysis, a R91K substitution was still reactive, and a R91Q substitution show a reduced ability to stimulate lysis | | | | | | | p17(84–92) | p17(84–92) • Epitope defined in | TLYCVHQRI the context of the Pediatric AIDS Foun | HIV-1 infection
dation ARIEL Project, a | human(A11)
mother-infant HIV trans | [Brander & Walker(1995)]
mission study | | | p17(84–92) | p17(84–92) TLYCVHQRI HIV-1 infection human(A11) [Birk (1998)] • A study of p17 variation considering known p17 epitopes and individuals with known HLA types revealed that p17 evolution is influenced by immune pressure from CTLs • C. Brander notes that this is a A*1101 epitope in the 1999 database | | | | | | | p17(87–105) | p17(91–105 SF2) • CTL expanded <i>ex</i> v | CRIDVKDTKEALEKIE ivo were later infused into HIV-1 infec | HIV-1 infection eted patients | human() | [Lieberman (1997b)] | | | p17(88–115) | p17(88–115 ARV) • B cell epitope HGF | VHQRIEIKDTKEALDKI-
EEEQNKSKKKA
2-30 also serves as a CTL epitope | HIV-1 infection | human(A2) | [Achour (1990)] | | | p17(88–115) | • Vaccine combined | VHQRIEIKDTKEALDKI-
EEEQNKSKKKA
2-30 also serves as a CTL epitope
HGP-30, V3 loop peptide variants, and
asmid included with the vaccination en | - 1 | | [Hamajima (1997)] | | | p17(91–105) | p17(91–105 SF2) RIDVKDTKEALEKIE HIV-1 infection human() [Lieberman (1997a)] • Of 25 patients, most had CTL specific for more than 1 HIV-1 protein • 12 subjects had CTL that could recognize vaccinia expressed LAI gag • One of these 12 had CTL response to this peptide • The responding subject was HLA-A3, A24, B8, B55 | | | | | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|--|--|--|---|---|--| | p17(92–101) | p17() IEIKDTKEAL HIV-1 infection human(B60) [Wagner (1998a)] • CTL specific for HIV epitopes were used to show that the mediators of both the cytolytic (granzyme A was used as the marker) and non-cytolytic (HIV-1 inhibitory chemokines MIP-1 α and RANTES were used as markers) anti-viral responses are localized within the CTL's cytotoxic granules | | | | | | | p17(92–101) | p17() • Noted by C. Brander | IEIKDTKEAL ret al., this database 1999, to be a | HIV-1 infection B*4001,B60 epitope, Pers. 0 | human(B*4001,B60)
Comm. A. Trocha and S. | | | | p17(93–101) | p17(93–101) • Examined in the con | EIKDTKEAL
ntext of motifs important for HLA- | no CTL shown
B8 binding, predicted epitop | human(B8)
e based on Achour <i>et al</i> . | [DiBrino (1994b)] | | | p17(93–101) | p17(93–101) EIKDTKEAL HIV-1 infection human(B8) [Birk (1998)] • A study of p17 variation considering known p17 epitopes and individuals with known HLA types revealed that p17 evolution is influenced by immune pressure from CTLs | | | | | | | p17(93–101) | p17(93–101 LAI) • Pers. Comm. from A | EIKDTKEAL
A. Trocha and S. Kalaams to C. Br | ander and B. Walker | human(B8, B60) | [Brander & Walker(1997b)] | | | p17(121–132) | * · | R) DTGHSNQVSQNY
24 CTL epitopes recognized in 29 | HIV-1 infection
HIV infected people | human(A33) | [Buseyne (1993b)] | | | p17(121–132) | Gag(121–132 LAI) DTGHSNQVSQNY HIV-1 infection human(A33) [Buseyne (1993a)] • Vertical transmission of HIV ranges from 13% to 39% • Primary assays showed cytotoxic activities against at least one HIV protein was detected in 70% of infected children • Epitopes recognized in five children were mapped using synthetic peptides and secondary cultures • Patient EM17 (CDC P2A+C+D2) had a CTL response to two epitopes in Gag | | | | | | | p17(124–132) | p17(124–132 LAI) • Review of HIV CTL | NSSKVSQNY
a epitopes | HIV-1 infection | human(B35) | [McMichael &
Walker(1994)] | | | p17(124–132) | | NSSKVSQNY
ation considering known p17 epit
ne pressure from CTLs | HIV-1 infection topes and individuals with k | human(B35)
nown HLA types reveal | [Birk (1998)]
ed that p17 evolution is | | | HXB2 Location | Author Location | Sequence | Immunogen | Species(HLA) | References | | |---------------|---|---|------------------------------|--|---|--| | p17(124–132) | p17(124–132 LAI) | NSSKVSQNY | HIV-1 or -2 infection | human(B*3501) | [Rowland-Jones (1995)] | | | | Established by titrat | | | | | | | | • Noted in Brander 1999, this database, to be B*3501 | | | | | | | p17(124–132) | p17(124–132 LAI) | NSSKVSQNY | none | human(B35) | [Lalvani (1997)] | | | | with peptide-Class I This peptide was on | ot stimulate a primary response
tetramers
e of the B35 presented test per
1 healthy B35 seronegative don | otides used in control exper | | • | | | p17(124–132) | p17() • CTL responses in se | NSSKVSQNY
ronegative highly HIV-exposed | African female sex worker | human(B35)
rs in Gambia and Nairobi w | [Rowland-Jones (1999)]
ere studied – these women | | | | had no delta 32 dele | | | | | | | | In Gambia there is exposure to both HIV-1 and HIV-2, CTL responses to B35 epitopes in exposed uninfected women are cross-reactive, HIV-2 version of this epitope is not conserved: PPSGKGGNY, but the CTLs are cross-reactive – this is one of five B35 CTL epitopes | | | | | | | | TITU 0 C.41.1 | | CIZCONN 1. 441. CTI | | CC DOFOTT | | | | | s epitope is not conserved: PPS
ve, see also [Rowland-Jones (19 | | re cross-reactive – this is one | e of five B35 CTL epitopes | |