QCD effects in B-decays: Lecture 2

Thomas Becher

Academic lectures on Flavor Physics, Fermilab, Feb. 20, 2007

Outline of these lectures

1. Heavy quark physics

- Heavy-quark spin and flavor symmetry
 - Spectroscopic implications
- Heavy Quark Effective Theory
 - $V_{\rm cb}$ from exclusive semileptonic decay

2. Inclusive B-decays

- Operator Product Expansion
- Determination of $V_{\rm ub}$, $V_{\rm cb}$ from semileptonic decays
- Radiative decays: test of FCNC interactions
- Heavy hadron lifetimes

3. Exclusive radiative and hadronic B-decays

Factorization, Soft Collinear Effective Theory

Heavy-light meson spectrum

- To leading power, bottom and charm spectra are simply shifted by constant amount m_b - m_c =3.4GeV.
 - M_{B1} - M_B = (455±4) MeV, M_{D1} - M_D = (555±1)MeV
- "Spin doublets" almost degenerate:
 - e.g. M_{B^*} M_B = 46 MeV

Operator Product Expansion and Inclusive Weak Decays

Inclusive decays

- Inclusive decays rates are much less sensitive to hadronization effects than exclusive decays.
- Scale hierarchy

$$1/m_b \ll 1/\Lambda_{QCL}$$
b-quark decay hadronic effects

Inclusive b-decays

- Important class of decays, since rate can be calculated perturbatively $m_Q \rightarrow \infty$
 - Semileptonic decay $B \rightarrow X_c l v$
 - Most precise determination of $|V_{cb}|$, m_b and m_c .
 - Semileptonic decay $B \rightarrow X_u l v$
 - Most precise determination of $|V_{ub}|$
 - Radiative decays $B \rightarrow X_s \gamma$, $B \rightarrow X_s l^+ l^-$
 - Sensitive probe of FCNC interactions
 - Lifetime: $B \rightarrow X$

Operator Product Expansion

• Used this tool before, when integrating out heavy particles in the construction of the effective weak Hamiltonian.

- At low energies W is highly virtual. Propagates only very short distance. Expand around x=y.
- In momentum space this translates into expansion of W-propagator $\frac{1}{p^2-m_W^2}=\frac{1}{-m_W^2}+\dots$

Optical theorem

• To apply the same technique to the inclusive B-decay, first use the optical theorem

$$\Gamma(B \to X_c e \bar{\nu}) = \frac{1}{2M_B} \sum_X (2\pi)^4 \delta^4(p_B - p_{X_c} - p_e - p_{\nu}) \left| \langle X_c e \bar{\nu} | \mathcal{H}_{SL} | B \rangle \right|^2$$

$$= \frac{1}{2M_B} 2 \operatorname{Im} \langle B | i \int d^4 x \, T \left\{ \mathcal{H}_{SL}^{\dagger}(x), \mathcal{H}_{SL}(0) \right\} | B \rangle$$

forward-scattering amplitude

Operator product expansion

Expand the product of operators into local ones

$$i \int d^4x \ T \left\{ \mathcal{H}_{\rm SL}^{\dagger}(x), \mathcal{H}_{\rm SL}(0) \right\} = C_3 \, \bar{b} \, b + \frac{C_5}{m_b^2} \, \bar{b} \, \sigma_{\mu\nu} G^{\mu\nu} \, b + \dots$$

No dim. 4 operators: $\bar{b}\,iD\!\!\!/\,b=m_b\,\bar{b}\,b$

- To evaluate the coefficients C₃ and C₅, we can use arbitrary external states
 - Use quark and gluon states and calculate the coefficients in perturbation theory!
- Then use HQET to evaluate the B-meson matrix elements of the operators $\bar{b}\,b$ and $\bar{b}\,\sigma_{\mu\nu}G^{\mu\nu}b$
 - Will be given by HQET parameters λ_1 , λ_2 , etc.
- Q: Is the expansion well behaved? Are the higher order terms really suppressed by $1/m_b^2$?

Feynman Diagrams

Matrix elements

 To calculate the matrix elements, we use HQET.

$$\frac{1}{2M_B} \langle B | \bar{b}b | B \rangle = 1 + \frac{\lambda_1 + 3\lambda_2}{2m_b^2} + \dots$$

No 1/*m*_b corrections!

$$\frac{1}{m_b^2} \frac{1}{2M_B} \langle B | \bar{b} \, \sigma_{\mu\nu} G^{\mu\nu} \, b \, | B \rangle = \frac{6\lambda_2}{m_b^2} + \dots$$

$$\lambda_2 = \frac{1}{4} \left(M_{B^*}^2 - M_B^2 \right) = 0.12 \text{GeV}^2$$

Result for the rate

$$\Gamma(B \to X_c e \bar{\nu}) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left\{ \left(1 + \frac{\lambda_1 + 3\lambda_2}{2m_b^2} \right) \left[f(\rho) + \frac{\alpha_s}{\pi} g(\rho) \right] - \frac{6\lambda_2}{m_b^2} (1 - \rho)^4 + \dots \right\}$$

$$f(\rho) = 1 - 8\rho - 12\rho^2 \log \rho + 8\rho^3 - \rho^4, \quad \rho = \frac{m_c^2}{m_b^2}$$

$$g(\rho) = \text{"lengthy, known expression"}$$

- Leading term in limit $m_Q \rightarrow \infty$ is the free b-quark decay ("naive parton model")!
- Hadronization effects are suppressed as $1/m_b^2$. Reduce the rate by $\approx 4\%$
- Values of m_b , m_c and λ_1 ?
- Strictly speaking expansion is $1/(m_b-m_c) \approx 1/m_b$

Side remark: b-quark mass

- We calculated in terms of the b-quark pole mass, i.e. the location of the pole in the heavy quark propagator.
 - Well defined in perturbation theory, but
 - does not make sense non-perturbatively because of confinement.
- The lack of a non-perturbative definition shows up via large higher-order perturbative corrections.
 - Upon relating the pole to the MS quark mass, one finds a badly divergent PT series.
 - Can resum this series, but prescription is not unique ("renormalon ambiguity").

b-quark mass definition

- Bad perturbative behavior also shows up in the decay rate, if it is expressed in the pole mass.
- Eliminate pole mass in favor quark mass! Many mass schemes in the literature:
 - MS mass (not suited for HQET)
 - Kinetic mass (Uraltsev)
 - Y(1S) mass (Hoang, Ligeti, Manohar)
 - Potential subtracted (Beneke)
 - Shape-function (Bosch, Lange, Neubert, Paz)
- Also, better definition for λ_1 , λ_2 are available in the kinetic and shape-function scheme.
 - The corresponding parameters are denoted by $\mu_{\pi^2} (\equiv -\lambda_1)$ and $\mu_{G^2} (\equiv \lambda_2)$

Moments

- Calculate moments of the decay spectrum (with exp. cuts).
 - Leptonic moments

$$L_n = \frac{1}{\Gamma} \int dE_e (E_e)^n \frac{d\Gamma}{dE_e}$$

Hadronic moments

$$H_{ij} = \frac{1}{\Gamma} \int dM_X^2 dE_X (M_X^2)^i (E_X)^j \frac{d\Gamma}{dM_X^2 dE_X}$$

• Measurement of the moments and the rate determines $V_{\rm cb}$ $m_{\rm b}$, $m_{\rm c}$ and λ_1 .

Moment measurements and global fit

Red line: fit result. Green band: exp. uncertainty.
 Yellow band: exp. + th. uncertainty

Buchmüller and Flächer, hep-ph/0507253

Fit results

Moments included:

Solid red: all

Dashed blue: $B \rightarrow X_c e v$

Dotted green: $B \rightarrow X_s \gamma$

Most precise determination of 3 SM parameters in a single process!

News flash

• The "most precise determination" statement was true until last Tuesday:

arXiv.org > hep-ph

Search for (Help | Advanced search)

All papers
Go!

High Energy Physics - Phenomenology

hep-ph new abstracts, Tue, 13 Feb 07 01:00:10 GMT 0702103 -- 0702123 received

hep-ph/0702103 [abs, ps, pdf, other]:

Title: Heavy Quark Masses from Sum Rules in Four-Loop Approximation

Authors: Johann H. Kuehn, Matthias Steinhauser, Christian Sturm

Comments: 29 pages

New data for the total cross section $\sigma(e^+e^-)$ in the charm and bottom threshold region are combined with an improved theoretical analysis, which includes recent four-loop calculations, to determine the short distance $\sigma(\pi)$ charm and bottom quark masses. A detailed discussion of the theoretical and experimental uncertainties is presented. The final result for the $\sigma(\pi)$ masses, $\sigma(\pi)$ GeV and $\sigma(\pi)$ GeV) = 0.986(13)\$ GeV and $\sigma(\pi)$ GeV) = 3.609(25)\$ GeV, can be translated into $\sigma(\pi)$ GeV and $\sigma(\pi)$ GeV and $\sigma(\pi)$ GeV and $\sigma(\pi)$ GeV and $\sigma(\pi)$ more precise than a similar previous study.

Future improvements of the moment analysis

- To go to next higher level in theoretical precision, we'll need
 - Tree-level OPE to $1/m_b^3$. Already included.
 - Has recently even been calculated up to $1/m_b^4$, hep-ph/0611168.
 - Perturbative corrections to the leading power corrections, terms

$$\alpha_s(m_b) \frac{\mu_\pi^2}{2m_b}$$
 $\alpha_s(m_b) \frac{\mu_G^2}{2m_b}$

- doable, but nontrivial 1-loop calculation
- Two-loop corrections to the leading power rate
 - Possible with new numerical techniques. Muon decay has been calculated, hep-ph/0505069 (same kinematics, but QED instead of QCD corrections)

Quark hadron duality

- Are there pieces that we are missing when calculating the rate using the OPE?
- It is often stated that the OPE calculation "assumes quark hadron duality", since we calculated the coefficients C₃ and C₅ with quarks instead of hadrons.
- More precisely, we have expanded in the rate $1/m_b$, $\alpha_s(m_b)$ and $1/m_W^2$. Upon expanding, we loose non-analytic terms, such as

pert. expansion

$$e^{-1/\alpha_s}$$
,

OPE integrating out W

$$e^{-a^2/m_W^2}.$$

W cannot go on-shell (Euclidean OPE)

OPE for incl. B-decay

$$\frac{1}{m_b^n}\sin(\frac{m_b}{b})$$

quark, gluons can be on shell (Minkowskian OPE)

• Models give *n*=8 suppression compared to leading order in SL decay, see hep-ph/0009131. Hopefully, these effects are tiny.

"duality violation"

Example of oscillatory behavior

- Oscillatory behavior is not captured by OPE calculation.
- In inclusive quantities, the oscillations average out.

Heavy hadron lifetimes

and the Λ_b (ex-)puzzle

Heavy hadron lifetimes

• Same OPE technique can also be used to calculate the hadron lifetimes τ =1/ Γ

$$\Gamma(H_b) = \Gamma(H_b \to X) = \frac{1}{2M_B} \sum_X (2\pi)^4 \delta^4(p_B - p_X) \left| \langle X | \mathcal{H}_{\Delta B=1} | B \rangle \right|^2$$
$$= \frac{1}{2M_B} 2 \operatorname{Im} \langle B | i \int d^4 x \ T \left\{ \mathcal{H}_{\Delta B=1}(x), \mathcal{H}_{\Delta B=1}(0) \right\} | B \rangle$$

• Complete $\Delta B=1$ eff. Hamiltonian:

$$\mathcal{H}_{\Delta B=1} = \frac{4G_F}{\sqrt{2}} \, V_{cb} \left\{ c_1(m_b) \left[\bar{d}_L' \gamma_\mu u_L \, \bar{c}_L \gamma^\mu b_L + \bar{s}_L' \gamma_\mu c_L \, \bar{c}_L \gamma^\mu b_L \right] \right. \\ \left. + c_2(m_b) \left[\bar{c}_L \gamma_\mu u_L \, \bar{d}_L' \gamma^\mu b_L + \bar{c}_L \gamma_\mu c_L \, \bar{s}_L' \gamma^\mu b_L \right] \right. \\ \left. + \sum_{\ell=e,\mu,\tau} \bar{\ell}_L \gamma_\mu \nu_\ell \, \bar{c}_L \gamma^\mu b_L \right\} + \text{h.c.} \,, \\ \text{semileptonic decays}$$

OPE

- Result for the rate has the same structure as we had before.
 - Only small lifetime differences ~1-2% to $O(\Lambda^2/m_b^2)$. Arise because λ_1 , λ_2 are slightly different for different hadrons.
 - Dominant contribution to lifetime *differences* from the four-quark operators suppressed by $(\Lambda/m_b)^3$. Enhanced by a large numerical prefactor $4\pi^2$, they are are O(5-10%).

The Λ_b ex-puzzle

Situation a few years ago

Latest numbers:

Theory, hep-ph/0612176

Experiment

$$\left[\frac{\tau(B^+)}{\tau(B_d^0)}\right]_{\text{NLO}} = 1.063 \pm 0.027 \qquad \left[\frac{\tau(B^+)}{\tau(B_d^0)}\right] = 1.071 \pm 0.009$$

$$\frac{\tau(B_s)}{\tau(B_d)} = 1.00 \pm 0.01$$
 $\frac{\tau(B_s)}{\tau(B_d)} = 0.957 \pm 0.027$

hep-ph/9906031

$$\frac{\tau(\Lambda_b)}{\tau(B_d)} = \begin{cases} 0.91(1) & \text{for } am_{\pi} = 0.74(4) \\ 0.93(1) & \text{for } am_{\pi} = 0.52(3) \end{cases}$$
$$a^{-1}=1.1\text{GeV}$$

• New CDF result, hep-ex/0609021

$$\frac{\tau(\Lambda_b^0)}{\tau(B^0)} = 1.041 \pm 0.057 \text{ (stat. + syst.)}.$$

DZero: $\frac{\tau(\Lambda_b^0)}{\tau(B^0)} = 0.87^{+0.17}_{-0.14} \text{ (stat)} \pm 0.03 \text{ (syst)},$

3.20 higher than world average, with comparable precision!

$B \rightarrow X_u ev$

Experimental cuts, shape function and the extraction of V_{ub}

V_{ub}

- Interesting tension between $|V_{ub}|$ and $\sin(2\beta)$ measurements
 - $sin(2\beta)$: loop process in SM
 - sensitive to new physics
 - $|V_{ub}|$: tree level weak decay
 - insensitive to new physics,
 - but extraction is sensitive to QCD effects!

| Vub |

- It is trivial to obtain the $B \rightarrow X_u e v$ rate from our expression for $B \rightarrow X_c e v$
 - Set $m_c=0$, replace $V_{cb} \rightarrow V_{ub}$
- However, experimentally, it is impossible to measure the total $B \rightarrow X_u e v$ rate.
 - $B \rightarrow X_c e v$ signal is much larger

$$\left| \frac{V_{ub}}{V_{cb}} \right| \approx 0.1 \qquad \frac{\Gamma_c}{\Gamma_u} = \left| \frac{V_{cb}}{V_{ub}} \right|^2 \left(1 - 8\rho - \rho^4 - 12\rho^2 \ln \rho + 8\rho^3 \right) \approx 50$$

- Need kinematical cuts to eliminate $B \rightarrow X_c e v$
 - e.g. $M_X < M_D$ or $E_e > \frac{M_B^2 M_D^2}{2M_B}$

E_e spectrum

• S/B ~ 1/15 for E_e >2GeV. Background subtraction challenging!

M_X spectrum

- The cuts reduce the small $b \rightarrow u$ signal even farther!
- Are a theoretical challenge
 - Reduce available phase space enforce small M_X .
 - OPE breaks down! Terms $\frac{\Lambda_{QCD}E_X}{M_X^2}$ in OPE are no longer suppressed.

OPE with cut

• *u*-quark propagator denominator

$$\frac{1}{(m_b v + k - q)^2} = \frac{1}{(m_b v - q)^2 - 2(m_b v - q)k + k^2}$$

• Total rate: $(p_X=m_b v-q)$

$$p_X^2 \sim m_b^2$$
, $p_X \cdot k \sim m_b \Lambda_{\rm QCD}$, $k^2 \sim \Lambda_{\rm QCD}^2$

• After cut to eliminate $B \rightarrow X_c e v$

$$p_X^2 \sim m_b \Lambda_{\rm QCD}$$
, $p_X \cdot k \sim m_b \Lambda_{\rm QCD}$, $k^2 \sim \Lambda_{\rm QCD}^2$

Shape function

$$p_B = m_b v + k \xrightarrow{b} q = p_e + p_\nu$$

Without cut (or modest cuts)

$$\frac{1}{(p_X + k)^2} = \frac{1}{p_X^2} \left[1 + \frac{2p_X \cdot k}{p_X^2} + \dots \right]$$

• Hadronic part: local operators with derivatives

$$h_v(k) \ h_v(k) \to h_v(x) \ h_v(x) \ ,$$

 $h_v(k) \ k_\mu \ h_v(k) \to h_v(x) \ i D_\mu \ h_v(x) \ \text{etc.}$

• With cut to eliminate $B \rightarrow X_c e v$

$$\frac{1}{(m_b v + k - q)^2} = \frac{1}{p_X \cdot (p_X - k)} \left[1 + \frac{k^2}{p_X \cdot (p_X - k)} + \dots \right]$$

Function of $p_X \cdot k$! Nonlocal object in position space. Matrix element is "Shape function"

Total rate (or mild cuts)

Two relevant scales: $m_b \gg \Lambda_{\rm QCD}$

Small Mx: "shape function region"

Nonlocal, nonperturbative matrix element "Shape function"

Three different scales: $m_b \gg M_X \gg \Lambda_{QCD}$

Double expansion: $M_{\rm X}/{\rm m_b}$ and $\Lambda_{\rm QCD}/M_{\rm X}$

Can use soft-collinear effective theory (SCET) to perform expansion in a systematic way

Factorization theorem

hard jet soft shape function

Korchemsky, Sterman '94

Shape function S(w)

- At this point things look bleak: Even in the limit $m_b \rightarrow \infty$, we need a nonperturbative shape *function* $S(\omega)$ as input!
 - Similar to hadron collider physics, where we need non-perturbative parton distributions to make predictions.
- Know a few properties: once we integrate over the spectrum, we obtain usual OPE expression.
 - Moments are given in terms of HQET parameters, such as m_b , λ_1 .

$B \rightarrow X_S \gamma$ to the rescue

• Fortunately, the *same* shape function $S(\omega)$ appears in the calculation of the $B \rightarrow X_s \gamma$ photon energy spectrum.

$$\frac{d\Gamma}{dE_{\gamma}} = H_{\gamma} J \otimes S$$

- Only hard function differs from $B \rightarrow X_u l v$.
- Two strategies to extract | V_{ub}|:
 - Make ansatz for $S(\omega)$, depending on a number of parameters. Constrain with $B \rightarrow X_s \gamma$ spectrum and $B \rightarrow X_c l \nu$ moments.
 - Use relations between the $B \rightarrow X_s \gamma$ and $B \rightarrow X_u l v$ spectra in which shape function drops out.

Vub using shape function

■ $|V_{ub}|$ determined to ±7.3%

Statistical	±2.2%
Expt. syst.	±2.8%
$b \to c\ell\nu$ model	±1.9%
$b \rightarrow u\ell\nu$ model	±1.6%
SF params.	±4.2%
Theory	±4.2%

subleading SF, PT, WA

HFAG number is based on Lange, Neubert and Paz Phys.Rev.D72:073006,2005

- Analysis also includes subleading shape functions.
- Uses $B \rightarrow X_s \gamma$ and $B \rightarrow X_c l v$ to constrain shape functions.
- Uses different parameterizations to estimate dependence on functional form.

Vub without shape function

- Babar $|V_{ub}|$ values from weighted integrals over the two spectra appeared very recently in hep-ph/0702072.
- They use 3 different theoretical evaluations of the weight function.

 [Method] | Variable 10³

Method	$ V_{ub} \cdot 10^3$
LLR [3, 4]	$4.28 \pm 0.29 \pm 0.29 \pm 0.26 \pm 0.28$
Neubert [6]	$4.01 \pm 0.27 \pm 0.29 \pm 0.32 \pm 0.27$
BLNP [7, 8]	$4.40 \pm 0.30 \pm 0.41 \pm 0.23$

Uncertainties: $b\rightarrow u$, $b\rightarrow s$, theory, V_{ts}

 $B \rightarrow X_S \gamma$

Chasing New Physics with 4-loops

A sensitive probe of New Physics

- FCNC process. Loop suppressed in the SM
- e.g. strong constraint on the MSSM

Elements of the NNLO calculation

- After large theory effort over the last years we have obtained the rate at NNLO level.
 - O(20) papers with necessary calculations.
- Needs all of the following at NNLO:
 - 1. Effective weak Hamiltonian
 - a. Matching at high scale (2- and 3-loop)
 - b. RG evolution to low scale (3- and 4-loop)
 - 2. Calculation of rate at NNLO
 - a. OPE for total rate (\leftarrow so far only estimate)
 - b. Effect of the photon energy cut $E_Y > E_0 \approx 1.9 \text{GeV}$

Match and run, match and run...

- Many energy scales. Use different effective theories to treat each of them in turn.
- O(10⁵) diagrams along the way...

NNLO result

Experimental average (HFAG)

$$Br(\bar{B} \to X_s \gamma) = (3.55 \pm 0.24^{+0.09}_{-0.10} \pm 0.03) \cdot 10^{-4}$$

- for cut $E_{\gamma}>E_0=1.6$ GeV
- stat.+syst., extrapolation to low E_0 , $b \rightarrow \gamma d$ subtr.
- Theory @ NNLO (hep-ph/0610067 with hep-ph/0609232)

$$Br(\bar{B} \to X_s \gamma) = (2.98 \pm 0.26) \cdot 10^{-4}$$

- $^{+4}_{-6}$ % perturbative, 4% parametric, 5% power corrections, 3% interpolation in m_c .
- 1.4σ below exp. value. 1-2σ below NLO value. (Gambino Misiak '01 found BR=(3.6±0.3)x10⁻⁴ at NLO.)