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Executive Summary

The Andrew JIP predicted faitures of foundation elements in a majority of platforms, which
were not observed during post-Andrew inspections. The Andrew JIP established an overall
(system) correction factor, with a mean of 1.2. This correction factor was not specific to the
biases associated with the foundation capacity estimates per the “recipe” followed in that
project. Rather it included failures of all types within jacket and its foundation. Therefore,
to further investigate the bias in the foundation capacity estimates for the steel jacket
platforms, API and MMS commissioned this study specifically to evaluate the effects of
Andrew on offshore platform foundations. This is the final report, which documents the
approach and results of the project.

This project had two primary objectives:

1. Calibration. Perform a calibration of procedures for foundation capacity analysis
(lateral and axial) for assessing existing platforms. A rigorous method for
calibration developed in the Andrew Phase 1 is to be used. The process includes
reconciling analytically predicted platform damage and failure with observed field
performance during Andrew.

2. Factors Influencing Bias Factor. The various parameters which would influence
the bias factor are to be identified.

Three steel jacket platforms and three caissons subjected to hurricane Andrew were selected
for evaluation in this project. The selection process considered previous Andrew JIP results,
hindcast information and available structural and geotechnical information. The caissons
provided a means of isolating the lateral soil behavior and some observed foundation
failures. Figure ES-1 shows the locations of platforms and caissons relative to the path of

Andrew.
GEOTECHNICAL ASPECTS
This portion of the project involved identifying various parameters which would affect the

platform capacity estimates. In particular, factors influencing pile foundation axial and
lateral capacity estimates were identified. In the case of lateral capacity, the API static p-y
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Executive Summary

curves were considered appropriate to be included in the capacity analysis “recipe” by the
API Steering Committee and the project team.

As the project progressed, it was considered that due to large uncertainty in estimates of the
contributions of various factors (such as loading rate and cyclic effects) to the axial capacity,
there will be no attempt to interpret the effect of individual factors on the pile capacity
analysis recipe. Therefore in this project the combined effect of these parameters will be
reflected in the bias factors. '

CAPACITY ANALYSIS

The capacity analysis results obtained in the Andrew JIP indicated a number of possible
failure modes in the jacket superstructure and foundation, when subjected to Andrew loads.
In order to identify the differences in the biases associated with the pile lateral and axial
capacities from those with the jacket superstructure, three separate analysis cases were
carried out for each jacket platform:

Base case analysis: Nonlinear jacket and foundation model — To determine critical
failure mode for best estimate deterministic model.

Case 2 analysis: Linear jacket and nonlinear foundation model — To determine
critical foundation failure mode for best estimate deterministic
model. The analysis may be repeated to suppress one
foundation failure mode type if both lateral and axial modes are
predicted.

Case 3 analysis: Case 2 model with one foundation failure mode type (pile
pullout/plunging or pile yielding/plastification) suppressed — To
determine capacity in the alternate foundation failure mode.

The base case capacity analysis provided the results without eliminating the foundation
effect. The Case 2 and Case 3 analyses provided estimates which define the ultimate
foundation capacity for both lateral and axial pile failure modes individually. These three
cases enabled the determination of the relatively uncoupled estimates of foundation
capacities for use in calibration.

CALIBRATION
The bias (or correction) factors that are the focus of this study represent the modeling

errors associated with the ultimate lateral and axial capacity estimates of the jacket
foundation system. These correction factors reflect the bias of the overall safety factor

Andrew Foundation Study May 1995
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Executive Summary

(resistance divided by loading effects) for platforms during extreme hurricane loadings. A
bias factor greater than 1.0 indicates that the current platform ultimate capacity analysis
procedures provide conservative results in the sense that it suggests more failures than will
actually occur during storms.

Two of the platforms studied were damaged during hurricane Andrew, specifically damage
in the jacket frames. Unfortunately, limited information was available on the foundation
behavior of the jacket platforms during Andrew, suggesting that they did not fail or deform
in a noticeable way. Therefore, the capacity related to the jacket superstructure (with
known behavior during Andrew) shall be considered separately from the foundation
behavior. The geotechnical investigations indicated that the biases associated with the
foundation system are significantly different between the lateral and axial failure modes,
Thus, these two modes shall also be considered separately. In summary, it is expected that
there will be different biases in the following three failure modes and corresponding capacity
estimates:

®  Bias in the jacket superstructure, B,
®  Bias in foundation lateral capacity, B,
®  Bias in foundation axial capacity, B,

In this study, the foundation bias factors (Bq and B,,) were determined utilizing the capacity
estimates for the Case 2 and Case 3 capacity analyses.

The analysis results indicate that foundation failures (lateral and axial) can occur at
relatively small (and perhaps unobservable) displacements. Therefore, an observation of
an “unfailed” foundation have several possible interpretations:

Foundation Lateral Capacity:

Case A: Fully plastic section event in the first pile did not occur
Case B: Fully plastic section events in several piles did not occur
Case C: Fully plastic section event in one pile did occur
Foundation Axial Capacity:
Case D: Pullout/plunging event in the first pile did not occur
Case E: Pullout/plunging events in several piles did not occur
Case F: Pullout/plunging event in one pile did occur
Andrew Foundation Study May 1995
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Executive Summary

The calibration process was performed for all platforms for the above cases and the results
obtained are given in Table ES-1. The prior distributions of B, and B,, represent the
assumed distribution of the bias in the computed ratios of platform ultimate capacity to
loading effects. The posterior of B, and By, present the shift in their prior distributions due
to combining the effect of computed platform ultimate capacities and loading effects,
associated uncertainties in the parameters defining these quantities, and the effect of field
observations (platform survived, damaged, or failed during Andrew). The posterior
distributions are established by using the Bayesian updating process.

The results in Table ES-1 indicate that the posteriors of bias factors vary slightly for
calibration cases A and B, and cases D and E. Case C calibration with the assumed
observation of a fully plastic section in one pile did not shift the lateral bias factor, whereas
due to Case F with assumed observation of pullout/plunging of one pile shift in the axial
bias factor is moderate compared to those due to cases D and E. These results indicate that
with a better mix of foundation survival and damage cases, the bias factors may have
intermediate values (between A and C or D and F).

Caissons were also included in the study because they offered several observed cases of
lateral foundation failures. They provided potential to improve the bias estimate for lateral
foundation behavior.

The third set of results presented for cases A, B, C for lateral bias factor (By) for the jacket
platforms, when the effect of observed damage/failures in caissons are included, shall be
considered with caution due to differences in the characteristics and behavior of jackets and
caissons. This set of results were determined to demonstrate the likely trend for the jacket
bias factor when jacket platforms with foundation damage are included (if considered in
later investigations). The third set of combined bias factors are not applicable to the bias
in the caissons predicted capacity to loading effect ratio.

Figure ES-2 presents the shift of the prior of B, due to including the effect of jacket cases
and the resulting posterior of B, for Case A. It shows that the prior mean of 1.0 shifts to
the posterior mean values of 1.2 due to each of the platforms ST151K and ST177B and to
1.14 due to platform SS139 (T25). All three jackets combined shift the posterior to 1.32.

Figure ES-3 presents the shift of prior of B,, due to the effect of jacket cases and the
resulting posterior of B,, for Case D. It shows that the platform ST177B has maximum
influence and platform SS139 (T25) has minimum influence on the shift to the prior. The
prior mean of 1.3 shifts to posterior mean values of 1.63 and 1.73 due to individual platform
ST177B and due to all three jacket platforms respectively.

Andrew Foundation Study May 1995
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CONCLUSIONS AND RECOMMENDATIONS
Geotechnical Aspects

The variation in the pile lateral capacity is determined to be on the order of square root of
the variation in the undrained shear strength. In addition, only the lateral p-y springs in the
upper zone (up to 60 ft below mudline) get fully mobilized and influence the lateral capacity
estimates. The influence of errors in estimates of the undrained shear strength of clay layers
(due to unavailability of site-specific soil reports) is more important for the foundation axial
capacity estimates than for lateral capacity.

The various effects, which are likely to increase the foundation axial capacity have been
identified but the procedures to incorporate their effect for different soil conditions are not
fully known. Some recent investigations have shown wide differences in the estimates of
increase in the pile axial capacities. The most important effects to include are loading rate
and cyclic loading effects, which are known to have compensating effects.

The earlier research discussed in Section 2 has indicated that the API RP 24, pile axial
capacity (t-z) estimates underpredict the true ultimate pile axial capacity. However, in this
study no change to the API pile axial capacity characterization was included and the
combined effect of the various factors which may lead to increased axial capacities will be
reflected in the bias factors.

Instead based on earlier API studies, a higher mean of 1.3 with a COV of 0.3 was
considered for the prior of the bias factor (B,). The increased mean of the prior is

considered to provide a reasonable balance between the effects of the loading rate, cyclic
degradation, and choice of undrained shear strength of soil.

Capacity Assessment

For both 8-leg platforms, the pullout and plunging of multiple piles were predicted at very
low load levels. These load levels are 18 to 33 percent below the best estimate of the
maximum Andrew loading. Whereas, the multiple plastic section events were predicted at
load levels up to 14 percent higher than the predicted maximum Andrew load level for these
platforms, when API static p-y curves were used. The analysis predicted very small pilehead
displacements even at multiple fully plastic pile section events and at multiple pile
pullout/plunging events in both lateral and axial directions, Considering that neither failure
mode was observable in the post-Andrew field inspections, these results indicate that the
predictions of the ultimate lateral capacity of pile foundations per API static p-y curves may
not be overly conservative, whereas the API t-z curves may underpredict the axial capacity
of the jacket foundation system.

Andrew Foundation Study May 1995
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Executive Summary

In case of ST151K (with no observed damage to the jacket and its foundation) significant
differences have been found between the predicted failures to the jacket frames and the
field observations following Andrew. It is also noted that the low ultimate capacity
estimates may be triggered by pile axial (t-z) capacity estimates, which may be conservative.
This is a significant finding suggesting that the ultimate overturning capacity of platforms
may be underpredicted in some cases.

It is recommended that additional platforms be investigated to further improve the findings
of this study and to further develop the improved guidelines for the ultimate capacity
analysis of the steel jacket foundation under extreme storm condition.

Calibration

Bias factors of 1.3 and 1.7 were established for the foundation lateral (Bg) and axial (By,)
computed ratios of ultimate capacity to loading effects (Ru/S) respectively for the steel
jacket platforms. This implies that on an average, for the platforms investigated in this
project, there is about 30 percent conservatism in the foundation lateral capacity and about
70 percent conservatism in the foundation axial capacity estimates based on the ultimate
capacity analysis "recipe” used by the project. These B’s are related to the key capacity
analysis recipe items followed in this project, thus any major variations in the recipe would
influence them.

These estimates are higher than the overall (system) bias factor (B) of 1.2, determined in
the Andrew Phase I. The Andrew Phase I bias factor was not applicable to a specific failure
mode (jacket structure or foundation) and thus included failure modes of all type. If the
effect of the foundation is eliminated to determine the bias factor associated with the
superstructure (B,), it is likely that the bias factor will be lower than that obtained in the
Andrew Phase L

These bias factors (B, and B,) are based on a limited number of the steel jacket platforms
investigated in this project and thus should be viewed as initial estimates and be considered
with caution. It is important to note that these bias factors are not applicable to the
capacity estimates of an individual platform and that these are for consideration by the API
and the regulatory bodies in their further considerations for the guideline and criteria
development for platform assessment against extreme storms. These factors may be
considered in determination of the average failure probability estimates and in the
economic risk and cost-benefit studies for a fleet of platforms. The estimated values for
the bias factors are consistent with a trend determined by other investigators.

PMB Engineering is currently executing Andrew JIP — Phase II, which includes all platforms
investigated in this study and an additional six steel jacket platforms. In the Phase II work,

Andrew Foundation Study May 1995
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revised Andrew hindcast data and a revised ultimate capacity analysis recipe are being used,
which could affect the findings of this project. Andrew Phase II is using a more detailed
reliability evaluation and Bayesian updating procedure, which would result in multiple bias
factors applicable to both the jacket structure and its pile foundation.

Based upon the above, the recommended topics for further study include:

®  Increase the sample cases and include searching for recorded foundation failure
cases. The platforms with observed foundation damages during earlier hurricanes
(e.g., Hilda, Betsy, Camille etc.) may be included to provide useful information to
the bias factor based on survival cases only.

= Consider using improved site-specific geotechnical information by obtaining new
boreholes for platforms.

®  Investigate the differences in foundation design and installation practices among
the older and newer platforms, and their likely effect on bias factors. This study
considered platforms installed in 1960’s.

®  Promote more extensive instrumentation and monitoring of existing platforms.

Andrew Foundation Study May 1995
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Table ES-1: Summary of Calibration Results

Foundation Lateral Capacity (Bfl);

Posterior of Bfl - Lateral Capacity (#1)
Calibration
Case Mean Value of BNl COV of BNl
A . . . . Pile did (O .
3 Jacket Cases Only 1.32 0.17
3 Caisson Cases Only .77 0.29
Combined Effect of All 6 109 0.15
Jackets and Caissons
R o . Piles did O .
3 Jacket Cases Only 1.26 0.18
3 Caisson Cases Only 0.77 0.29
Combined Effect of Al 6 1.04 0.16
Jackets and Caissons
3 Jacket Cases Only 1.00 0.16
3 Caisson Cases Only 0.77 0.29
Combined Effect of All 6 091 0.14
Jackets and Caissons

Notes: (#1) - Prior Distribution of Bfl Assumed with Mean of 1.0 and COV 0.30

Foundation Axial ity (Bfa):
Posterior of Bfa - Axial Capacity (#2)
Calibration
Case Mean Value of Bfa COV of Bfa
3 Jacket Cases 173 0.17
3 Jacket Cases 1.66 0.18
A 1 . N . . .
3 Jacket Cases 1.53 0.18

Notes: (#2) - Prior Distribution of Bfa Assumed with Mean of 1.3 and COV (.30



Section 1
Introduction

11 BACKGROUND

Hurricane Andrew (hereafter called Andrew) was a very intense storm that passed through
the Gulf of Mexico on August 24, 25 and 26, 1992. In particular, Andrew passed through
a region of some 3,500+ offshore structures located offshore Louisiana. While most of
these Gulf of Mexico platforms were not adversely impacted by Andrew, several suffered
problems ranging from minor damage such as bent handrails, to severe damage such as a
buckled underwater brace and a joint fracture, to catastrophic damage such as complete
collapse of the structure.

An extreme event such as Andrew provided an opportunity to learn from the experience by
reviewing the platforms that survived, were damaged, or failed during the hurricane and
trying to understand what happened and why. It provided a unique opportunity to study
offshore structures tested under full scale real conditions.

In October, 1993, PMB completed a joint industry project, "Hurricane Andrew — Effects on
Offshore Platforms," (hereafter called Andrew Phase I) and established a bias factor for
platform capacity estimate (ratio of predicted platform ultimate capacity to maximum
Andrew load). Numerous capacity analyses using CAP (by PMB and one participant) and
two other software packages (by two participants) were performed for calibration of the
predicted capacity per current industry practice with their actual "observed" behavior. The
bias factor was then established by application of structural reliability analysis and the use
of a Bayesian updating technique. This bias factor reflects correction to the analytical
predictions, so that the analytical results more closely agree with observed results.

The capacity analysis performed in Andrew Phase I indicated a significant number of
platforms with predicted failures in pile/soil foundation elements. The failure modes
determined were: first yield of pile sections, full plasticity of pile sections, inadequate axial
soil capacity leading to pile pullout or plunging. In many cases, the failure mechanisms were
formed due to multiple events in the pile/soil foundation system and defined the ultimate
capacity estimates.

The bias factor established in Andrew Phase I was an overall (system) correction factor and
was not specific to the biases associated with the individual failure modes of the jacket and
its foundation. Therefore, to further investigate the bias in the foundation capacity
estimates for steel jacket template platforms, API and MMS awarded this study to PMB to
specifically evaluate the effects of Andrew on their foundations.

Andrew Foundation Study May 1995
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Section 1 . Introduction

12 OBJECTIVES
There were two primary objectives for the API/MMS Andrew Foundation study:

1. Calibration. Perform a calibration of procedures for foundation capacity analysis
(lateral and axial) for assessing existing platforms. A rigorous method for
calibration developed in Andrew Phase I is to be used. The process includes
reconciling analytically predicted platform damage and failure with observed field
performance during Andrew.

2. Parameters Influencing Bias Factors. The various parameters which influence the
bias factors are to be identified.

API TG 92-5 has currently finalized a document, "Assessment of Existing Platforms to
Demonstrate Fitness For Purpose,” which will be issued by API in mid 1995 as a new
Section 17 or Section R and will be distributed as a supplement to the API RP 2A, 20th
Edition and its LRFD versions, respectively. This document suggests the use of ultimate
capacity analysis for assessment of existing platforms in order to identify the critical
platforms for possible mitigation measures.

More recent research by Exxon, NGI, and other companies, and results from platform
instrumentation programs have indicated that the actual behavior of the pile-soil system
subjected to extreme loads (during hurricane events) may significantly differ from the
regular design per API RP 2A. Such differences have been determined relatively recently
and have not yet become practice. For assessment of existing platforms against overloading
from hurricanes, one may consider contribution of such effects in determination of unbiased
estimates of ultimate capacity of the foundation system. Thus, a secondary objective of this
project was to identify such differences.

A major goal of this project is the calibration of some of the platforms that survived, were
damaged or collapsed during recent hurricane Andrew with intent primarily to determine
the degree of conservatism in the predicted foundation capacity estimates.

1.3 PLATFORM SELECTION
A significant effort was spent in selection of platform cases, obtaining site-specific
geotechnical reports, obtaining information for caissons, and contacting companies for other

pertinent information.

The MMS platform failures database was thoroughly investigated in Andrew Phase I and
the platform damages were summarized [PMB Engineering, 1993). This database indicated

Andrew Foundation Study May 1995
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Section 1 Introduction

that only one foundation failure occurred for platform ST172A owned by Samedan Oil
Corporation, which leaned 20 degrees with tearing of one jacket leg, 2 deck legs, and pullout
of two piles (by 15 ft and 5 ft). This platform with a foundation failure during Andrew was
considered to be of significant value to this project. Unfortunately, Samedan declined to
provide information for their platform for use in this project.

In lieu of information for this platform, the API Steering Committee and the project team
decided to utilize the available information for caissons of which many exhibited foundation
failures during Andrew. The expectation was that the caissons would provide a limit to the
bias factors established in this project. However, the caissons’ effect on the bias factors
would be presented separately, to distinguish between individual effects of jackets and
caissons.

The platforms were selected from a detailed evaluation using the following available
information:

Structural characteristics and details of platforms

Damage to the platforms

Geotechnical information in the vicinity of platforms

Hindcast information (same as for Andrew Phase I)

Ultimate capacity and Bayesian updating results from previous analyses
(Andrew Phase I results)

®  New ultimate capacity analysis done before the first project meeting

The results of this evaluation are summarized in Tables 1-1 and 1-2 for steel jacket
platforms and caissons cases respectively. These tables present information for 7 steel jacket
platforms and 11 free standing caisson platforms. Figure 1-1 provides locations of platforms
and caissons used. The selection process is discussed in more detail in Appendix A.

The following structures were finally selected for detailed investigation in this project:

Steel Jacket Platforms ST151K
ST177B
SS139 (T25)

Caissons SPelto 10
S$S113
SS135
8S136 (alternate)

Andrew Foundation Study May 1995



Section 1 Introduction

For caissons 5113 and SS136, the site-specific soil information was not available. The final
selection of one of these two caissons was dependent upon a review of their capacity analysis
results, site-specific hindcast data, and evaluating the likelihood of their providing sufficient
information for calibration.

The pile makeups for the steel jacket platforms are given in Appendix A.
14 ACKNOWLEDGMENTS

The efforts of the API Technical Advisory Committee for this project were greatly
appreciated. The two project meetings and one earlier briefing at an MMS workshop in
New Orleans in December 1993 provided much of the interaction during the project. Dr.
Jen-Hwa Chen, nominated as Chairman of the project Technical Committee, was contacted
more regularly during the project. The API Committee overseeing this project and other
technical representatives of companies included the following:

CHEVRON — Jen-Hwa Chen
DAMES AND MOORE — Billy Villet
EXXON — Don Murff
MINERALS MANAGEMENT SERVICE — Charles Smith
NORWEGIAN GEOTECHNICAL INSTITUTE — Suzanne Lacasse
SHELL — John Pelletier
UNOCAL — Rick Dupin

In particular, the following should be commended for their input:

=  CHEVRON. Chevron provided several geotechnical reports for use in the project.
Chevron also provided a significant number of the platforms (for calibration)
during Andrew JIP (also investigated in this project) and additional information
for several caissons for use in this JIP, without which the project would not have
been possible.

®  EXXON. Exxon provided technical information during Andrew JIP regarding soil
properties that should be used for pushover analyses [Hamilton and Murff, 1995].

®  MOBIL. Mobil provided information for two caissons damaged during Andrew.
The driveability records for both caissons were also provided.

®  MURPHY. Murphy provided information for five caissons damaged during
Andrew. The original design summary reports and information for the redesigned
caissons post-Andrew were provided.
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Section 1 Introduction

® OCEANWEATHER, INC. The meteorological and oceanographic site specific
hindcast information for Hurricane Andrew provided by Oceanweather, Inc. under
an agreement with PMB during Andrew JIP [Oceanweather, 1992].

®  TRUNKLINE. Trunkline provided geotechnical reports for two platforms during
this study. Trunkline also provided data for three of their platforms during
Andrew JIP, which were also used in this project.

PMB Engineering Inc. was the prime contractor, providing all project management, analysis
(structural and calibration) and reporting. Key PMB staff members for this project were
Dr. Dick Litton and Dr. Rajiv Aggarwal. Mr. Dan Dolan and Mr. Frank Puskar of PMB
were consulted during this project. In addition, the following provided consulting services
to PMB during the project:

Dr. Allin Cornell, Stanford University — input to calibration and structural analysis.
Review and comment of results.

‘‘‘‘‘ Dr. Wilson Tang, University of Illinois — input to calibration and geotechnical aspects.
Review and comment of results.
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Section 2
Geotechnical Aspects

The most predominant parameter defining foundation capacity in clay is the undrained shear
strength (Su). The undrained shear strength valyes depend on sampling techniques (driven
or pushed), types of tests performed in field or in the laboratory, and the degree of
disturbance of the soi] samples,

The borelogs used in this project were taken between 1967 and 1989. The UC tests on
driven samples were performed for a majority of cases. McClelland reports used for
platforms ST177B and S5139 indicate that 3 factor of 1.2 was included in development of
the interpreted shear strength profile. This was done to compensate for the lower strength
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Section 2 Geotechnical Aspects

with mean of 1.18 and COV of 027, compared to the miniature vane driven (MVD)
samples.

At the first project meeting, the API committee recommended developing shear strength
profiles using various geotechnical information such as stress history, plasticity index, water
content etc. It was agreed that using a nominal ratio of S,/ o, can provide a good estimate
of shear strenght for normally consolidated clays. Using a suitable strength ratio (0.23
recommended), a shear strength profile can be obtained that is representative of the Direct
Simple Shear (DSS) strength. The DSS can be used for analysis of laterally loaded piles
since it is well correlated to the vane shear strength which was originally used by Matlock
in developing the lateral loading criteria currently specified by APL. For axial shaft
resistance, it was suggested to use the upper bound shear strength from miniature vane tests.

The shear strength profiles and soil borelog information for the seven blocks studied in this
project are given in Appendix C. Figure 1-1 presents block locations for jacket platforms
and caissons with respect to the Andrew eye track. Out of these seven blocks, the shear
strength profiles available for Ship Shoal blocks 113 and 136 (caisson locations) are based
on generalized soil stratigraphy using soil borelogs from adjacent blocks approximately 15
miles from the caissons. All other soil information is in the same block or within 1 mile of

the platform.

Where sufficient data were available, the following three shear strength profiles are plotted
and are included in Appendix C:

s Based on strength ratio (Su/ ¢,’) of 0.23 and assuming an overconsolidation ratio
(OCR) of 1.0

m  Miniature Vane tests on undisturbed samples

s Interpreted or design shear strength profile from soil reports

Figure C-1to C-3 and C-5 to C-6 indicate that in general the interpreted or design shear
strength profiles are an average of the undisturbed MV test results. These profiles provide
higher values of shear strengths compared to the values based on the strength ratio
approach (with an assumed OCR of 1.0). Sig ificant difference is noted in the upper zones
between the shear strength profiles based on the strength ratio approach and on the MV
results. The shear strengths from the other tests are lower compared to the MYV tests due
to larger sampling disturbances (see borelogs in Appendix C).

Due to the uncertainty associated with the assumed OCR of 1.0 and unavailability of
sufficient information to make its accurate estimate, it was decided to use the shear strength
profiles based on the Miniature Vane tests in the upper zone for the base case capacity

analysis.

Andrew Foundation Study May 1995
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Section 2 Geotechnical Aspects

Figure C-4 for South Pelto 10 block indicates that below 60 ft. depth, the shear strength
values using the strength ratio approach become higher than those using the MV tests and
the interpreted shear strength. In this case, per earlier discussion, below 60 ft. depth the
higher values per the strength ratio approach are considered in this study.

From review of the soil Teports and borelogs additional observations are made as follows:
®  All of the soil reports indicate that Driven samples were obtained.

¥ STIS1 test program (1986) also included some intermittent tests with pushed
samples (see Table C-1). The MV test results for the pushed samples provides
higher shear strength compared to the driven samples results,

®  In case of ST189, for depths below 200 ft., the UC tests provided slightly greater
strength compared to MV tests, thus the interpreted shear strength profile (in soil
report) was based on the UC tests with a modification factor of 1.2,

increasing depths and the interpreted shear strength profile included 2
modification factor of 1.2,

Figure 2-1 provides a comparison of shear strength profiles for a]] platforms and caissons,
These are the shear strength profiles used in the analysis.

22 LATERAL CAPACITY OF PILES

The soil capacity is estimated by the API RP 2A procedures and modeled by p-y curves
associated with the distributed, uncoupled, nonlinear springs attached to the pile nodes. API
RP 2A presents details for developing both static and cyclic curves. In normal design, the
cyclic curves are used to be conservative and represent behavior during design loads. More
Trecent tests have indicated that use of cyclic curves for extreme ultimate load analysis can
lead to very conservative capacity predictions [Hamilton and Murff, 1995].
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Section 2 Geotechnical Aspects

It is noted that the ultimate lateral capacity of foundations involve displacements that are
significantly greater than the typical test displacements on which the RP 2A p-y behavior
is based. Thus, it is likely that the extreme loading would cause the pile to close any
existing gaps and deform virgin soil that has not been previously degraded. This behavior
is believed to be the reason for obtaining very conservative results using cyclic curves.

Exxon recently carried out tests on the centrifuge and concluded that for ultimate strength

analysis the lateral capacity of piles subjected to cyclic loading should be evaluated based
on the static API RP 2A strength [Hamilton and Murff, 1995].

Therefore, in this project the static p-y curves were used for the lateral springs to consider
large displacements associated with the Andrew load levels.

Tang obtained the model bias and errors (COV’s) associated with the API p-y static and
cyclic curves by comparison of measured response of field tests with analytical predictions.
The results indicated that the current procedures predict maximum moment response more
accurately than pile head displacements for working stress levels. The soft clay criterion was
identified to provide the best p-y curve for predicting lateral response of piles in clay. Tang
recommends the correction factors (biases) for the lateral pile response (maximum bending
moment) associated with the static loading p-y curves for the clay case as 0.92 (fixed pile
head case) and 1.08 (free pile head case). The corresponding COV’s are recommended as
0.20 (fixed pile head case) and 0.09 (free pile head case) [API PRAC 87-92; Tang and
Gilbert, 1990]. The sensitivity analyses have indicated that among the soil parameters, the

response is most sensitive to the undrained shear strength and less sensitive to the unit
weight of soil.

Based on the above, the prior distribution of the bias factor associated with the lateral
capacity estimates of a jacket foundation using the API static p-y curves, is assumed for this
study to have a mean of 1.0 and a COV of 0.3.

23 AXIAL CAPACITY OF PILES

A significant amount of published work is available on axial capacity/behavior of offshore
tubular piles in clay. The pile load test results have been compared with the predictions per
the methods given in the RP 2A. The following special effects have been identified in the

literature for differences in the pile capacity estimates per RP 2A:

m Loading rate or strain rate effect
s Cyclic loading
s Reconsolidation (time effect)
s Compressibility (pile length effect)
Andrew Foundation Study May 1995
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Section 2 Geotechnical Aspects

In addition, pile aging effects have also been mentioned by Pelletier et al [1993]. Pile aging
effects may occur in some cases at constant effective stress due to long-term rearrangement
of soil particles after occurrence of soil damage (e.g., due to pile driving or cyclic loading).
This effect may lead to an increase in soil strength and modulus and is under study by API
investigation.

The offshore piles are subjected to a combination of static and cyclic loads. API combined
the first two effects listed above under “cyclic loading effects" (some other works discuss
these two effects under “dynamic loading effects") and they can have potentially
compensating effects on pile axial capacity:

®  High rate of loading (during hurricane condition) increases capacity and stiffness
B Repeated loading results in decreased capacity and stiffness

Loading rate: Cohesive soils respond in a viscous manner to high rate of loading, i.e., their
strength depends upon the rate at which they are sheared. These rate effects are greatest
in soft plastic clays with high liquidity indices. The resultant effect on capacity is difficult
to quantify as it depends upon pile properties, soil characteristics, and loading. The RP 2A
Commentary discusses these but no explicit procedures for computation are provided.

Some investigators have suggested that the viscous rate effects around the pile shaft typically
cause a capacity increase of 5 to 20 percent per log cycle increase in loading rate, referenced
to initial loading rate, with the greater increase typically occurring for softer and more highly
plastic clays. Bea et al [1984] mention that in the absence of soil strength degradation due
to load cycling, axial capacities of piles in clay that are loaded by storm waves could be 30
to 80 percent greater than capacities calculated using static design procedures.

Using an analytical model, Dunnavant et al [1990] obtained predictions of peak soil
Tesistance during high-intensity wave loading 35 percent greater than peak static resistances
for typical Gulf of Mexico clays. The 35 percent increase was obtained for a case with low
cyclic loads (4 to 6 percent of static) and considering no cyclic degradation of axial capacity.
For cases with high cyclic loads, the predicted rate effect varied with increases noted up to
21 percent.

For a highly plastic clay, loaded in one-quarter of one wave-period, the strain rate effects
can double the undrained shear strength., Recent NGI tests on medium plastic clay also
confirms this [Lacasse, 1994]. Some other test results have shown that the “rate of loading
effect” could result in axial capacity estimates as high as twice the static capacity [Briaud
et al, 1984).

Andrew Foundation Study May 1995
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Section 2 Geotechnical Aspects

In their recent study on normally consolidated clay, Dutt et al [1992] concluded that strain
rate effects were within the range of other published data, with shear strength increasing at
the rate of 11 percent per log cycle of load rate.

Cyclic loading: The effect of cyclic loading depends on the overconsolidation of the clay
and on the ratio of cyclic to static loads. In the case of normally consolidated clay the effect
may be small and will increase with increasing overconsolidation ratio (OCR).

Dutt et al. [1992] found that cyclic strength for one-way loading was significantly greater
than the static shear strength. Karlsund and Nadim [1990] discuss the effect of variation in
cyclic load histories during the storm for different soil elements along the pile. They
determined that two-way cyclic loading at the pile top is more critical than one-way cyclic
and can lead to a significant reduction of pile capacity.

Reconsolidation: The time-consolidation effect in the Gulf of Mexico clay may be slow for
the platforms studied in this project, which are located in relatively shallow water depths.
The platforms investigated in this project are older structures with minimum topside
facilities and thus have low static load levels.

Compressibility: This is also known as “pile length effect” or “pile flexibility effect”. The
stiffness of a pile relative to the soil in which it is embedded can influence its cyclic
behavior. The amount of skin friction degradation during cyclic loading can depend
substantially on the stiffness of pile relative to that of the surrounding soil {Dunnavant et
al, 1990]. Longer, more flexible piles may have somewhat lower capacities due to cyclic
loading or softening than estimated per the conventional methods.

Semple and Ridgen [1984] suggest that the pile length effects should be considered when
the length/diameter (L/D) ratio is greater than 50. Lacasse [1994] mentioned that the
uncertainty (bias) on this factor may be around 15 to 20 percent.

The interaction of these effects is complex, and it is the combined effect that is important
for this study. The recommended factors of safety contained in RP 2A implicitly recognize
these effects, and the importance of each effect for a particular platform will vary. If any
of these effects are explicitly taken into account, then the other effects should also be
explicitly taken into account as well, to be consistent [Pelletier et al, 1993].

The above effects were discussed with the API Technical Advisory Committee at the first
project meeting and the following assumptions were recommended by the committee for this
project:

Andrew Foundation Study May 1995
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Section 2 Geotechnical Aspects

®  Consider an average of 10 percent increase in the axial capacity of pile from strain
rate effects

®  Cyclic degradation is typically low for the Gulf of Mexico clays and it was
recommended to refer to cyclic degradation estimations per Dutt et al [1992]

®  Pile flexibility effects are partly accounted for in this capacity analysis (CAP
models), with detailed modeling of the pile/soil system

B Ignore pile aging effect in this project

®  For silty soils, the API formulation is valid for a plasticity index as low as 30
percent

As the project progressed, it was considered that due to large uncertainty in estimates of the
contributions of various effects discussed above to the ultimate axial capacity, there will be
1o attempt to interpret the effect of individual factors on the pile capacity analysis recipe.
Therefore, in this project no change to the pile axial (t-z curve) capacity characterization
was included and the combined effect of these various effects will be reflected in the bias
factors,

Tang investigated biases associated with the API RP 2A pile axial capacity prediction
models by considering the above special effects as modeling errors, in a probabilistic model
[API PRAC 86-29B; Tang, 1988]. The variations of individual parameters were assessed
using available information and sensitivity of pile capacity due to change in the parameters
was investigated. The overall bias associated with RP 24, 16th edition procedure was
estimated to range from 1.3 to 3.7 and the overall error (COV) as 32 to 53 percent
depending on how the undrained shear strength was determined at the given site. Note that
a major contributor to the bias is the loading rate effect which alone has a mean bias of
1.56. These conclusions were based in part on an analysis of a large data base of pile load
tests (on smaller diameter piles) compiled by Olson [1984] and additional correction factors
were introduced to extend them for predicting pile performance of offshore platforms.
These estimates were based on the most heavily loaded piles in a offshore platform.

Tang noted that the model errors will reduce with new capacity prediction models in 17th
edition of RP 2A, and the overall bias is more likely to be 1.5 to 3.0 with associated overall
error as 30 to 40 percent [Tang et al, 1990].
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Section 2 Geotechnical Aspects

After careful consideration of the preceding discussion, the prior distribution of the overall
bias factor in pile axial capacity is assumed for this study to have a mean of 1.3 and a COV
of 0.3. We believe that these values provide a reasonable balance between the effects of
loading rate, cyclic degradation and choice of undrained shear strength of soil.

Andrew Foundation Study May 1995
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Section 3
Capacity Analysis

3.1 APPROACH

The capacity assessments consisted of explicit nonlinear structural analysis. Platform loads
and resistances were based primarily upon the API RP 2A 20th edition. The overall intent
was to provide input for use in the calibration process described in Section 4. The specific
platforms selected based upon their likely contribution to this project were discussed in
Section 1.3. Three steel jacket platforms and three caisson platforms were evaluated, which
included platforms that survived, were damaged or collapsed during Andrew.

A static pushover to determine the platform capacity for use in the calibration was
performed for each platform using the PMB computer code CAP (Capacity Analysis
Program). The static pushover is the typical approach used by the industry to determine the
maximum lateral load carrying capacity of offshore platforms. This load can then be related
to a specific wave height that can cause platform failure.

The static pushover consists of a representative "snapshot” of lateral wave forces acting on
the platform, including any wave forces acting on the deck, and then applying the forces in
a step-wise increasing manner until the platform collapses. The corresponding base shear
acting on the platform at time of failure is used to define the platform capacity. Special
nonlinear elements are used to mimic the nonlinear behavior of the jacket braces, legs, piles
and soils. Further descriptions of the static pushover can be found in several references
[API, 1995; Puskar et al., 1994; Bea et al., 1988; Lloyd and Clawson, 1983].

The goal of this task was to establish the lateral load levels associated with the predicted
failures of individual and multiple elements, which would define the platform ultimate
capacity associated with a particular failure mode and the analysis recipe (for both loading
and element capacity characterization). Two failure modes (mechanisms), pile
yielding/hinging and pile pullout/plunging, defining foundation capacity of platforms against
lateral and axial loads, respectively, are investigated in this study.

Three analyses are performed for each steel jacket platform to obtain uncoupled estimates
of the lateral load which causes first element events and multiple events (defining
foundation capacity) using the following models:

®  Base case analysis: Nonlinear jacket and foundation model — to determine
critical failure mode for best estimate deterministic
model.

®  Case 2 analysis: Linear jacket and nonlinear foundation model — to

determine critical foundation failure mode for best
estimate deterministic model. The analysis may be

Andrew Foundation Study May 1995
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repeated to suppress one foundation failure mode type
if both lateral and axial modes are predicted.

®  Case 3 analysis: Case 2 model with one foundation failure mode type
(pile pullout/plunging or pile yielding/plastification)
suppressed — to determine capacity in the alternate
foundation failure mode.

The Case 2 and Case 3 analyses were to provide estimates of load levels corresponding to
events in the pile/soil system, by elimination of failures predicted in the jacket elements in
the base case analysis and also one type of foundation failure mode (lateral or axial). Thus,
the likely effect of uncertainties associated with the characterization of jacket element
strength and stiffness are eliminated and uncoupled estimates of foundation failure modes
are obtained.

In the case of caissons with only one failure mode (yielding/hinging of the caisson), the base
case analysis is sufficient. However, additional analyses with increased values of undrained
shear strength and with elimination of thin sand strata were also performed to determine
their sensitivity to these aspects.

32 LOAD AND RESISTANCE RECIPE

The load and resistance recipe used for the capacity analysis was based primarily upon the
API RP 2A 20th edition, with several modifications as required for this project. The basic
recipe followed is the same as for Andrew Phase I. Some of the more debatable issues,
such as choice of Fy (steel yield strength) or the joint capacity equation, were based upon
a vote by participants in Andrew Phase L

Key parameters of the recipe (loading and structural) identified in Andrew Phase I were as
follows:

m  Factors of Safety. The recipe eliminates factors of safety in order to compute an
unbiased platform capacity. This is necessary to calibrate analysis results with
observed behavior.

m  Material Strength. Most of the platforms were fabricated using steel with a 36 ksi
nominal yield strength. Participants voted on using a yield strength of 42 ksi to
account for the increase from nominal to mean and to account for increased
strength due to strain rate effects (rapid loading in storms) [Chen and Ross, 1977].
Material strength based upon mill certificates was used where available.

Andrew Foundation Study May 1995
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Brace Capacity (Buckling). The brace capacity is defined by equation D.2.2-2 of
API RP 2A LRFD [API, 1989].

Effective Length (K) Factors. The effective length K factor for X, diagonal and
K bracing was taken as 0.65, based upon results of laboratory tests [Grenda et al.,
1988] and analytical studies [Earl and Teer, 1989]. The length was taken as node-
to-node in the computer model (not face-to-face of the leg). For X bracing, the
member length is taken as one-half the node-to-node length (i.e. out-of-plane
buckling is not considered due to the compensating effect of the tension brace).

Grouted Joints. The API RP 2A equations for ungrouted joints were used with
an equivalent thickness for the leg based upon the strength contributions from the
leg, grout and pile [UEG, 1983].

Wave Loads on the Deck. In cases where waves impact the deck, the project used
the simplified procedure developed by API Task Group 92-5 [AP], 1995].

Ungrouted Joints. The "mean” capacity estimates of joints (K and X joints) used
were based upon formulations given in the literature. These estimates of joint
capacities are higher than those per API RP 2A formulas used in Andrew Phase L
Where joint capacities governed over the brace capacities, the joints were modeled
to fail in a brittle mode within the gap between the K-braces. Such failures (due
to Andrew) were noted from post-Andrew inspections of platforms ST177B and
SS139.

At the First Project Meeting held on March 22, 1994, various recipe issues especially

applicable to the pile/soil system were discussed and agreed with the API Committee.

These items were further investigated and discussed in Section 2.

Soil Shear Strength: Shear strength profiles will be developed using a consistent
approach for all platforms (see Section 2.1).

In the case of driven samples, a modification factor of 1.2 will be used to account
for the effect of disturbance. With pushed samples, no modification factor will be
used.

Lateral Soil Capacity. The AIM projects and other assessment-type studies have
typically used degraded soil-pile capacity to develop p-y nonlinear soil springs for
pushover analysis. This is based upon the assumption that the soil strength is
degraded at the time of the peak wave due to cyclic action of other large waves
during storm build-up. However, recent laboratory test by Exxon [Hamilton and

Andrew Foundation Study May 1995




Section 3

Capacity Analysis

33

Murff, 1995}, indicate that for pushover type analysis, the static lateral soil strength
provide a better ultimate capacity prediction (see Section 2.2 for further details).
Therefore, static p-y soil strength (as defined by API RP 2A) was used for all of
the analysis.

Axial t-z Springs: Pile flexibility effects are explicitly accounted for in the capacity
analysis using CAP, which handles the drop in the skin friction at large pile
displacements. Axial soil strength as defined by t-z spring formulation per API RP
2A was used for all analyses, with no reduction in the capacity as shown in
Figure 3-1.

"The contributions of loading rate, cyclic loading, reconsolidation and aging effects

were not included in t-z modeling (refer Section 2.3).

ANALYSIS MODELS

Figure 3-1 shows the nonlinear computer model of an 8-leg steel jacket platform used for
the static pushover analysis. The model consisted of a fully coupled nonlinear jacket-
foundation system. The force-deformation relationship used to model each of the primary
elements is shown. The model included the following:

Deck — Typical linear beam elements since no inelastic response is anticipated.
The deck framing was simplified for the analysis. The deck legs were modeled as
nonlinear beam-column elements.

Legs, Piles and Conductors — Nonlinear beam-column elements which carry both
bending and axial loads.

Braces — Buckling-type struts for braces which are weaker than the joint (i.e.
diagonals in the end-on loading direction) and nonlinear elastic-plastic truss
elements for the braces which are stronger than the joints (i.e. the broadside
loading direction K-joints). For this later case of weak K-joints, the elastic-plastic
modeling of the K-joint failure was based upon discussion with Andrew JIP
participants involved in a series of confidential laboratory joint tests.

Soils — Nonlinear p-y, t-z and g-z springs to model pile/soil behavior.

Figure 3-2 shows the nonlinear computer model for a free standing caisson. The model
consisted of a fully coupled nonlinear pile-soil system. The caisson and its foundation were
divided into a number of elements as shown and were modeled as nonlinear beam-column

Andrew Foundation Study May 1995
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Table 3-2: Capacity Analysis Results for Caisson Cases

Platform Characteristics Expected Base Shear (Kips) Trom Displacement Ratio System
Water Analysis Maximum Static Pushover Analysis Factor
Platform Configuration Depth/ Case Hindcast at at at at at Ult. CapJ/ Ult. Cap./
Year Base Shear First yield Fully Plastic Ultimate Deck Seabed Andrew BS BS at First
Installed of Ist Section Ist Section Capacity Level level inelastic event
#1) Ge2) @2) 1 #1)
(kips) (kips) (kips) ki (ft.) (ft.)
Base Case 65 38 44 48 5.63 1.2 0.74 1.26
30" dia. 35 ft. at 35' below
SPelto 10 180" penetration 1985
12 degree lean Su increased 65 54 69 - - - - -
by 100 %
48" dia.
55113 100" penetration 47 ft. Base Case 138 186 214 235 73 1.67 1.70 126
5 degree leaning 1990 in 1.75" section
Max. t = 1.75"
Base Case 132 119 128 148 7.2 - 1.12 1.24
48" dia. 53 ft. at 40-50' below |  in 1" section
55135 95’ penetration 1983
15 degree leaning Su increased 50 % 132 129 142 165 - - 1.25 1.28
Max_ t=2"
Su increased 100% 132 138 154 178 - - 1.35 1.29
Base Case 126 173 197 224 7.4 196 1.78 1.29
48" dia. 50 ft. (upper bound)
S5136 100" penetration 1983
30 degree leaning Ignored Sand 126 150 153 181 6.78 205 14 121
layer

Evy

-




Table 3-1: Capacity Analysis Results for Steel Jacket Platform Cases

Platform Characteristics Expected |Base Shear (at First Failures) from Base Shear (at multiple failures} Pushover Katio System System System
Platform/ Water Wave Analysis Static Pushover Analysis {rom Static Pushover Analysis Analysis Platform of Factor Factor Factor
Configuration Depth/ | Approach Case Hindcast | Brace/ Pile Pile Pile Brace/ Pile File Ulnimate Collapse Ult. Cap/ (Pile-Lateral § (Pile-Axial
Year Direction Max. Base | Joint | First Yield | Plaasticity | pullout/ Joint Plasticity |  pullout/ Capaity Mede Andrew Capacity} Capacity)
Installed from Shear Evenl Event Event Plunging| Events Events Plunging | (Rus, Rufa, or Base Shear = = =
Platform {5a) RI1) (Ri2} (RI3} {RI4) {Rs) (R} (Rfa) Ruff) = {Rw/R1) {RI/RI3) {Ria/R14)
ift.) North {kips) (kips} (kips} Akips} {kips) (kips) (kips) tkips) {Ru/Sa) (¥1)
8 Leg - Grouted Base Case 4,860 3,370 3,470 - 37350 4,000 - 3,930 4,000 K-joints overstress, 082 119 - -
§T151 K| Double Battered | 137 ft. | Diagonal (Nonlinear Jacket) Pile yielding and pullout
K Braced 1963 | l4deg Pullout of 3 piles, fully plastic
30" dia. piles Case-2 4,860 - 3,750 - 3,330 - - 4,000 4,070 events at two sections 0.82 122 - 1.20
175 penetration (Linear Jacket) for each pile
Case-3 All piles with fully plastic
(Linear Jacket with Pile 4,860 - 3,600 4,340 - - 5,000 - 5,000 event at 40’ below mudline 1.03 1.39 115 -
Pullout/Flunging Suppressed)
8 Leg - Grouted Base Case 4460 2,850 3,070 - 2,200 3,180 - - 3,200 X-braces, K-joint overstress, 0.72 145 - -
ST 177B ] Double Battered | 142ft. § Diagonal (Nonlinear Jacket) Pile yielding and pullout
K Braced 1965 302.6 deg. Pullout of 3 piles and
30" dia. piles Case-2 4,460 - 3,200 - 2,300 - - 2,970 3,200 Plunging of 3 piles 0.72 1.39 - 129
187’ penetration (Linear Jacket)
Case-3 All piles with fully plastic
Linear Jacket with Pile 4,460 - 3,270 4,330 - - 5,100 - 5,100 sections at two levels 1.14 1.56 1.18 -
Pullout/Plunging Suppressed}
4 g - Grouted Base Case 1,770 | 1,600 - - - - - - 1,600 K-joints everits and 0,90 1.00 - -
$5139 | Double Bavered | 62 ft. | Orthogonal {Nonlinear jacket) pile yielding
{T25) K Braced 1969 | 7deg
34" dia. piles Case-2 1,770 - 1,800 2,100 - - 2,400 . 2,410 All piles with fully plastic 136 134 1.14 -
165’ penetration {Linear Jacket)} sections
Case-3
(Linear Jacket with Pile 1,770 - - - 2,500 - - 2,500 2,500 Two piles plunge 141 1.00 - 1.00
Yielding/Hinging Supp 4
Notes: (#1): Rl the lesser of R11, Ri2, and Rl4.
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Figure 3-7:  Pushover Analysis Results - Jacket Platform ST177B
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Section 4
Bayesian Calibration

4.1 APPROACH

The calibration process involves a comparison of analytically predicted platform
performance to observed platform performance. The end result is a bias factor that can be
used to improve the estimate of platform safety.

There are a number of parameters required to estimate structure capacity and
environmental loads such as soil strength and density, and drag and inertia coefficients. In
principle it is possible (with enough data) to "calibrate” the capacity and load models, that
is determine correction factors on these nominal input parameters. Due to limited observed
information (i.e., Hurricane Andrew observations) and a limited number of available
platforms, it was not possible to calibrate many specific items of the analysis
recipe/procedures and the calibration effort was limited to a global measure of the platform
capacity. Thus, as in Andrew Phase I, the bias factor "B" is introduced as the correction to
the computed "safety margin” of the platform, defined as the ratio of resistance (R) to

load (S):
oL

Thus, the "true” safety margin equals the "computed” safety margin (as per the assessment
process) times a bias (or correction) factor, B. A value of B greater than 1.0 indicates (on
average) that the current ultimate capacity analysis procedures provide conservative results,
A value of B less than 1.0 indicates (on average) unconservative predicted ultimate capacity
results. B is a random variable.

Andrew Phase I determined the posterior of B to have a mean of 1.2, which was the system
bias factor applicable to the complete behavior of platform (jacket and foundation) and
related to the analysis recipe followed in that project. The capacity analysis results
corresponding to those presented for the Base Case (nonlinear jacket and foundation model)
in Section 3 were used in Andrew Phase 1. The primary differences between the analysis
recipe used in the Andrew Phase I and this project were in the soil shear strength profiles
used and the modeling of joints.

The capacity analysis results presented for the two 8-leg jacket platforms in Section 3
predicted failure and inelastic events in the pile/soil system at loads lower than the
predicted maximum Andrew load level, and very small pilehead displacements at the
ultimate capacity load level. For two damaged jackets investigated in this project, the
damage in jacket frames were recorded but there was no conclusive observation of

Andrew Foundation Study May 1995
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Section 4 Bayesian Calibration

foundation behavior during Andrew suggesting that they did not fail or deform in a
noticeable way. For this reason the capacity related to the jacket superstructure (with
known behavior during Andrew) was separated from the foundation behavior.

The various factors which influence the lateral and axial behavior/capacities of the pile/soil
system were discussed in Section 2. These and the earlier research findings discussed
indicate that the biases associated with the foundation system vary significantly for the
lateral and axial failure modes, thus these two modes shall also be separated. Thus the
following were considered separately:

m  Bias in the jacket superstructure, B,
m  Bias in foundation lateral capacity, By
m  Bias in foundation axial capacity, By,

The base case capacity analysis presented in Section 3 provides results which include the
effect of the foundation. The Case 2 analysis provides an estimate for the ultimate
foundation capacity for lateral or axial directions individually whichever is dominant. The
Case 3 analysis provides an estimate for the alternate mechanism by suppressing the Case
2 mechanism.

In this study, the foundation bias factors (lateral, B, and axial, B,,) are to be determined.
The capacity estimates presented in Table 3-1 for the base case are thus not used because
the jacket mechanism was dominant. Instead, the estimates for Case 2 and Case 3 are used
in calibration. The base case analysis results are useful however to estimate the behavior
of the complete nonlinear model and identify any interaction effects of various failure
modes.

Due to inconclusive observations regarding the foundation behavior during Andrew, three
alternative interpretations for calibration are considered for both bias factors (B, and By,):
In the first case, the observations are interpreted as non failure of a single pile. In the
second case, the interpretation is non failure of multiple piles. The third case interpretation
is failure of a single pile. Each of these possible interpretations is worked through to

completion, i.e., determination of the mean and COV of the bias factors.

The Bayesian updating procedure to calibrate and evaluate the posterior distribution of B
was developed in the Andrew JIP, and will be presented in a subsequent section as it applies
to the foundation capacity calibration. The failure probabilities required to perform the
Bayesian updating were evaluated using a rigorous probabilistic approach developed in the
Andrew Phase I [PMB Engineering, 1993; Puskar et al, 1994] and is described in detail in
Appendix B.

Andrew Foundation Study May 1595
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Section 4 Bayesian Calibration

4.2 PRIOR DISTRIBUTION OF BIAS FACTOR, B

Due to the lack of observed foundation damage cases, the selection of an appropriate mean
and COV for the "prior" distributions of B is more important than it was for the Andrew
Phase I since it will have a greater effect on the outcome. The distribution of the “prior”
will also serve to bound the bias distribution, and is based on earlier work of Dr. Wilson
Tang [API PRAC 87-92, 1990; API PRAC 86-29B, 1988] which focused on uncertainties in
the geotechnical parameters. Those were discussed in detail in Sections 2.2 and 2.3. Dr.
Tang suggested to use normal distribution for the prior of B and recommended use of COV
of 0.3 for both lateral and axial capacity:

CLAY SAND
Lateral Capacity: Mean 1.0 0.8
cov 02-03 0.3
Axial Capacity Mean 1.3 1.0
cov 0.3 0.5

4.3 CALIBRATION PROCEDURE DETAILS

An overview of the complete calibration methodology developed in the Andrew JIP and also
followed in this project is presented in Figure 4-1. It consist of three stages:

B Capacity analysis
¥ Reliability analysis
®  Bayesian updating

Capacity Analysis: Capacity analysis aims to establish the lateral load levels at different
inelastic events in the jacket and its foundation and the ultimate capacity at platform
collapse or at an excessive displacement stage.

The capacity analyses described in Section 3, were performed on three-dimensional models
of the platforms using CAP [PMB Engineering, 1994]. The focus of the analysis was on
establishing lateral loads (pushover) at the occurrence of various events in the jacket
structure and foundation elements (pile sections, soil). In the case of jacket platforms, the
inelastic/failure events in the jacket structure (e.g., brace/joint overstress, leg yielding) are
also identified.

It is noted that the significant wave heights during storm hours reduce very sharply beyond
the most intense 2 to 3 hours (which are within 20 degrees from the direction of the

Andrew Foundation Study May 1995
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Section 4 Bavyesian Calibration

maximum storm hour). Thus the storm contribution before or after the most intense phase
is unimportant since the analysis is not likely to predict any nonlinear events/failures due
to other directions. The sensitivity analysis performed in Andrew Phase I indicated that the
change in the approach angle did not change the load level significantly for the inelastic
events, unless the failure modes shifted to frames in other orthogonal directions.

Therefore, for jacket platforms with no observed foundation damage, a capacity analysis for
only one direction was considered adequate. For caisson platforms, because of their axial
symmetric structural configuration, analysis for one direction was also sufficient.

At the first project meeting, the difficulties of observing foundation damage in post-
hurricane inspections were discussed. The results from analysis of platforms presented at
the meeting and reported in Section 3 indicated that the pilehead displacements at
formation of fully plastic sections and at pullout of piles might be too small to be observable
by a diver. The issue of which predicted inelastic events shall be calibrated was discussed.
Previous work by Tang [1990] reported biases associated with full plasticity of a pile section

(as in the API pile overload formulation) and pullout/plunging of a single pile.

The following failure modes are identified, which define the estimates of the lateral and
axial capacities of the foundation of the jacket platforms:

s Lateral capacity: First yield of pile section
Full plasticity of a pile section
Full plasticity of several pile sections (system capacity)

®  Axial capacity: Pullout/ plunging of a single pile
Pullout/plunging of several piles (system capacity)

In the case of caisson platforms, the load levels at first yield of a section at fully plastic
section, and at ultimate capacity were established, as given in Table 3-2. The caissons
considered were all in the observed damage category.

Reliability Analysis: Using the Andrew hindcast information for several storm hours with
higher wave heights and the applicable capacity analysis results, structural reliability analysis
procedures were used to determine the probabilities of failure. The formulation developed
by PMB during Andrew Phase I and described in Appendix B is followed. The process is
automated by using the PF program developed by PMB.

The load (S) and capacity (R) in the computation of P, are considered as random variables.
The load, S represents the maximum load on the structure during Andrew. The load is
represented by the base shear, BS, obtained for different combinations of wave height (h)

Andrew Foundation Study May 1995
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and current (u) by an empirical formulation as given in the Appendix B. It requires
platform specific base shear coefficients (C1, C2, and C3), applicable for a range of wave
height and current for each direction considered. The best estimate of the capacity (R} is
represented by the ultimate capacity of a platform obtained from the static pushover
analysis,

A computer code called "C1C2C3" was developed during the Andrew JIP to define the base
shear coefficients. The program performs a three-dimensional iteration and determines the
best fit coefficients to the platform base shear computed for a set of different wave heights
and corresponding current.

A computer code called "PF" was also developed during the Andrew JIP to compute the
probability of failure for given values of load and capacity parameters. The formulation of
“PF" includes a factor, b, which represents a different estimate of structural capacities
(resistances) or different ratios of the best estimates of capacity to load. The probabilities
of failure for each platform are evaluated for a range of values of b, e.g., 0.2 to 2.5

The uncertainties and distributions of various quantities in equations B-1 and B-4
(Appendix B) are required for evaluating the probability of faijlure. The following
distributions and variances were considered for this project:

Item Distribution = Expected Value Cov
Capacity, R Log-Normal  per analysis 0.20 for lateral pile capacity
0.30 for axial pile capacity
Individual wave height, H/H, Forristall per hindcast per formula
Error in H, Log-Normal 1.0 0.10
Error in current, U Log-Normal 1.0 0.15
Error in base shear, § Log-Normal 1.0 0.25 for wave-in-deck case

0.20 for wave-below-deck case

The above values have been used for all platform cases. The resulting base shear
distribution is modified to account for the breaking wave height. The breaking wave height
for shallow water depths has been considered as 0.78 d, where d is the sum of water depth
and storm surge [API, 1993]. A maximum of four storm hours were considered sufficient
in evaluating the probabilities of failure for a platform,

The values obtained from the "PF" program for different b values, represent the likelihood
function given an observed failure during specific storm hours for a platform. The
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Section 4 Bavyesian Calibration

likelihood of the bias factor B less than b, given an observed failure of a platform due to
a storm approaching from a particular direction is represented as follows:

1k (b | failure) = Pifailure | b] (4-2)
= P (b)

in which P,(b) is the probability of failure of a platform at B = b.

Bayesian Updating: The objective of calibration is to modify the prior distribution on "B"
in a manner consistent with the behavior observed during Andrew. The updating is based
on the Bayes theorem of probability theory [Benjamin and Cornell, 1970; Moses, 1976;
Tang, 1981] which states:

. (b) o f5 (b) Ik (b | new information) (4-3)

in which fy (b) is the "prior" distribution of bias factor, B; f'; (b) is its "posterior”
distribution, and 1k(b|new information) is the "likelihood function” on b which reflects the
information about b contained in the new observation. The likelihood function depends
upon the observed state of a platform, i.e., survived, damaged, or failed during Andrew.

For a failure case, the likelihood function is given by equation 4-2. For a survival platform
(no observed damage) case, the likelihood function becomes:
Ik (b | survival) = Pfsurvival { b]

= 1-P;(b) (4-4)
For a damaged platform case, the likelihood function is the probability that the observed
damage lies in the same fractional interval of the capacity to load ratio as predicted by the
pushover analysis. The predicted ratios corresponding to the observed damage and one step
more damage (i.e., one more failed component} are denoted o, and o, respectively. The
resulting likelihood function for a damage platform case would be:

Ik (b | damage) = P;(ey b) - P; (a; b) (4-5)

The above likelihood functions, for a range of values of "b", represent the information
about B contained in the observed behavior of an individual platform. The combined
likelihood function of B given the observed behavior of a number of platforms with a
combination of survivals, damages, and failures is obtained by direct multiplication of the
likelihood curves for each of the individual platforms as follows:
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lk(b | n observations) = T[] [ik(b | observations)) (4-6)
platform i
i{

The combined likelihood function developed for a number of platforms in the last step is
then used to establish distribution of bias factor, B, using relationship 4-3. The mean and
COV of the posterior distribution are then determined. The change in the mean value of
prior of B identifies bias (conservatism or non-conservatism) in the load and resistance
recipe.

In this project, the attempt is to establish distribution of two bias factors associated with two
foundation failure modes: pile shear and axial pullout /plunging. The uncoupled foundation
capacity estimates are used. Correlation between seastates, load level, and capacities in
different directions have been neglected.

4.4 CALIBRATION RESULTS -APPLICATION TO PLATFORMS

The calibration approach described in Section 4.3 was applied to three steel jacket platforms
and three caissons identified in Section 3. The capacity analysis results for these jackets and
caissons were summarized in Tables 3-1 and 3-2,

Additional wave runs were performed on models of these platforms for use in determination
of the coefficients to define base shears for use in the probability analysis. Representative
wave and current combinations were run past the platform computer models and resulting
base shears were determined. Twenty to thirty wave runs were required for each platform.
The C1, C2, C3 coefficients used in the base shear formulation (Appendix B) were then
determined using the C1C2C3 program,

The likelihood functions given an observed failure of platforms were then determined for
each platform. The analysis was performed using two foundation ultimate capacity (R,;)
estimates given in Tables 3-1 and 3-2, the hindcast seastate data for 4 to S storms hours with
maximum significant wave heights (H,), the uncertainties in parameters given in Section 4.3.

The factor, b, within the formulation of probability of failure (Appendix B) was varied from

.2 to 2.5 and the PF program was used to develop the probabilities of failure at each b
value. The program determines the optimized integration limits and points for various
parameters for a given value of b. The analyses was done using the optimized integration
limits for different ranges of b values to determine probabilities of failure (Py). A plot was
generated of the resulting values of P; for different b values, known as the "likelihood
function” given an observed failure of a platform. The likelihood functions obtained for all
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jacket platforms and caissons from the PF are given in Fig. 4-2(a) for case with foundation
ultimate lateral capacity (R,q) and COV as 0.2 and in Fig. 4-2(b) for case with foundation
ultimate axial capacity (R,;) and COV as 0.3.

These likelihood functions were then used to perform Bayesian updating utilizing the
predicted capacity analysis results and observed behavior information for platforms. The
distributions of prior of B’s were assumed as a mean of 1.0 and COV of 0.3 for the lateral
capacity estimate and as a mean of 1.3 and COV of 0.3 for the axial capacity estimates. A
sensitivity study performed in Andrew Phase I indicated that the posterior distribution of
B is relatively insensitive to the COV of the prior.

The results obtained from Bayesian updating for lateral and axial capacities of platforms are
presented below:

44.1 Bias Factor - Lateral Pile Capacity

The posterior distributions of bias factor (By) for lateral pile capacity were developed
separately for both steel jacket platforms and caissons and combined later to determine the
limiting effect of caissons. The analysis results indicate that foundation failures (lateral and
axial) can occur at relatively small (and perhaps unobservable) displacements. Therefore,
an observation of an “unfailed” foundation have several possible interpretations. Three
calibration cases were identified for Bayesian updating. In the case of caissons (failure
cases), only one case with development of a fully plastic section was considered in
calibration.

The calibration results obtained are summarized in Tables 4-1 to 4-3 for jacket platforms
and caissons individually, and their combined effect.

Jacket Platforms

The calibration is done for the following possible interpretations of the observed foundation
behavior:

Case A: Fully plastic section event in a single pile did not occur
Case B: Fully plastic section events in several piles did not occur
Case C: Fully plastic section event in one pile did occur

Table 4-1 presents the load levels at nonlinear events in pile/soil and foundation ultimate
capacity taken from Table 3-1 for the above three calibration cases. The likelihood
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functions in Fig. 4-2(a) were then developed for three cases. Figures 4-3, 4-4, 4-5 provides
the applicable likelihood functions for the three cases.

Figures 4-6(a) to 4-6(c) provided the prior and posterior distributions for B, for the three
cases for jacket platforms. It is noted that the shift in the mean of prior of By is similar for
both ST151K and ST177B. For ST177B, B, shifts to 1.20 and 1.17 for Cases A and B,
respectively. The shift due to platform SS139(T25) is less than for the other two platforms.
The COV’s of posterior of By due to individual platforms are about 0.21 for all cases.

The posterior distribution of By has a mean of 1.32 for Case A when cumulative effect of
all three platforms is accounted. For Case B when multiple events are also not observed,
the mean of By shifts to 1.26. For Case C, with the assumption that only first pile plasticity
event is observed, the mean of By, does not shift. The COV for posterior of Bfl averages
to approximately 0.17 for all cases,

Caissons

Table 4-2 presents the load levels at nonlinear events in caisson foundation taken from
Table 3-2 for the calibration case with observing fully plastic section event. The likelihood
functions (observed failure case) in Figure 4-2(a) are applicable with some shift due to
change in the load level calibrated. Figures 4-3 to 4-5 include the applicable likelihood
functions for the caissons.

Figure 4-7 provides the prior and posterior distributions for B, for the three caissons. It is
determined that South Pelto 10 caisson does not shift the prior of By, Caisson §S135 shifts
the mean of posterior of By to 0.88 and caisson $S136 shifts B, t0 0.83. The shift in B; due
to all three caissons is to 0.77 with a COV of 0.29.

Jackets and Caissons Combined

Figures 4-3 to 4-5 also provide the combined likelihood functions for three calibration cases
(identified under jacket platforms) including effect of all jackets and caissons. The caisson
likelihood functions are the same for all three calibration cases.

Figures 4-8(a) to 4-8(c) provides priors and posteriors of By and Table 4-3 summarizes
results for platforms under two groups and their combined effect on the posterior of B,
The mean of posterior of By, for jackets (Case A) reduces from 1.32 to 1.09 due to including
caissons effect. Whereas, Case B mean posterior of B, for Jacket case reduces from 1.26
to 1.04 due to caissons effect. For Case C, the reduction in mean of posterior of By (jackets

case) is from 1.0 to 0.91 due to caissons,

Andrew Foundation Study May 1995
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The third set of results present effect of considering caissons on the first set of the bias
factors based on the steel jacket platforms alone. These results shall be considered with
caution due to differences in the characteristics and behavior of jackets and caissons. Some
of the reasons are discussed as below:

®  Variations in the pilehead fixity for the jacket and the caisson at the mudlevel due
to the characteristics and behavior of the superstructure.

m  Variation in the failure modes: The ultimate lateral failure mode for the jacket
platforms in many cases would be formation of fully plastic sections (hinge) in
multiple piles at two levels — near mudline and some depth below. Whereas, in
case of caissons the failure mode is the formation of fully plastic sections at some
depth below the mudline.

@  Variation due to platform loads: The bias factor represents the correction factor
to the ratio of the predicted platform capacity to loads. The load computation for
the jacket platforms involve a number of other factors (such as conductor shielding
factor, current blockage factor, and others) and have complex physical
characteristics compared to the caissons. Therefore the contributions of loads in
the two systems (jackets and caissons) in the predicted ratios of ultimate capacity
and loading effects (R,/S) would vary for the two systems.

The scope of this study did not include identifying the sources of such differences and
quantifying their effects on the resulting bias factors. The above reasons indicate that an
effort to investigate the differences in the characteristics and behavior of the jacket
platforms and caissons and variations in their contributions on the bias factors may be useful
in future studies.

The calibration results presented for the third set shall be considered as a sensitivity study
only. These results are intended to demonstrate the likely trend of shift in the bias factor
based on jackets. The caissons were considered due to similarities in their lateral behaviors
with the jacket platforms and due to non-availability of any jacket platforms with observable
foundation damages to the project. But it was not intended to develop bias factor
applicable to caissons and more specifically these bias factors demonstrate the likely trend
for the jacket bias factor, when jacket platforms with foundation damage are included (if
considered in later investigations).

In case of caissons, the second set of bias factor is more appropriate. Though this shall also
be considered with caution due to being based on only three caissons with all under the
observable damages category. In case some caissons with observed survivals (unexpected
or likely) were available, this bias factor would likely increase.

Andrew Foundation Study May 1995
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442  Bias Factor (B,) - Axial Pile Capacity

The posterior distribution of bias factor (By,) for axial pile capacity was developed for steel
jacket platforms only. The analysis results indicate relatively small (and perhaps
unobservable) displacements at axial failure of foundation. Therefore, an observation of an
“unfailed” foundation has several possible interpretations. The following three cases were
identified for calibration of the axia] capacity:

Case D: Pullout or plunging event for first pile did not occur
Case E: Pullout/plunging events in several piles did not occur
Case F: Pullout/plunging event in one pile did occur

The calibration results obtained are summarized in Table 4-4. Table 4-4 presents the load
levels at pullout/plunging events taken from Table 3-1 for the above three cases. The
likelihood functions in Fig. 4-2(a) were then developed for each calibration case, Figures
4-9(a) to 4-9(c) provide the applicable likelihood functions,

Figures 4-10(a) to 4-10(c) provide the prior and posterior distributions for B,, for the three
cases. It is noted that the shift in the prior of B, (mean = 1.3) is mostly due to the two
8-leg platforms and the mean of posterior of By, are 1.52 and 1.63 for Case D and 1.49 and
1.57 for Case E. Due to SS135, a 4-leg platform, the posterior of B, shifts to only 1.37.
Whereas, for Case F the most shift in mean of By, (to 1.53) is due to ST177B.

when pullout/plunging events are not observed in several piles, the shift in mean of B is
from 1.3 to 1.66. For Case F, with the assumption that pullout is observed in one pile and
subsequent predicted events were not observed, the mean of By, shifts to 1.53 from the prior
mean of 1.3. The COV for posterior of B, reduces to approximately 0.18 for all cases,

4.5 SENSITIVITY OF PRIOR DISTRIBUTIONS OF BIAS FACTORS ON THEIR
POSTERIORS

In this study, the prior distributions of By (for lateral pile capacity) was assumed as a mean
of 1.0 and COV of 0.3, The prior of B, (for axial pile capacity) was assumed as a mean of
13 and COV of 03. A sensitivity study performed in the Andrew Phase I, with 13 steel

Andrew Foundation Study May 1993
4-11




Section 4 Bayesian Calibration

The sensitivity of change in the mean and COV of priors of By and By, on their posterior
distributions are investigated. The results obtained are summarized below:

Case 1: Variation in COV of Prior of By:

Figure 4-11(a) shows the effect of variation in the prior COV from 0.3 to 0.2 and 0.4 for the
Case A calibration. The resulting posteriors including the effect of three jackets have a
mean of 1.19 and 1.44 for prior COV of 0.2 and 0.4 respectively, compared to the mean of
1.32 for the prior COV of 0.3.

Figure 4-11(b) shows the effect of variation in COV of prior for the Case B calibration. The
resulting posteriors with the effect of three jackets have a mean of 1.15 and 1.38 for prior
COV of 0.2 and 0.4 respectively, compared to the mean of 1.26 for the prior COV of 0.3.

These figures also include the results for the posterior means for the combined jackets and
caissons case.

Case 2: Variation in the Mean of Prior of Bg:

Figure 4-12 shows the effect of variation in the mean of prior from 1.0 to 0.8 and 1.2 for the
Case A calibration. The resulting posterior distributions with the effect of three jackets
have a mean of 1.13 and 1.50 for the prior mean of 0.8 and 1.2 respectively, compared to
the posterior mean of 1.32 when the prior mean is 1.0. This figure also includes the results
for the combined jacket and caisson cases.

Case 3: Variation in COV of Prior of B

Figure 4-13(a) shows the effect of variation in the prior COV from 0.3 to 0.2 and 0.4 for
calibration cases D, E, and F. The resulting posterior distributions for the Case D, with the
combined effect of all three jackets, have a mean of 1.55 and 1.87 for the prior COV of 0.2
and 0.4 respectively, compared to the mean of 1.73 for the prior COV of 0.3.

Case 4: Variation in the Mean of Prior of B

Figure 4-13(b) shows the effect of variation in the mean of prior from 1.3 to 1.1 and 1.5 for
calibration cases D, E, and F. The resulting posterior distributions for the Case D, with the
combined effect of all three jackets have a mean of 1.53 and 1.90 for the mean of prior of
1.1 and 1.5 respectively, compared to the mean of 1.73 for the mean of the prior as 1.3.

Andrew Foundation Study May 1995
4-12



A

Section 4 Bayesian Calibration

Table 4-5(a) summarize the ranges of the mean values and COV’s of the posterior of B,
for Case A and Case B calibrations for the corresponding mean values and/or COV’s of the
prior presented in Figures 4-12 (a) and 4-12(b). For the 3-jacket only case the mean of the
posterior will vary from 1.13 to 1.50 and the COV between 0.14 and 0.21.

Table 4-5(b) summarize the ranges of the mean values and COV’s of the posterior of B,
for calibration cases D, E, and F for the corresponding mean values and COV’s of the prior
presented in Figure 4-13(a) and 4-13(b). For Case D the mean of the posterior will vary
from 1.53 to 1.89 and the COV between 0.14 and 0.17. For Case E, the posterior mean will
range from 1.46 to 1.82 and the COV from 0.15 to 0.19.

The above results indicate a relatively greater effect of variations in the prior mean and
COV on the posteriors of both B, and By, than that determined in the Andrew Phase I
project. This may be due to small sample of platforms investigated in this project and all
three jackets being under survival category and all three caissons under damage /failure
category.

Andrew Foundation Study May 1995
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Figure 4-1: Calibration Methodology
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Section 5
Conclusions and Recommendations

5.1 GEOTECHNICAL ASPECTS

The predominant soil types at locations of all platforms investigated were very soft to very
stiff gray clay. The undrained shear strength profiles were based on the Miniature Vane test
data, which in many cases were found close to the interpreted shear strength profiles
provided in the soil reports.

The variation in the pile lateral capacity is determined to be on the order of square root of
the variation in the undrained shear strength. In addition, only the lateral p-y springs in the
upper zone (up to 60 ft below mudline) get fully mobilized and influence the lateral capacity
estimates. Thus, the influence of errors in estimates of the undrained shear strength of clay
layers (due to unavailability of site-specific soil reports) is more important for the
foundation axial capacity estimates than for lateral capacity.

The various effects, which are likely to increase the foundation axial capacity were identified
but the procedures to incorporate their effect for different soil conditions are not fully
known. Some recent investigations have shown wide differences in the estimates of increase
in the pile axial capacities. The most important effects to include are loading rate and cyclic
loading effects, which are known to have compensating effects, :

The earlier research discussed in Section 2 has indicated that the API RP 2A, pile axial
capacity (t-z) estimates underpredict the true ultimate pile axial capacity. However, in this
study no change to the API pile axial capacity characterization was included and the
combined effect of the various factors which may lead to increased axial capacities will be
reflected in the bias factors.

Instead, based on earlier API studies, a higher mean of 1.3 with a COV of 0.3 was
considered for the prior distribution of the bias factor (Bg). The increased mean of the prior
is considered to provide a reasonable balance between the effects of the loading rate, cyclic
degradation, and choice of undrained shear strength of soil.

52 CAPACITY ASSESSMENT

The Case 2 and Case 3 analyses presented in Section 3 provided uncoupled estimates of the
lateral loads, which define foundation ultimate lateral and axial capacities, by elimination
of the failures predicted in the jacket elements in the base case analysis. Thus, the likely
effects of the uncertainties associated with the characterization of the jacket element
strength and stiffness were eliminated in Case 2 and Case 3 analysis with the linear jacket
and nonlinear foundation models.

Andrew Foundation Study May 1995
5-1



Section S Conclusions and Recommendations

For both 8-leg platforms, the pullout and plunging of multiple piles were predicted at very
low load levels. These load levels are 18 to 33 percent below the best estimate of the
maximum Andrew loading. Whereas, the multiple plastic section events were predicted at
load levels up to 14 percent higher than the predicted maximum Andrew load level for these
platforms, when API static p-y curves were used. The analysis predicted very small pilehead
displacements even at multiple fully plastic pile section events and at multiple pile
pullout/plunging events in both lateral and axial directions. Considering that neither failure
mode was observable in the post-Andrew field inspections, these results indicate that the
predictions of the ultimate lateral capacity of pile foundations per API static p-y curves may
not be overly conservative, whereas the API t-z curves may underpredict the axial capacity
of the jacket foundation system.

In the case of ST151K (with no observed damage to the jacket and its foundation)
significant differences have been found between the predicted failures to the jacket frames
and the field observations following Andrew. It is also noted that the low ultimate capacity
estimates may be triggered by pile axial (t-z) capacity estimates, which may be conservative.
This is a significant finding suggesting that the ultimate overturning capacity of platforms
may be underpredicted in some cases.

It is recommended that additional platforms be investigated to further improve the findings
of this study and to further develop the improved guidelines for the ultimate capacity
analysis of the steel jacket foundation under extreme storm condition.

53 CALIBRATION

The bias factors developed represent the modeling errors associated with the ultimate lateral
and axial capacity estimates of the jacket foundation system. These factors are applicable
to the overall safety margin (resistance divided by loading effects) for platforms during
extreme hurricane loading. The bias factors greater than 1.0 indicate that the current
platform ultimate capacity analysis procedures would provide conservative results in the
sense that more failures would be predicted than would actually occur during storms.

Bias factors of 1.3 and 1.7 were established for the foundation lateral (B,) and axial (By,)
computed ratios of the ultimate capacity to loading effects (Ru/S) respectively for the steel
jacket platforms. This implies that on an average, for the platforms investigated in this
project, there is about 30 percent conservatism in the foundation lateral capacity and about
70 percent conservatism in the foundation axial capacity estimates based on the ultimate
capacity analysis "recipe" used by the project. These B’s are related to the key capacity
analysis recipe items followed in this project, thus any major variations in the recipe would
influence them.

Andrew Foundation Study May 1995
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Section 5 Conclusions and Recommendations

These estimates are higher than the overall (system) bias factor (B) of 1.2, determined in
the Andrew Phase 1. The Andrew Phase I bias factor was not applicable to a specific failure
mode (jacket structure or foundation) and thus included failure modes of all type. If the
effect of the foundation is eliminated to determine the bias factor associated with the
superstructure (B,,), it is likely that the bias factor will be lower than that obtained in the
Andrew Phase I.

These bias factors (B, and B,) are based on a limited number of the steel jacket platforms
investigated in this project and thus should be viewed as initial estimates and be considered
with caution. It is important to note that these bias factors are not applicable to the
capacity estimates of an individual platform and that these are for consideration by the AP]
and the regulatory bodies in their further considerations for the guideline and criteria
development for platform assessment against extreme storms. These factors may be
considered in determination of the average failure probability estimates and in the
economic risk and cost-benefit studies for a fleet of platforms. The estimated values for
the bias factors are consistent with a trend determined by other investigators.

PMB Engineering is currently executing Andrew JIP — Phase II, which includes all platforms
investigated in this study and an additional six steel jacket platforms. In the Phase II work,
revised Andrew hindcast data and a revised ultimate capacity analysis recipe are being used,
which could affect the findings of this project. Andrew Phase II is using a more detailed
reliability evaluation and Bayesian updating procedure, which would result in multiple bias
factors applicable to both the jacket structure and its pile foundation.

Based upon the above, the recommended topics for further study include:

B Increase the sample cases and include searching for recorded foundation failure cases.
The platforms with observed foundation damages during earlier hurricanes (e.g.,
Hilda, Betsy, Camille etc.) may be included to provide useful information to the bias
factor based on survival cases only.

®  Consider using improved site-specific geotechnical information by obtaining new
boreholes for platforms.

®  Investigate the differences in foundation design and installation practices among the
older and newer platforms, and their likely effect on bias factors. This study
considered platforms installed in 1960’s.

®  Promote more extensive instrumentation and monitoring of existing platforms.

Andrew Foundation Study May 1995
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Appendix A
Selection of Platforms

The selection of platforms was based on review of the following information (also in Section
1.3) available for these platforms:

Structural characteristics and details of platforms

Damage to the platforms

Geotechnical information in the vicinity of platforms

Hindcast information (same as for Andrew JIP Phase I)

Ultimate capacity and Bayesian updating results from previous analyses
(Andrew Phase I results)

¥ New ultimate Capacity analysis done before the first Project meeting

The results from this evaluation are summarized in Table A-1 and A-2,

events in foundation elements would occur for most of the platform cases studied, However,
Andrew Phase I results were based on using similar soil properties for many platforms,
Thus, the results may vary for site-specific soils. None of the steel jacket platforms
(survivals, partially or completely damaged cases) had any observed damage to their
foundation for calibration of foundation capacity.

At the first project meeting, results taken from previous analysis were presented for
platforms ST151K, ST130Q, ST177B, and ST52(T23). Platforms ST130Q and ST52(T23)
were analyzed at the beginning of this project with increased soil properties (undrained
shear strength). Soil information is not available in the vicinity of platforms ST130Q and
ST130A. The results obtained for platform ST130Q (using the soil information for ST134
borelog) indicated that this platform would provide limited information for foundation
capacity calibration.

The results presented at the first project meeting for platform STS2 (using ST52 block)
indicated that the first yielding of a pile section would occur at a load level much higher

Therefore, PMB obtained soil information for $S139 block and have selected platform
SS139(T25), based on review of the Andrew Phase I results (using different soil information)
and comparison of shear strength profiles.

Based upon review of the capacity analysis results obtained in Andrew Phase I and due to
incomplete damage information available for the two failure (collapse) cases — ST151H and
ST130A — it was considered that these may provide limited information for calibration of
the foundation capacity. Therefore, the "partial damage cases" with detailed damage
information may provide more useful information compared to the "failure cases."

Andrew Foundation Study May 1995




Appendix A Selection of Platforms

Therefore based on the available information for steel jacket platforms, platforms ST151K
(survival case), SS139(T-25) and ST177B (damage cases) were identified as preferred cases.
In case of platform ST177B, the soil information available for the block ST189 will be used,
because the borelog is at about 1 mile from the platform location.

Pile makeups for these platforms are given in Figures A-1 to A-3.

Free Standing Caisson Platforms: Soil information is not available for two Company A
caissons which survived Andrew and the other two caissons were damaged near or above
mudline. Per Company A, the damage cases may represent fatigue failures.

In case of Company A’s SS99 caisson, there is a 20 ft. sand layer at the top, which may have
caused failure at mudline, but the available caisson design information is not sufficient.
There are no drawings available for the actual caisson and Company A mentioned that the
penetration for this caisson was probably 59 ft., which differs significantly from the 100 ft.
provided in the “standard” design drawings for this water depth. This caisson, which lacks
sufficient design drawings, is thus not preferred.

Company B’s caissons are located in South Pelto blocks and the soil information is available
for only South Pelto 10. Both of these have the same design but their driveability records
indicated that South Pelto 10 was underdriven by 15 ft. South Pelto 10 case was selected,
due to availability of soil information and more definitive damage description.

Information for five caissons of Company C was reviewed. The same soil information was
used in the original design for three caissons located in the Ship Shoal 113 blocks, which are
within 0.6 miles of the soil borelog. Out of these, the caisson with the minimum damage
(leaning 5 degree) is identified as a preferred case. The other two caissons in blocks SS135
and SS136 are identified as good candidates. Finally, two out of these three caissons will
be selected, based upon review of their site-specific hindcast data, soil shear strength
information, and capacity estimates.

Andrew Foundation Study May 1995
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Appendix B
Probability of Failore Formulation

The conventional formula for calculating the probability of failure of a structure is

P= [T1-F@} i ax (B-1)

where f; is the capacity PDF (probability density function) and F; is the CDF (cumulative
distribution function) of load.

Normally the random load, S, represents the maximum load in any one-year period. In this
case, the load § is the maximum load on the structure during Andrew and is represented by
the random base shear, BS, obtained as follows:

BS = CI[h+C2u]® -, (B-2)

in which 4 is a wave height and u is a current, while CI, C2 and C3 are coefficients specific
to a particular platform and wave/current direction set (found by fitting this empirical
equation to calculated base shears for various pairs of 4 and u values). ¢, represents
correction factor in base shear estimates, due to wave-to-wave variability, and is assumed
to have a log-normal distribution with mean of 1.0 and COV of 0.20.

It is assumed that the probability distribution of each random wave height, H follows the
empirical Forristall distribution:
A (x) (B-3)
p Hs

in which « = 2.126, B = 8.42, and H, is the significant wave height.

ad® [ x !

g

Using the probability distribution of H and the formulation of base shear, the final
(marginal) CDF for the maximum base shear, Fuss, during the multi-hour (unidirectional)
“storm" is obtained as follows:

Andrew Foundation Study May 1995
B-1



Appendix B Probability of Failure Formulation

No. of Sign. Hours

Fuss® = [ 7]

{fFBs(xl H=h,U=u) - fy 5 (h |H‘1 =hy dh}Nj

Hour
/

(B-4)

f;l (e) fez (ey)de, de,

in which Fgg is the lognormal cumulative distribution implied by Eq. B-2, Nj denotes the
number of random waves in an hour with significant wave heignt, (h,) and current (u). ¢,
and ¢, are the PDF’s of the "errors” in the hindcast of the significant wave heights and
currents respectively during Andrew. Note that in this equation h; = (H,¢) andy, = (U
€;), where H,; and U; are the hindcast estimates.

Then the probability of failure can be calculated by numerical integration of Eq. B-1,
assuming a lognormal distribution on R, with a specified median and COV. In order to
correct for possible bias in the wave force and ultimate capacity procedures a factor B was
introduced. Failure therefore is presumed to be associated with BR/S < I rather than R/S
< 1. The probability of failure for a given B is obtained as follows:

PAb) = [T{1-F, ()} fy () dx (B-5)

Andrew Foundation Study May 1995
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Appendix C
Soil Shear Strength Profiles and Borelogs
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41 |see.B| 36 || 68] 22| 35| S2 3.26]3.74| 4.34 |1.88
42 |314.8] 28 P 73
43 (3248 23 || | 21| 37| S 4.P8(4.20| 4.50 | 1.82
44 |334.8] 20 ST 3.78(4.50] 3.94 [1.32 | 2.58 |1.58
45 |sang| 27 || 77| 24| 44| 44 4.P0|3.20 4.58 |1.96
46 | 354.8] 28 38| 45 3.7413.98] 3.86 |1.58 | 2.76
47 |360.8] 30 || 671 28| 34| 44 3.2513.25| 3.8 |1.56
48 |374.8] 25 32| 48 3.50]3.68| 4.48 |1.52 | 2.72 5.42
43 |36¢.8] 45 || B4 28| 32| 44 3.4P|3.16] 4.28 | 1.42
g |394.8] 30 2| 49 4.254.88] 4.58 | 2.28 1.78 | 1.97

SUMMARY OF TEST RESULTS — Bon@t? sST/S/

FUGRO INTER, INC.
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MUDLINE

BELOwW

PENETRATION

SOUTH TIMBALIER : =3 COHESI‘}E SHEAR STRENGTH
BLOCK 189 3%;- . - TONSPER sQFT
L 201 G R S -
o Mudline at El 144! =0 S 02 04 06 08 10 12 1a 0
\ Soft gray clay l N {} I
~vith sift partingy et 2* - i \ !
=firm, 8' to 90" R - ' i
\ with 1ord weara, 12" to 14° i See Plore 2 oc
. . 1l etoiled plof of
20 k- \ ~with shell frogments ot 20 1 tort rewlts to | o
b\{ wwith sHt portings, 337 1o 40 -l Frs parurruﬁoru:
w0 § ' : 3 . ‘f : o
\ “flaceulated balow 51° L e e v
l
60 § [‘-?_N 60
\ |
; |
I
i
BO \ I ] &
§<| =atiff by 90° ro
: |
100 - \ j 100
§ ~1" sand layer ot 117* 1 1
2o § : 120
|
\ —1ond loyer, 133" to 134" i [
|
\I J i
| \ Gray cloyey 1ilt w/cloy pockets, |!HI") ! { 140
140 IJ sand seams & loyars w/hard 7 1 :
Lcley nodules (145 } .
Groy silty fine sond w/omganic - ~ /18" . i
__mater, shall fragments ot 153" (138" ;
160} Laminated gray clay, st & sandy it - ; i ’ 160
A N o R N i |
FRY 1 ‘ i ‘
R {1787 = e o ] '
180} SHiFf brown & gray clay, floceulated = = M R
R (L3 = L L
i i ! !
. Groy silty fine sand w/lyhloll ﬁwm"“;“l?‘?') ] ! ; T
et ¥ Eamaieem s B 108
SHIf gray silty clay o - . . ! : i
v=w/sandy silt seams 1o 213" - ‘ ! | L
. ) H : i
Y, Ly . 1 I .
220} x - L -+ 220
| ,9\ SRE j‘ 4 :
. (231" ™ . P . \ Y 1 |
Ny| STV gray <lay, Floceulored a0/18 EI’ \'\' | ; 1
l P el : ! | 240
240 \ 30/18° - % ¥ x— 2
\ “brown, 251" 1o 271" . . Iy ‘\* | i :
30 hiarha bl it & o I : ! i
\ - { / ' ! |
ze0r § : ¥ Eam—
; \'
§I ~very 3tiff, 270" to 293" i
o !
280 § 1
\ “sandy siit seam ot IT1* 8 wisily'
\ clay seams e ..
~very s$iff w/rondy 511t seams ot 323°
320}» L\\ e (3237
T+ |1 *Numbser of Biows of 175-1b waight
dropped opprox. 5 it required 1o produce .
3401 e 24~in. penatration, exCOpt o1 noted, off U9
a 2-1/8-in. ID wmpler: “(Sampler ODe l
2-1/2 in. 1o 40-f1 penstration ond 2-1/4 ;
in, below 40-it panstrotion.) - - ik '
R o T | A
sl
7
o | e j
00| : I l ‘ 400
. ' LEGEND FOR SHEAR STRENGTH PLOT
Completed at 323-ft penetratlon {El -487% “8 Uncintined Compreasion. - - 4 Unconsatidaled-Unararmed Teras:al
* Minialure Vona (Mend Ossratnd) "B Consolidoted-Undrgingg Treazinl
(Open rymbols dévignals remoided legly) ]
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BELOW MUDLINE IN FEET

PENETRATION

SHIP SHOAL AREA e PLASTIC WATER uauio COHESIVE SHEAR STRENGTH
BLOCK 139, BORING T-25 x5 LT CONTENT, % LiMiY TONS PER SQ FY
Qo Fo——— e e +
Mudline ot El-42° e 20 40 60 80 02 04 06 08 10 13 a4

Firm gray clay
—with sond & 1il1 pockets bo 24°
=with sandy 1ilt 1a0ms, 15° 15 34¢
20
—pray sondy sllt with clay seams, 24
to 28°
~with siit pockets, 28' 15 15"
~flocculatad balow 34"
40 -
~with rondy 1ilt 1sams, 44° 16 54" 10
=stiff balow 55*
15 R B i SEE R < QY
80 \
15 Rl Sl S S - '0‘\ A
\
with 1ilt partings balaw 75° 15 . R L s /\C -+
80 “with tilt pockean, 78" 1o 114" 4
18 F——
15 IR

Sea Plate 2 for
detallod plat of tesr

| T TT T

cazults to 401t
penelmtion

i

< < 4

20

<0

40

8 Rl e e e I
18 +— -t ] —
19 Lt T G SN
19 L o QU N, + T
~with 5ilf seams batow 144° 1 4
20 et ~
~groy & light gray below 154 I I~ S
058" 20 o+ A o[ ™ "%
Groy silty fine 1and 160
Josem
(1724
Groy 1ilty ¢lay (178 {30/18" o —-4
Gray Mne-to-medium sand 20/8 1 180
~with gravel o1 184" s 2
30/8"
! 200
30/8"
~fins at 215" /
30/8"
220
lo/8"
-fine ot 235
Jo/8"
240 |- 240
J0/8"
~with gravel af 255
258 30/8"
280 |- 260
*Number of blows of [75-1b woight
dropped approximaraly 5 1 required
1o produce a 24-in. penetration,
@xcapl as nated, of a 2-1,4-in. OD
280 thelby-tube wampler w
300} 00
204 ﬁ{ 120
140 L 140
uaf- 80
180 180
400 —L T

LEGEND FOR SHEAR STRENGTH PLOT
Complalad at 255~ pensiration (€1 -718') *  Unconlined Comprassion A Unconsalidoled-Undrained Trigaiel
: + Minioturs Vane { Mororiyed) & Consolidated-Undsalnagd Triagies
1Open symbals designare remolded lasts)
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PENETRATION BELOW SEAFLOOR. Fg

20

40

60

B0

160

120]

140

160

180

200

240

260

280

300

3640100 ar . -35,5°

LAt wATLA Liouie
L CONTANT™ Lewn

UNOAAIMED SHEAN $TMENGEM,
RIP3 PEA 30,71,

2.0 3.0
e s 1 A
See Figure ? for a
detafted plot of test
Fesults to 40-ft pene-
tration,

VERY SOFT TO FIRM GRAY
CLAY*#

*+See Fiqure 2 for
detailed stratig-
raphy to 40'ft

penetration,

-flocculated betow 24°

~with sandy sii¢ seams,
pockets and partings 42°
100"

-with scattered shel; frag-
ments 50' to 100°

20

40

&0

80

-with silt partings and
pockets at 8i*

-with a trace of organic
material at 101’
-with shell fragments

110" to 122

100

-with brown clay at 121° 120

140

-very stiff light gray and
tan clay with silty clay
seams at 16]° (166*) 160

TAR FINE SAND

AFLOOR . FEET

-fine to medium at }9]°
~with traces of grave)l 19g°
te 201" and 220" to 240"

-with a trace of arganic
material at 231

-gray at 200' to 230°

PENETRATION BELOW st

-fine

Lo coarse at
250"

(251') 3076~

“Rumber of blows of a
175-1b weight dropped
approximately § ft required,
to produce a 24-{n penetra-
tion, except as noted of 2
2-3=-1n-00 thin-wall sampler,
Penetration less than 24"
shown thus: 30/12*

280

300

— e ks

SHEAN STAENOTH LEQiEMD

$ wmarune vaur LOG OF BORING and TEST RESULTS
T0

8 Untomrmio courntsan HOBIL OIL EXPLORATION & PRODUCING SOUTHEAST. 1he.

® UNCOMSOLIDATEO ~ UNDRAINED TAIALIAL BLOCK 10, SOUTH PELTO AREA

. COMSOLIDATED - UNDAMINED TAIAK AL GULF OF MEX[CO

Qwen Symeets Driignals Mamatded Tanre

Stelte 1o
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