

2005 Offshore Hurricane Readiness and Recovery Conference

Pipeline Failures Data Gathering

Tom Wicklund BP Pipelines NA July 27, 2005

Pipeline Team Focus

- How did pipelines on the OCS perform during Hurricane Ivan?
- Does pipeline performance data raise concern for the adequacy of current design standards?
- Did Ivan uncover pipeline installation or operational concerns that warrant further consideration?
- Was pipeline damage that resulted from Ivan different from historical experience in GoM?

Pipeline Data

- MMS pipeline damage data based on post Ivan NTL
- Detailed company data primarily provided by API team members (Shell, BP & Chevron)
 - Initial focus was on hurricane impacted lines;
 - Data collection effort expanded to include pipelines that performed well and were located within the swath

Data Analysis

- MMS post Ivan data obtained by API team
- Pipeline operators modified data and reevaluated
- Performed comparison of pipeline operators data to MMS data
- Not prudent to draw firm conclusions regarding cause of failures (based on MMS data)

Pipeline Failure Data Sheet

	Segment ID:		
	Company:		
	P/L Name		
•	Export or E&P		
	GoM Block Location:*		
•	Water Depth:*		
•	Pipeline Diameter:		
•	Wall Thickness:		
•	Pipe Grade:		
•	Year Installed:		
•	Design Basis:(psig)		
•	Pipeline Orientation: (relative to shore)*		
•	Pipeline Contents:		
•	Failure Mode:		
	S.G. w/contents:		
•	Burial Depth:		
•	Horizontal Displacement Distance:		
•	Horizontal Displacement Length:		
	Notes:		
•	Weight Coat	Type	Amount
	Mud Flow Area?	Yes	No
	Third Party Impact?	Yes	No
	Pipeline Crossing?	Yes	No
	pecific location of failure or damage	163	N

Observations Regarding Failure Modes

- General observations
 - No predominant failure mode, pipelines experienced various types;
 - BP, CVX and Shell experienced similar types of failures;
 - Performance in traditional mud slide areas consistent with historical performance;
 - Many failures in the delta area, west of the swath of the storm;
- Failure modes
 - Large lateral displacement (several thousand feet);
 - Anchor line/chain drag damage;
 - Reefed or sunken vessels being moved onto pipelines;
 - Req'd separation lost at crossings;
 - Pipeline failed due to tension;
 - Only 1 riser was lost in shallow water

Findings

- More data analysis is req'd to draw conclusions;
 - failures from Ivan does not seem to be atypical to historical
 - possible exception of the near-shore Mississippi River delta area
- Opportunities to explore:
 - Implications of disturbance and uplifting of sedimentation at the mouth of the river
 - New mudflow areas possibly identified as a result of Ivan
 - » May need to reconsider how we define mudflow areas
 - » Potential for better mapping of unstable areas
 - Implications of storm surge; ebb or run-off; and turbid flows on design criteria or pipeline configuration/orientation

Path Forward

- Industry/government effort to identify/collect data critical to assessing pipeline performance
 - Understand possible factors which contributed to storm impact
 - Collect additional data required to perform analysis
 - » Damage/failures
 - » Mapping (pipe movement, mudslides, etc...)
- Expand make-up of API team to include representatives of oil and gas transmission companies and/or pipeline design consultants
- Pursue value added study or research opportunities
 - Geotechnical (mudslides, silting, seafloor mapping, etc..)
 - Storm trajectory impact on infrastructure configuration/orientation
- Outcome of pipeline performance assessment should determine need to revise pipeline standards

Immediate Needs

- Additional participants on API team*
- Industry data
 - Sonar/mapping data
 - Failure data

*contact any current team member