

Design & Installation Improvements to Improve Reliability

Evan H. Zimmerman, JD Delmar Systems, Inc.

Preface

- Every location is different.
- Every rig is different.
- Evaluate each situation.
 - Available technology
 - Maturing technology
 - Evolving practices
 - Risk management
 - Impact management

State of the Industry

- API RP-2SK
 - Mooring line tension FOS
 - > Anchor guidelines
 - Analysis methods
- 10-Year Hurricane
- >10-Year Survivability

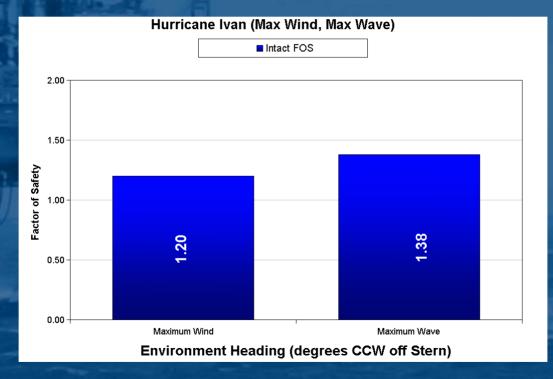
Field Choices

- My Field:
 - > Time of year?
 - > Pipelines / umbilicals?
 - > Other structures?
 - Seafloor conditions?
 - > Well program?
 - > Shallow hazards?

- My MODU Mooring
 - Conventional system?
 - > Anchor change?
 - Preset mooring(s)?
 - ➤ Buoyed lines?
 - Synthetic inserts?
 - Probable break point?

MODU Mooring Failure

- Fairlead Break
 - Components fall to the seafloor
 - Vessel yaw influences leeward line failure
 - Rig floats free, limited seafloor impact


- Anchor Failure
 - > Anchor drags in soil
 - Limited vessel yaw
 - Excess loading leads to anchor failure with continuous drag
 - Rig drifts free trailing anchor lines with anchors on the seafloor

Survivability by Design?

Can MODU Moorings Survive Hurricane Ivan

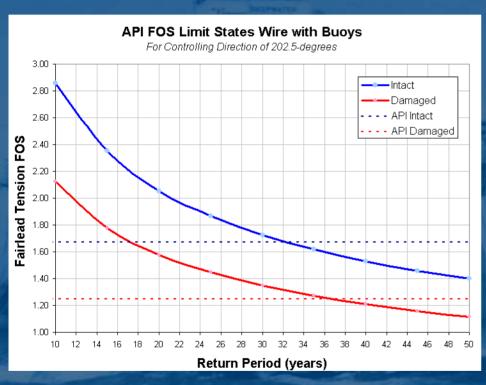
Events?

MODU Risk Assessment

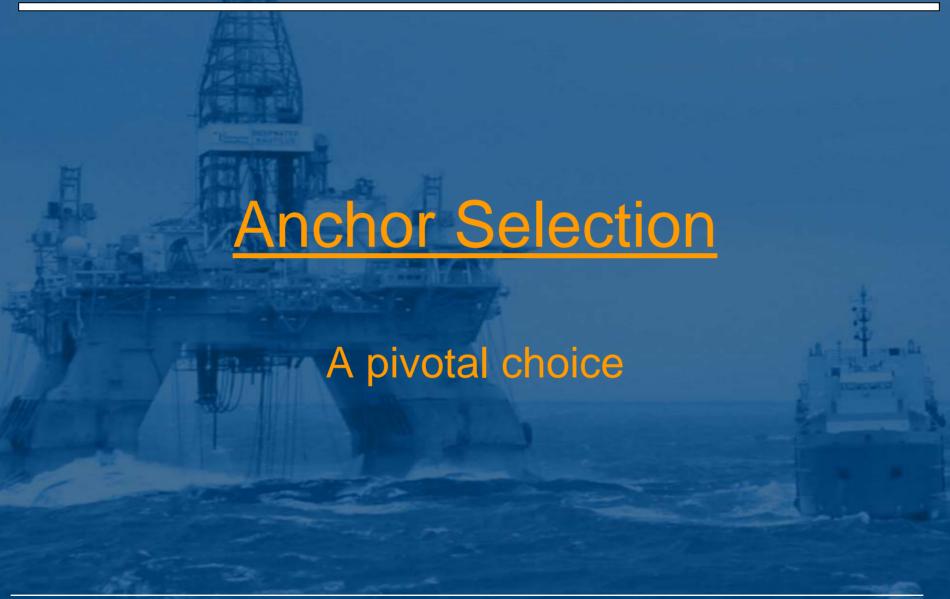
- Understand failure
- Quantify probability
- Prudently minimize impact of probable failure method

Pipeline Risk

- Moorings over pipelines?
 - As-is configuration
 - Buoyancy
 - > Synthetics
 - > Anchor selection
 - Catastrophic failure
- Moorings short of pipelines?
 - > Anchor selection
 - Catastrophic failure


Facility Risk

- Proximity?
- Relative direction?
- Biased mooring system?
- Anchor selection?
- Hold-back systems?



"Limit State" Analysis

- Quantify system robustness
- Utilize results to determine risk level
- Comparative study
 with alternate systems
 / configurations

2005 Offshore Hurricane Readiness and Recovery Conference

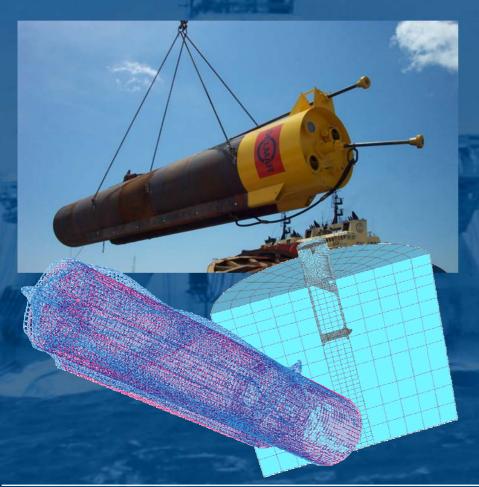
Conventional Anchors

- 100-year old technology
- Performance well understood
- Capacity limited with size
- Failure with anchor uplift
 - > Some residual capacity upon failure
 - Enables load sharing among adjacent mooring lines

HHC Drag Anchors

proof Locking storm tensions

- ~20-year old technology
- Performance well understood
- Large capacity versus size
- Failure with anchor uplift beyond 20-degrees
 - Residual capacity upon failure
 - Enables load sharing among adjacent mooring lines



HHC Drag Anchors

Suction Pile Anchors

- ~10-year old technology
- Performance understood
- Failure with excess loading
 - No residual capacity upon failure
 - Stationary foundation (no load sharing)
 - Probable failure method is local padeye structural failure

Suction Pile Failure

Vertically Loaded Anchors

- Maturing technology
- Performance understood
- Failure with excess loading
 - Increasing capacity with load
 - Enables load sharing among adjacent mooring lines
 - Probable failure method is with excessive rotational loading

Vertically Loaded Anchor

New Anchors

- Maturing technology
- Performance under evaluation
- Failure with mooring component
 - Increasing capacity with load
 - Enables load sharing among adjacent mooring lines
 - Load arm follows mooring line spread angle

