

Presented by Tom Kwan

David Tein Consulting Engineers, Ltd OFFSHORE AND MARINE TECHNOLOGY

MODU Mooring Environmental Criteria

- (1) US American Petroleum Institute
 - API RP 2P MODU (1984, 1987)
 - Design Environment: 1-year
 - API RP 2SK MODU and FPS (1997, 2005)
 - Design Environment: 5-year (away from other structures)
 10-year (close to other structures)
 - The 1997 Revision was Based on Mooring Code
 - Calibration JIP (1995)
- (2) International Standard Organization (ISO 19901-7)
 - API criteria adopted
 - Norwegian annex: 10-year design environment

	Analysis Method	Tension Limit (Percent of MBS)	Equivalent Factor of Safety
Intact	Quasi-static	50	2.0
Intact	Dynamic	60	1.67
Damaged	Quasi-static	70 (77)	1.43
Damaged	Dynamic	80	1.25

Overview of Recent 2SK Revision

- Revision Began in 2002 and Completed in 2004
- To be Issued in 2005
- Major Revisions

MODU and Permanent Mooring

- Add Pile and Plate Anchor FOS and Design Guide
- Allow Higher Uplift Angle for Drag Anchors
- Add Clearance Criteria
- Revise Mooring Proof Load
- Add Mooring Hardware Section
- Revise Dynamic Positioning Section
- No Change in Environmental Criteria

Permanent Mooring

- Revise Chain Fatigue Design Curves
- Add Global Analysis Guidelines
- Add Spar VIM Design Guide
- Add Discussion on Mooring Strength Reliability
- Provide NPD and API Wind Spectrum

Comparison of MODU Mooring Practice

Gulf of Mexico

- Evacuate Drilling and Production Facilities
- Recent Total Failures: Andrew 2 (1992), Lili 1 (2002), Ivan 4 (2004)
- There were also Partial Failures
- Primary Cause: Overloading

North Sea and Other Areas

- Manned Facilities
- Partial Failures
- Primary Cause: Overloading, Fatigue, Faulty Components

DeepStar 4404 (2001) - Mooring Reliability Study for Permanent Moorings

	GOM	North Sea	W. Africa
H _s (100 yr/10 yr)	1.5	1.15	1.18
V _w (100 yr/10 yr)	1.5	1.14	1.18
Operation Procedure	Evacuate	Manned	Manned

Comparison of GOM Hurricane Environments

	10-year, MODU Mooring Design	100-year, Permanent Mooring Design	Ivan
Sig. Hs (ft)	26	40///	45 - 52
Wind Speed (1 minute, knot)	70	95	95 - 105
Current Speed (knot)	1.8	3.0	4

GOM Operations Changes in the Last 10-15 Years

- More Floating and Subsea Installations
- More Permanent Deepwater Operations with Higher Production Rates
- More Deepwater MODUs with Taut Leg/Pile Mooring Versus Catenary/Drag Anchor Mooring Years ago
- Some MODUs Stay on One Location for Much Longer Period
- Bigger MODUs
- More Metocean Information

Some Fundamental Questions

- Have the Changes in GOM Operations Increased the Risk Sufficiently to Warrant Another Change of 2SK MODU Mooring Criteria?
- If the Answer is Yes:
 - ■What Level Of Change is Appropriate?
 - ■What is the impact of the Change on the Industry?

Long Term Plan for API RP 2SK

- Reactivate the 2SK WG to address GOM MODU mooring issue
- 2SK WG will work with OOC/industry to initiate a JIP to study the MODU mooring reliability and provide a first draft commentary
- The 2SK WG will finalize the commentary and seek API approval and publication (2006/2007)
- After 3-5 years industry practice, the commentary will be incorporated in the 4th edition of 2SK (2010)

Commentary on GOM MODU Mooring Practice Potential Topics

- Basic considerations
- Current design and operation practice
- Historical GOM operation experience
- Risk assessment of current and future operations
- Comments on the use of 2SK environmental criteria for GOM MODU mooring
- Strategy to minimize mooring failure and damage to surrounding structures
- Indicative GOM extreme environments

Revision of API RP 2I Mooring Inspection

Current API RP 21

- Developed about 15 years ago
- Address inspection of mooring chain, wire rope, and connecting hardware mainly for MODUs

On-Going Revision

- Add Fiber Rope Inspection Guidelines
- Add Permanent Steel Mooring Inspection Guidelines
- Revise MODU Mooring Inspection Guidelines
- Schedule for Completion: Mid 2006

