HURRICANE-INDUCED SEAFLOOR FAILURES IN THE MISSISSIPPI DELTA

by

James R. Hooper, Fugro-McClelland Marine Geosciences

&

Joseph N. Suhayda, Consulting Oceanographer

HURRICANE-INDUCED SEAFLOOR FAILURES IN THE MISSISSIPPI DELTA

Presented to the

2005 Offshore Hurricane Readiness and Recovery Conference

American Petroleum Institute

Houston, Texas

July 26-27, 2005

James R. Hooper, P.E.

Senior Consultant

Fugro-McClelland Marine Geosciences, Inc.

THE DELTA FRONT SEAFLOOR HAS A BAD REPUTATION.

CONSIDER SHELL'S NEW SP-70B PLATFORM SHORTLY AFTER INSTALLATION IN 1969.

MAJOR HURRICANE HISTORY

- 9 major hurricanes (Category 3 or greater) passed near the delta 1900 - 2004.
- Camille passed over the delta with a central pressure of ~909 mb.
- Ivan passed east of the delta with a central pressure of ~935 mb.

HURRICANE CAMILLE

- South Pass 70 landslides caused the seafloor to move downslope by more than 3000 ft in some areas.
- One new 24-well platform toppled and two others were badly damaged by seafloor landslide failures.
- Pipelines were also damaged and destroyed by landslides.

HURRICANE IVAN 2004

- Delta-front landslides during Ivan were similar in size & character to those experienced during Camille.
- One platform in ~480 ft water depth toppled by landslides (MC-20).
- Pipelines were also damaged and destroyed by landslides.

WHY IS THE DELTA FRONT PRONE TO SEAFLOOR FAILURES SO DESTRUCTIVE TO PLATFORMS AND PIPELINES?

MUDFLOWS MOVE THE DELTA FRONT SEAWARD

DEPOSITION IN THE DELTA

- Deposition rates 1-2 ft/yr in front of the major passes.
- Sediments primarily low permeability clay with silt.
- Results in weak strength profiles more than 300-ft thick, and numerous landslides that create a unique seafloor.

MUDFLOW GULLIES

- Mobile sediment typically 40 to 80 feet thick.
- Gully lengths up to 6 miles.
- Major mudflow activity occurs several times a year in some gullies, and every few years in others.

MUDFLOW LOBES

- Individual flow thickness ranges from a few feet to ~50 feet.
- Stacked mudflows are more than 100-ft thick in some areas.
- Mudflow lobes tend to remain stable until triggered by large storm waves.

WAVE-TRIGGERED SEAFLOOR FAILURES

CYCLIC WAVE-BOTTOM PRESSURES

- Cyclic pressure & sediment motion beneath the waves gradually weakens the sediment.
- Weak sediment in the gullies slowly moves downslope during a storm.
- Cyclic pressures may cause slope failure of some mudflow lobes.

SEDIMENT STRENGTH

THIS STRENGTH VARIABILITY IS TYPICAL OF MUDFLOW LOBES

STABILITY ANALYSES

RESULTS OF STABILITY ANALYSES

- Moderate-size waves can fail the sediments in mudflow gullies.
- Mudflow Lobes with Upper-Bound strength profiles <u>appear to be</u> <u>stable during intense hurricanes</u>.
- Mudflow Lobes with Lower-Bound strength profiles <u>appear to fail</u> during intense hurricanes.

SUMMARY

- Sediments accumulate in shallow water and, over time, move downslope in gullies as mudflows.
- These gully mudflows are triggered by waves typical of small to large hurricanes.

SUMMARY (cont.)

- 3. Intense hurricanes (e.g., Ivan and Camille) create large waves causing large pressures on the seafloor.
- 4. During Ivan/Camille-size storms, existing mudflow lobes may fail, and mudflows from gullies may overrun previously deposited mudflow lobes.

SUMMARY (cont.)

- 5. Large-scale seafloor failures are the primary geologic process for seaward growth of the delta.
- 6. Past rates of seaward growth of the delta front will likely be maintained, and seafloor failures will continue to occur.