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Event shape variables: thrust

    determinations and world average

NNLO fixed order calculation of thrust

N3LL resummed thrust distribution

Resummation by RG evolution in Soft Collinear 
Effective Theory (SCET)

Comparison with fixed order result
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EVENT-SHAPE VARIABLES

Parameterize geometric properties of energy and 
momentum flow of an event in high energy 
collisions.

Collinear and infrared safe: can be evaluated in 
perturbation theory.
Used for QCD studies, measurements of     , to 
cut against backgrounds, ...

The canonical event-shape variable is thrust.

αs
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MEASUREMENTS OF THRUST

Will later use ALEPH and OPAL LEP I & II results
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     DETERMINATIONSαs
Table 1: World summary of measurements of αs (status of April 2006): DIS = deep inelastic scattering;
GLS-SR = Gross-Llewellyn-Smith sum rule; Bj-SR = Bjorken sum rule; (N)NLO = (next-to-)next-to-
leading order perturbation theory; LGT = lattice gauge theory; resum. = resummed NLO. New or
updated entries since the review of 2004 [69] are underlined.

Q ∆αs(MZ0)

Process [GeV] αs(Q) αs(MZ0) exp. theor. Theory refs.

DIS [pol. SF] 0.7 - 8 0.113 + 0.010
− 0.008 ±0.004 +0.009

−0.006 NLO [76]
DIS [Bj-SR] 1.58 0.375 + 0.062

− 0.081 0.121 + 0.005
− 0.009 – – NNLO [77]

DIS [GLS-SR] 1.73 0.280 + 0.070
− 0.068 0.112 + 0.009

− 0.012
+0.008
−0.010 0.005 NNLO [78]

τ -decays 1.78 0.345 ± 0.010 0.1215 ± 0.0012 0.0004 0.0011 NNLO [70]

DIS [ν; xF3] 2.8 - 11 0.119 + 0.007
− 0.006 0.005 +0.005

−0.003 NNLO [79]
DIS [e/µ; F2] 2 - 15 0.1166 ± 0.0022 0.0009 0.0020 NNLO [80, 81]
DIS [e-p → jets] 6 - 100 0.1186 ± 0.0051 0.0011 0.0050 NLO [67]

Υ decays 4.75 0.217 ± 0.021 0.118 ± 0.006 – – NNLO [82]
QQ states 7.5 0.1886 ± 0.0032 0.1170 ± 0.0012 0.0000 0.0012 LGT [73]

e+e− [Fγ
2 ] 1.4 - 28 0.1198 + 0.0044

− 0.0054 0.0028 + 0.0034
− 0.0046 NLO [83]

e+e− [σhad] 10.52 0.20 ± 0.06 0.130 + 0.021
− 0.029

+ 0.021
− 0.029 0.002 NNLO [84]

e+e− [jets & shps] 14.0 0.170 + 0.021
− 0.017 0.120 + 0.010

− 0.008 0.002 +0.009
−0.008 resum [85]

e+e− [jets & shps] 22.0 0.151 + 0.015
− 0.013 0.118 + 0.009

− 0.008 0.003 +0.009
−0.007 resum [85]

e+e− [jets & shps] 35.0 0.145 + 0.012
− 0.007 0.123 + 0.008

− 0.006 0.002 +0.008
−0.005 resum [85]

e+e− [σhad] 42.4 0.144 ± 0.029 0.126 ± 0.022 0.022 0.002 NNLO [86, 32]
e+e− [jets & shps] 44.0 0.139 + 0.011

− 0.008 0.123 + 0.008
− 0.006 0.003 +0.007

−0.005 resum [85]
e+e− [jets & shps] 58.0 0.132 ± 0.008 0.123 ± 0.007 0.003 0.007 resum [87]

pp̄ → bb̄X 20.0 0.145 + 0.018
− 0.019 0.113 ± 0.011 + 0.007

− 0.006
+ 0.008
− 0.009 NLO [88]

pp̄, pp → γX 24.3 0.135 + 0.012
− 0.008 0.110 + 0.008

− 0.005 0.004 + 0.007
− 0.003 NLO [89]

σ(pp̄ → jets) 40 - 250 0.118 ± 0.012 + 0.008
− 0.010

+ 0.009
− 0.008 NLO [90]

e+e− Γ(Z → had) 91.2 0.1226+ 0.0058
− 0.0038 0.1226+ 0.0058

− 0.0038 ±0.0038 +0.0043
−0.0005 NNLO [91]

e+e− 4-jet rate 91.2 0.1176 ± 0.0022 0.1176 ± 0.0022 0.0010 0.0020 NLO [92]
e+e− [jets & shps] 91.2 0.121 ± 0.006 0.121 ± 0.006 0.001 0.006 resum [32]
e+e− [jets & shps] 133 0.113 ± 0.008 0.120 ± 0.007 0.003 0.006 resum [32]

e+e− [jets & shps] 161 0.109 ± 0.007 0.118 ± 0.008 0.005 0.006 resum [32]
e+e− [jets & shps] 172 0.104 ± 0.007 0.114 ± 0.008 0.005 0.006 resum [32]

e+e− [jets & shps] 183 0.109 ± 0.005 0.121 ± 0.006 0.002 0.005 resum [32]
e+e− [jets & shps] 189 0.109 ± 0.004 0.121 ± 0.005 0.001 0.005 resum [32]

e+e− [jets & shps] 195 0.109 ± 0.005 0.122 ± 0.006 0.001 0.006 resum [81]
e+e− [jets & shps] 201 0.110 ± 0.005 0.124 ± 0.006 0.002 0.006 resum [81]
e+e− [jets & shps] 206 0.110 ± 0.005 0.124 ± 0.006 0.001 0.006 resum [81]
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WORLD AVERAGE 

Average                                dominated by τ-decays 
and LGT, which disagree by 2.7σ!

Table 2: Measurements of αs(MZ0) included in the process to determine the world average, c.f. ta-
ble 1. The rightmost two columns give the exclusive mean value of αs(MZ0) calculated without that
particular measurement, and the number of standard deviations between this measurement and the
respective exclusive mean, treating errors as described in the text. The inclusive average from all listed
measurements gives αs(MZ0) = 0.1189 ± 0.0007.

Process Q [GeV] αs(MZ0) excl. mean αs(MZ0) std. dev.

DIS [Bj-SR] 1.58 0.121 + 0.005
− 0.009 0.1189 ± 0.0008 0.3

τ -decays 1.78 0.1215 ± 0.0012 0.1176 ± 0.0018 1.8

DIS [ν; xF3] 2.8 - 11 0.119 + 0.007
− 0.006 0.1189 ± 0.0008 0.0

DIS [e/µ; F2] 2 - 15 0.1166 ± 0.0022 0.1192 ± 0.0008 1.1

DIS [e-p → jets] 6 - 100 0.1186 ± 0.0051 0.1190 ± 0.0008 0.1

Υ decays 4.75 0.118 ± 0.006 0.1190 ± 0.0008 0.2

QQ states 7.5 0.1170 ± 0.0012 0.1200 ± 0.0014 1.6

e+e− [Γ(Z → had) 91.2 0.1226+ 0.0058
− 0.0038 0.1189 ± 0.0008 0.9

e+e− 4-jet rate 91.2 0.1176 ± 0.0022 0.1191 ± 0.0008 0.6

e+e− [jets & shps] 189 0.121 ± 0.005 0.1188 ± 0.0008 0.4
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EVENT SHAPES AT NNLO

After years of work, the NNLO calculation of e+e- → 
3 jets has recently been completed.

First time a subtraction scheme has been 
implemented at NNLO.

Real and virtual contributions are have collinear and 
soft divergences which cancel in the sum.

Implemented in fixed order event generator. First 
application: NNLO evaluation of event shapes.

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich ‘07

+ + + ...

http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2DDe%20Ridder%2C%20A%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2DDe%20Ridder%2C%20A%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2C%20T%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gehrmann%2C%20T%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Glover%2C%20E%2EW%2EN%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Glover%2C%20E%2EW%2EN%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Heinrich%2C%20G%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Heinrich%2C%20G%2E%22


Perturbative uncertainty dominates.  At NNLO

Abstract: We present the first determination of the strong coupling constant from a fit of

next-to-next-to-leading order QCD predictions to event-shape variables, measured in e+e−

annihilations at LEP. The data have been collected by the ALEPH detector at centre-of-

mass energies between 91 and 206 GeV. Compared to results of next-to-leading order fits

we observe that the central fit values are lower by about 10%, with considerably reduced

scatter among the results obtained with different event-shape variables. The dominant

systematic uncertainty from renormalization scale variations is reduced by a factor of two.

By combining the results for several event-shape variables and centre-of-mass energies, we

find

αs(M2
Z) = 0.1240 ± 0.0008 (stat) ± 0.0010 (exp) ± 0.0011 (had) ± 0.0029 (theo).

Keywords: QCD, Jets, LEP Physics, NLO and NNLO Computations, strong coupling

constant.

      FROM EVENT SHAPES AT LEP I
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RESUMMATION

All-order formalism for resummation of thrust 
distribution

N3LL resummation

Comparison with fixed order
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dτ
=

2αs

3π
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LOGARITHMICALLY ENHANCED CONTRIBUTIONS

The LO thrust distribution has the form

Integral over the end-point is

singular terms

=
2αs

3π

[
−2 ln2 τ − 3 ln τ + . . .

]

Sudakov double logarithm

R(τ) =
∫ τ

0
dτ ′ 1
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SINGULAR TERMS DOMINATE

Singular terms are predicted and later resummed to all 
orders with Soft-Collinear Effective Theory.
Regular terms (difference of blue and red) are added 
back after resummation.

LO NLO NNLO

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

1 ! T

Α s 2
Π
A

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

1 ! T

!Α s 2
Π
"2
B

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 ! T

!Α s 2
Π
"3
C

full
singular

?! later...



RESUMMATION: THE TRADITIONAL WAY

Logarithmically enhanced contributions lead to slow 
convergence of perturbation theory

The leading logarithms (LL)                and next-to-
leading log’s (NLL)                    can be resummed 
using the “coherent branching algorithm”

αn
s ln2n τ

αn
s ln2n−1 τ

M2
1 M2

2

Q2

τ =
M2

1 + M2
2

Q2

Catani, Trentadue, Turnock, Webber ‘93

Note:  NLL+NNLO calculation in progress by T. Gehrmann and G. Luisoni



Using soft collinear effective theory, one can show 
that for τ→0 the rate factorizes as

Three relevant scales:

         Q2          ≫    M12 ~ M22 ~ τ Q2   ≫   τ2Q2

        hard                   jet                   soft
     

EFFECTIVE THEORY RESUMMATION

1
σ0

dσ

dτ
= H(Q2, µ)

∫
dM2

1

∫
dM2

2 J(M2
1 , µ) J(M2

2 , µ) ST (τ Q− M2
1 + M2

2

Q
,µ)

Fleming, Hoang, Mantry and Stewart ’07
Schwartz ’07
see also: Korchemsky ’98; Berger, Kucs, 
Sterman ‘03



(NO) DERIVATION

Will refrain from using “incomprehensible SCET 
notation” A. Manohar  to derive the theorem.

However, will define hard, jet and soft functions in 
terms of matrix elements of QCD operators.

Same building blocks appear in many processes. 

Will discuss solution of RG equations for these 
functions.

 Have elegant formalism to solve these equations 
using Laplace transformation. TB and Neubert ’06

Used to perform resummations for B decays, DIS 
and DY.



given by the on-shell form factor of a massless quark,

known to two loops, logarithmic terms even to 
three loops.  Moch, Vermaseren Vogt ’05

Same hard function appears in similar factorization 
theorems for DIS and DY in the end-point. TB, Neubert 
and Pecjak ’06; TB and Neubert ’07.

HARD FUNCTION

     H(Q2)=

2



JET FUNCTION

Imaginary part of propagator in light-cone gauge:

Known to two loops, anomalous dimension to three 
loops. TB and Neubert ’06

Same jet function appears in B decays, DIS.

2 Two-loop calculation of the jet function

The factorization properties of decay rates and cross sections for processes involving hard, soft,

and collinear degrees of freedom become most transparent if an effective field theory is employed

to disentangle the contributions associated with these different momentum regions. Soft-collinear

effective theory (SCET) has been designed to accomplish this task [8, 9, 10, 11]. In the context of

SCET the jet function is defined in terms of the hard-collinear quark propagator [6, 9]

/n

2
n̄ · pJ(p2, µ) =

∫
d4x e−ip·x 〈0 |T

{
Xhc(0)Xhc(x)

}
| 0〉 , (3)

where µ is the renormalization scale, and n and n̄ are two light-like vectors satisfying n · n̄ = 2.
For simplicity we suppress color indices on the quark fields. The propagator is proportional to a

unit matrix in color space. The composite field Xhc(x) = S
†
s(x−)W

†
hc
(x) ξ(x) [11, 12, 13] is the

gauge-invariant (under both soft and hard-collinear gauge transformations) effective-theory field for

a massless quark after a decoupling transformation has been applied, which removes the interactions

of soft gluons with hard-collinear fields in the leading-order SCET Lagrangian [9]. In the absence of

such interactions the hard-collinear Lagrangian is equivalent to the conventional QCD Lagrangian,

and we can rewrite the propagator in terms of standard QCD fields as

/n

2
n̄ · pJ(p2, µ) =

∫
d4x e−ip·x 〈0 |T

{
/n /̄n

4
W†(0)ψ(0)ψ(x)W(x)

/̄n /n

4

}
| 0〉 . (4)

The quark fields are multiplied by Wilson lines

W(x) = P exp

(
ig

∫ 0

−∞
ds n̄ · A(x + sn̄)

)
, (5)

which render the expression (4) gauge invariant. Note that the Wilson lines are absent in the light-

cone gauge n̄ ·A = 0. For this reason the functionJ is sometimes referred to as the quark propagator
in axial gauge. Lorentz invariance dictates that the QCD propagator in the presence of these Wilson

lines contains two Dirac structures proportional to /p and /̄n. The Dirac matrices appearing to the left

and right of the field operators in (4) project out the terms proportional to /p. The jet function J is

the discontinuity of the propagator, i.e.

J(p2, µ) =
1

π
Im
[
iJ(p2, µ)

]
= δ(p2) + O(αs) . (6)

Finally, we calculate the function j from the contour integral

j
(
ln
Q2

µ2
, µ
)
=

∫ Q2

0

dp2 J(p2, µ) = −
1

2π

!

|p2 |=Q2

dp2J(p2, µ) . (7)

Our calculation of the jet function employs the representation (4) of the function J(p2, µ) in
terms of ordinary QCD quark and gluon fields. The relevant two-loop diagrams are shown in Fig-

ure 1. Equally well, one could use the SCET Lagrangian together with (3) to perform the calculation.

In this case diagrams in which a quark emits more than one gluon at the same vertex would also be

present, in addition to the topologies shown in Figure 1. Also, the analysis would be complicated by

the fact that the SCET Feynman rules are more complicated that those of QCD.

2

〈0| W †(0)ψ(0) ψ̄(x)W (x) |0〉

Figure 1: Two-loop diagrams contributing to the jet function in QCD. Gluons emitted from the

crossed circles originate from the Wilson lines. Not shown are additional diagrams resulting from

mirror images in which the two external points are exchanged. The first diagram is the full fermion

two-point function, not just the one-particle irreducible part.

2.1 Evaluation of the two-loop diagrams

We first discuss the evaluation of the bare quantity jbare(Q
2) and later perform its renormalization.

Let us begin by quoting the result for the one-loop master integral
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ddk
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2
)
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We use the same standard reduction techniques as in the two-loop calculation of the soft function [2]

to express all integrals we need for the evaluation of the diagrams in Figure 1 in terms of four master

integrals Mn. Introducing the dimensional regulator ε = 2 − d/2, we obtain

M1 = J(1, 1, 0, 0, 0, 1, 0, 0) =
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Γ(3 − 3ε)

,
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SOFT FUNCTION

Soft function is given by Wilson lines along the 
directions of energetic particles                             
and

Wilson lines

Kinematic constraint:                              is the 

change in jet-mass due to soft emissions

ST (ω) =
∑

X

|〈X| S†
n(0)Sn̄(0) |0〉|2δ(ω − n · pXn − n̄ · pXn̄)

CV appears in DIS, but evaluated at space-like momentum transfer [21, 31, 36]. The coefficient
CV can be determined by on-shell matching; indeed, it is simply given by the on-shell massless
form factor in QCD [20]. The Drell-Yan cross section involves the current squared, so that
the hard function in (15) is given by

H(M, µf) = |CV (−M2 − iε, µf )|2 . (22)

The expression for the coefficient CV up to O(α2
s) was derived in [21, 31] and can be found in

Appendix B.
At leading power in ε, only the n · As component of the soft gluon field couples to the

hard-collinear fields. These eikonal interactions can be represented by Wilson lines. In the
effective theory this is achieved by redefining the hard-collinear fields as [23, 37]

ξhc(x) → Sn(x−) ξ(0)
hc (x) , Aµ

hc(x) → Sn(x−) Aµ(0)
hc (x) S†

n(x−) , (23)

which implies (W †
hcξhc)(x) → Sn(x−) (W †

hcξhc)(0)(x). Here

Sn(x) = P exp

(
ig

∫ 0

−∞
ds n · As(x + sn)

)
(24)

is a soft Wilson line along the n light-cone. The same redefinition, but with n and n̄ inter-
changed, decouples the soft gluon field also from the anti-hard-collinear fields. As a result,
the current operator

Jµ(0) →
(
ξ̄hcWhc

)(0)
(sn) γµ

⊥

(
S†

n̄Sn

)
(0)

(
W †

hcξhc

)(0)
(tn̄) (25)

splits into three parts, which no longer interact with each other. In the same way, the matrix
element for the Drell-Yan process factorizes in the form

〈N1(p1)N2(p2)|(−gµν)J
µ†(x)Jν(0)|N1(p1)N2(p2)〉

→
1

Nc

∣∣CV (−M2 − iε, µf)
∣∣2 ŴDY(x, µf) 〈N1|(ξ̄hcWhc)

(0)(x+)
/̄n

2
(W †

hcξhc)
(0)(0)|N1〉

×〈N2|(ξ̄hcWhc)
(0)(0)

/n

2
(W †

hc
ξhc)

(0)(x−)|N2〉 . (26)

To obtain this expression, we have Fierz rearranged the fermion fields and have averaged
over the color of the external states. We have simplified the Dirac algebra making use of the
projection properties /n ξhc = 0 and /̄n ξhc = ξhc of the hard-collinear fermion fields (and likewise
/̄n ξhc = 0 and /n ξhc = ξhc for the anti-hard-collinear fields). Also, we have neglected the power-
suppressed dependence of the hard-collinear matrix element on x− and x⊥ (x+ and x⊥ for the
anti-hard-collinear matrix element), using the fact that up to power corrections the incoming
partons fly along the beam axis. In more technical terms, we have multi-pole expanded the
corresponding fields to leading power [24, 38]. The soft matrix element ŴDY(x, µf) (not to
be confused with the hard-collinear Wilson lines) is a closed Wilson loop formed from the
product of the soft Wilson lines in the two currents,

ŴDY(x, µf) =
1

Nc
〈0|Tr T̄

[
S†

n(x)Sn̄(x)
]
T

[
S†

n̄(0)Sn(0)
]
|0〉 , (27)

12

ω =
δM2

1 + δM2
2

Q

n̄µ = (1, 0, 0,−1)
nµ = (1, 0, 0, 1)



The presence of the three separated scales leads to 
large perturbative logarithms.

Any choice of µ will produce large logarithms in 
either H, J or S.

H and J are Wilson coefficients in SCET, S a matrix 
element,

fulfill renormalization group equation.

RESUMMATION

1
σ0

dσ

dτ
= H(Q2, µ)

∫
dM2

1

∫
dM2

2 J(M2
1 , µ) J(M2

2 , µ) ST (τ Q− M2
1 + M2

2

Q
,µ)



RESUMMATION BY RG EVOLUTION

Evaluate each part at its characteristic scale, evolve to 
common scale:

J(µi)

µ

Q H(µh)

√
Q2τ

Qτ ST (µs)
evolution automatically 

resums log’s of scale ratios



Factorization theorem and RG equations simplify 
after Laplace transform

Factorization theorem

LAPLACE TRANSFORM

t̃(ν) = H(ln
Q2

µ2
, µ)

[
j̃
(

ln
ν2Q2

µ
, µ

)]2

s̃T

(
ln

νQ

µ
, µ

)

t̃(ν) =
∫ ∞

0
dτ e−sτ 1

σ0

dσ

dτ
, s =

1
eγE ν



RG EQUATIONS

RG’s for hard and jet function TB and Neubert ’06 

Γcusp is anom. dim. of Wilson line with cusp.

Since the rate does not depend on µ , this implies

γT = 2γJ − γV → know soft anom. dim.’s to three loops!

d

d lnµ
s̃T

(
ln

νQ

µ
, µ

)
=

[
2Γcusp(αs) ln

ν2Q2

µ2
+ 2γT (αs)

]
s̃
(

ln
νQ

µ
, µ

)

d

d lnµ
H(ln

Q2

µ2
, µ) =

[
2Γcusp(αs) ln

Q2

µ2
+ 2γV (αs)

]
H(ln

Q2

µ2
, µ)

d

d lnµ
j̃
(

ln
νQ2

µ2
, µ

)
= −

[
2Γcusp(αs) ln

νQ2

µ2
+ 2γJ(αs)

]
j̃
(

ln
νQ2

µ2
, µ

)



SOLUTION TO RGE

Equations for hard and jet functions have exactly the 
same structure and solution (with some obvious 
substitutions).

and then uses the RG to evolve them to a common scale µ at which they are combined to the
cross section (4). The evolution resums the logarithms of scale ratio.

The RG equations for the hard- and jet functions are [6]

d

d ln µ
CV (−Q2 − iε, µ) =

[
Γcusp(αs)

(
ln

Q2

µ2
− iπ

)
+ γV (αs)

]
CV (−Q2 − iε, µ) . (5)

d

d lnµ
j̃
(

ln
νQ2

µ2
, µ

)
= −

[
2Γcusp(αs) ln

νQ2

µ2
+ 2γJ(αs)

]
j̃
(

ln
νQ2

µ2
, µ

)
, (6)

The two-loop results for the functions CV and j̃ as well as the three-loop anomalous dimensions
entering the above equations are given in [7]. The two-loop result for j̃ was calculated in [30].
Using the known two-loop result for the on-shell QCD form factor [34, 35, 36, 37], the hard
Wilson coefficient CV was derived in [7]. From the divergent part of the form factor at three
loops [37] and the NNLO Altarelli-Parisi splitting functions [27] the three-loop anomalous
dimension γV and γJ were derived.

The fact that the cross section is scale-independent then implies that the soft function
fulfills the RG equation

d

d lnµ
s̃T

(
ln

νQ

µ
, µ

)
=

[
4Γcusp(αs) ln

νQ

µ
+ 2γT (αs)

]
s̃
(

ln
νQ

µ
, µ

)
, (7)

with γT = 2γJ − γV . Using this relation and the results for γJ and γV [7], one obtains the
anomalous dimension γT to three loops.

The only ingredient that is not known with two-loop accuracy is the soft function s̃. How-
ever, the known one-loop result together with the RG equation (7) determines the logarithmic
part of s̃ so that the only unknown piece is the two-loop constant.

s̃T

(
L, µ

)
= 1 +

CFαs

4π

(
−8L2 − π2

)
+ CF

(αs

4π

)2

[CFSF + CASA + TF nfSf ] , (8)

where L = ln νQ
µ

and

SF = 32L4 + 8π2L2 + sF ,

SA =
176L3

9
+

(
−

536

9
+

8π2

3

)
L2 +

(
1616

27
+

44π2

9
− 56ζ(3)

)
L + sA ,

Sf = −
64L3

9
+

160L2

9
+

(
−

448

27
−

16π2

9

)
L + sf . (9)

Below, we will determine the constants sF , sA and sf numerically using the EVENT2 program
[1].

The solution to the RG equation (7) reads

s̃
(

ln
νQ

µ
, µ

)
= exp

[
4S(µs, µ) − 2aγT (µs, µ)

](
νQ

µs

)−4aΓ(µs,µ)

s̃
(

ln
νQ

µ
, µs

)
, (10)

2
with

S(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
. (11)

The exponent aγT is defined in analogy to aΓ. Explicit NNLO expressions for these evolution
functions are given in the Appendix of [7]. The solutions for the evolution equations of the hard
and jet-functions have exactly the same form and can be obtained with obvious substiutions
from (10).

Combining the three solutions, we obtain

t̃(ν) = U(µh, µi, µs)

(
Q2

µ2
h

)−2aΓ(µh,µi)

× |CV (−Q2 + iε, µh)|
2

[
j̃
(

ln
νQ2

µ2
i

, µi

)]2

s̃T

(
ln

νQ

µs

, µs

) (
νQ

µs

)η

(12)

with η = 4 aΓ(µi, µs) and the evolution factor [Note the extra factor of two in the definition
of eta!]

U(µh, µi, µs) = exp
[
4S(µh, µi) + 4S(µs, µi) − 2aγV (µh, µs) + 4γJ(µi, µs)

]
(13)

Note that the final result is independent of the reference scale µ. To see this, one uses the
relations

aΓ(µ1, µ2) + aΓ(µ2, µ3) = aΓ(µ1, µ3) ,

S(µ1, µ2) + S(µ2, µ3) = S(µ1, µ3) + ln
µ1

µ2
aΓ(µ2, µ3) . (14)

To transform back to τ -space, we rewrite the logarithms of ν in the hard- and jet function as
derivatives with respect to η and obtain the following all-order representation for the resummed
thrust distribution

1

σ0

dσ

dτ
= U(µh, µi, µs)

(
Q2

µ2
h

)−2aΓ(µh,µi)

× |CV (−Q2 + iε, µh)|
2

[
j̃
(

ln
µsQ

µ2
i

+ ∂η, µi

)]2

s̃T

(
∂η, µs

)1

τ

(
τQ

µs

)η e−γEη

Γ(η)
. (15)

The above expression is valid for η > 0. To analytically continue to η > −1 we use the identity

∫ 1

0

dτ
f(τ)

τ 1−η
=

∫ 1

0

dτ
f(τ) − f(0)

τ 1−η
+

f(0)

η
, (16)

where f(τ) is a smooth test function. For η < −1 additional subtractions are required. To
reexpand the resummed expression in fixed order perturbation theory µh = µi = µs = µ, we

3

Sudakov double log’s single log’s



Plug in solutions, do inverse Laplace transform

U is an evolution factor,                            

For N3LL resummation, we need:

4-loop Γcusp  (use Pade approx. for 4-loop term),

3-loop  γ’s,
2-loop          and    .

RESUMMED THRUST DISTRIBUTION

1
σ0

dσ

dτ
= U(µh, µi, µs)

(
Q2

µ2
h

)−2aΓ(µh,µi)

H(Q2, µh)

×
[
j̃
(

ln
µsQ

µ2
i

+ ∂η, µi

)]2

s̃T

(
∂η, µs

)1
τ

(
τQ

µs

)η e−γEη

Γ(η)

H, j̃ s̃

have everything except
2-loop soft function

with
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. (11)

The exponent aγT is defined in analogy to aΓ. Explicit NNLO expressions for these evolution
functions are given in the Appendix of [7]. The solutions for the evolution equations of the hard
and jet-functions have exactly the same form and can be obtained with obvious substiutions
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Combining the three solutions, we obtain
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with η = 4 aΓ(µi, µs) and the evolution factor [Note the extra factor of two in the definition
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U(µh, µi, µs) = exp
[
4S(µh, µi) + 4S(µs, µi) − 2aγV (µh, µs) + 4γJ(µi, µs)

]
(13)

Note that the final result is independent of the reference scale µ. To see this, one uses the
relations

aΓ(µ1, µ2) + aΓ(µ2, µ3) = aΓ(µ1, µ3) ,

S(µ1, µ2) + S(µ2, µ3) = S(µ1, µ3) + ln
µ1

µ2
aΓ(µ2, µ3) . (14)

To transform back to τ -space, we rewrite the logarithms of ν in the hard- and jet function as
derivatives with respect to η and obtain the following all-order representation for the resummed
thrust distribution

1

σ0

dσ

dτ
= U(µh, µi, µs)

(
Q2

µ2
h

)−2aΓ(µh,µi)

× |CV (−Q2 + iε, µh)|
2

[
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(
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+ ∂η, µi

)]2

s̃T

(
∂η, µs

)1

τ

(
τQ

µs

)η e−γEη
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. (15)

The above expression is valid for η > 0. To analytically continue to η > −1 we use the identity

∫ 1

0

dτ
f(τ)

τ 1−η
=

∫ 1

0

dτ
f(τ) − f(0)

τ 1−η
+

f(0)
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where f(τ) is a smooth test function. For η < −1 additional subtractions are required. To
reexpand the resummed expression in fixed order perturbation theory µh = µi = µs = µ, we
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TWO-LOOP SOFT FUNCTION

Known 1-loop result und RG equation fixes all 
logarithmic terms             in the soft function:

We determine the constants sF, sA and sf  numerically.

and then uses the RG to evolve them to a common scale µ at which they are combined to the
cross section (4). The evolution resums the logarithms of scale ratio.

The RG equations for the hard- and jet functions are [6]

d

d ln µ
CV (−Q2 − iε, µ) =

[
Γcusp(αs)

(
ln

Q2

µ2
− iπ

)
+ γV (αs)

]
CV (−Q2 − iε, µ) . (5)

d

d lnµ
j̃
(

ln
νQ2

µ2
, µ

)
= −

[
2Γcusp(αs) ln

νQ2

µ2
+ 2γJ(αs)

]
j̃
(

ln
νQ2

µ2
, µ

)
, (6)

The two-loop results for the functions CV and j̃ as well as the three-loop anomalous dimensions
entering the above equations are given in [7]. The two-loop result for j̃ was calculated in [30].
Using the known two-loop result for the on-shell QCD form factor [34, 35, 36, 37], the hard
Wilson coefficient CV was derived in [7]. From the divergent part of the form factor at three
loops [37] and the NNLO Altarelli-Parisi splitting functions [27] the three-loop anomalous
dimension γV and γJ were derived.

The fact that the cross section is scale-independent then implies that the soft function
fulfills the RG equation

d

d lnµ
s̃T

(
ln

νQ

µ
, µ

)
=

[
4Γcusp(αs) ln

νQ

µ
+ 2γT (αs)

]
s̃
(

ln
νQ

µ
, µ

)
, (7)

with γT = 2γJ − γV . Using this relation and the results for γJ and γV [7], one obtains the
anomalous dimension γT to three loops.

The only ingredient that is not known with two-loop accuracy is the soft function s̃. How-
ever, the known one-loop result together with the RG equation (7) determines the logarithmic
part of s̃ so that the only unknown piece is the two-loop constant.

s̃T

(
L, µ

)
= 1 +

CFαs

4π

(
−8L2 − π2

)
+ CF

(αs

4π

)2

[CFSF + CASA + TF nfSf ] , (8)

where L = ln νQ
µ

and

SF = 32L4 + 8π2L2 + sF ,

SA =
176L3

9
+
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9
+

8π2

3

)
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27
+

44π2

9
− 56ζ(3)

)
L + sA ,

Sf = −
64L3

9
+

160L2

9
+

(
−

448

27
−

16π2

9

)
L + sf . (9)

Below, we will determine the constants sF , sA and sf numerically using the EVENT2 program
[1].

The solution to the RG equation (7) reads

s̃
(

ln
νQ

µ
, µ

)
= exp

[
4S(µs, µ) − 2aγT (µs, µ)

](
νQ
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)−4aΓ(µs,µ)

s̃
(

ln
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µ
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)
, (10)
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and then uses the RG to evolve them to a common scale µ at which they are combined to the
cross section (4). The evolution resums the logarithms of scale ratio.
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The two-loop results for the functions CV and j̃ as well as the three-loop anomalous dimensions
entering the above equations are given in [7]. The two-loop result for j̃ was calculated in [30].
Using the known two-loop result for the on-shell QCD form factor [34, 35, 36, 37], the hard
Wilson coefficient CV was derived in [7]. From the divergent part of the form factor at three
loops [37] and the NNLO Altarelli-Parisi splitting functions [27] the three-loop anomalous
dimension γV and γJ were derived.

The fact that the cross section is scale-independent then implies that the soft function
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with γT = 2γJ − γV . Using this relation and the results for γJ and γV [7], one obtains the
anomalous dimension γT to three loops.

The only ingredient that is not known with two-loop accuracy is the soft function s̃. How-
ever, the known one-loop result together with the RG equation (7) determines the logarithmic
part of s̃ so that the only unknown piece is the two-loop constant.
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Below, we will determine the constants sF , sA and sf numerically using the EVENT2 program
[1].

The solution to the RG equation (7) reads
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and then uses the RG to evolve them to a common scale µ at which they are combined to the
cross section (4). The evolution resums the logarithms of scale ratio.

The RG equations for the hard- and jet functions are [6]
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The two-loop results for the functions CV and j̃ as well as the three-loop anomalous dimensions
entering the above equations are given in [7]. The two-loop result for j̃ was calculated in [30].
Using the known two-loop result for the on-shell QCD form factor [34, 35, 36, 37], the hard
Wilson coefficient CV was derived in [7]. From the divergent part of the form factor at three
loops [37] and the NNLO Altarelli-Parisi splitting functions [27] the three-loop anomalous
dimension γV and γJ were derived.

The fact that the cross section is scale-independent then implies that the soft function
fulfills the RG equation
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with γT = 2γJ − γV . Using this relation and the results for γJ and γV [7], one obtains the
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The only ingredient that is not known with two-loop accuracy is the soft function s̃. How-
ever, the known one-loop result together with the RG equation (7) determines the logarithmic
part of s̃ so that the only unknown piece is the two-loop constant.
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, (10)
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CONSTANT TERMS IN ST

are obtained from δ(τ) terms at O(αs2).

Use EVENT2 code by Catani and Seymour to 
numerically calculate

F (ε) = σtot −
∫

ε>0
dτ

[(
dσ

dτ

)

EVENT2

−
(
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dτ

)

singular

]
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NNLO SINGULAR TERMS

With 2-loop soft function and 3-loop anomalous 
dimension we predict all singular terms at αs3.
For small τ singular terms dominate full result: strong 
check of NNLO calculation of Gehrmann et al.

nice agreement, except for the lowest few bins.
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INDIVIDUAL COLOR STRUCTURES AT NNLO

Nc2
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thanks to T. Gehrmann for providing the NNLO histograms!

black histograms: full NNLO (EVENT3 program)
blue lines: singular terms (SCET)
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INDIVIDUAL COLOR STRUCTURES: SMALL

− ln τ
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NUMERICS AT SMALL  .

Numerical evaluation at NNLO is quite involved.
Several months of computing time on cluster.

Small τ especially nontrivial:
large numerical cancellation between amplitudes and 
subtraction terms,
negative weights.

Gehrmann et al. confirm numerical problem with the 
two leading color structures.

Error estimates become unreliable at small τ.
These numerical difficulties have no impact on αs 
determination, since only region τ>0.1 is used.

τ



RESUMMED VS. FIXED ORDER

For PDG value αs(MZ)=0.1176.
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RESUMMED VS. FIXED ORDER

For PDG value αs(MZ)=0.1176
This is the region relevant for αs determination
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DETERMINATION OF    . 

Scale variation, error band method

Fit to ALEPH and OPAL LEP data

αs



We will assess the perturbative uncertainty in the 
standard way, by varying the renormalization (resp. 
matching) scales.

To the order of the calculation, the cross section is 
independent of these scales; 

variation then is a measure of unknown higher order 
terms.

We have four scales

µhard2 ~ Q2      : scale at which H is evaluated

µjet2 ~ τ Q2     : scale at which J is evaluated

µsoft2 ~ τ2 Q2 : scale at which ST is evaluated

µmatch2           : scale of the regular terms

THEORETICAL UNCERTAINTY



 

INDEPENDENT SCALE VARIATION

Varying jet and soft scale independently by a factor 2 makes no 
sense at moderate τ (leads to µsoft > µjet, etc.), overestimates the 
uncertainty.
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JET AND SOFT SCALE VARIATION

Instead of independently varying the jet and soft scales, we 
vary as follows

correlated: µjet→ α µjet,  µsoft → α µsoft  with  1/2 < α < 2
squeeze: µjet→ √α µjet,  µsoft → α µsoft  with  1/√2 < α < √2
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ERROR BAND METHOD

Perform χ2-fit to the data, extract best-fit value of αs. Calculate 
maximum deviation from default distribution: “error band”.

To get theoretical uncertainty, calculate max. and min. αs for 
which theoretical distribution lies inside the error band.

fitrange
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Jones, Ford, Salam Stenzel & Wicke ’03; adopted by ALEPH and OPAL



 

EXPERIMENTAL UNCERTAINTY

OPAL ’05 and ALEPH ‘03 give results for binned thrust 
distributions. Do not provide correlations.
Put only stat. err. in our χ2-fit. For each Q, use same fit ranges as exp. 
paper and use their systematic uncertainties.
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RESULT: ALEPH

Fit to ALEPH data

100 120 140 160 180 200
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ECM

Α s
!M Z"

1st order

2nd order

3rd order

4th order

Matching Scale Variation

0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

1!T

""""""""""

dΣ

dT

1st order

2nd order

3rd order

4th order

Hard Scale Variation

0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

1!T

""""""""""

dΣ

dT

1st order

2nd order

3rd order

Jet Scale Variation

4th order

0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

1!T

""""""""""

dΣ

dT

1st order

2nd order

3rd order

4th order

Soft Scale Variation

0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

1!T

""""""""""

dΣ

dT

Figure 6: Convergence of perturbative uncertainty. The effective field theory involves four
dynamical scales: the scale at which the fixed order calculation is matched to the resummed
calculation, the hard scale, the jet scale, and the soft scale. Each of the scales is varied
separately to show the covergence of the expansion. ALEPH data at 91.2GeV is included for
reference. All plots have αs(mZ) = 0.1168.

4 Extraction of αs

A Anomalous dimensions

The QCD β function satisfies
dβ

dlogµ
= −2α(µ)β(α(µ)) (18)

order αs total err stat err pert. err αs (LEP 1) tot.err (LEP 1)

first 0.1281 0.0361 0.0023 0.0360 0.1293 0.0345

second 0.1202 0.0078 0.0014 0.0074 0.1205 0.0080

third 0.1178 0.0038 0.0010 0.0032 0.1175 0.0041

fourth 0.1171 0.0025 0.0009 0.0015 0.1168 0.0028

Table 3: Convergence of best fit values: ALEPH.
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RESULT OPAL

Fit to OPAL data
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Figure 7: Convergence of resummed and fixed order distributions. ALEPH data at 91.2 GeV
is included for reference. All plots have αs(mZ) = 0.1168.

order αs total err stat err pert. err αs (LEP 1) tot.err. (LEP 1)

first 0.1325 0.0402 0.0016 0.0400 0.1348 0.0373

second 0.1223 0.0088 0.0012 0.0082 0.1240 0.0089

third 0.1185 0.0046 0.0009 0.0033 0.0120 0.0051

fourth 0.1176 0.0034 0.0008 0.0016 0.1189 0.0038

Table 4: Convergence of best fit values: OPAL.
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POWER CORRECTIONS

So far, we have not included 1/Q power corrections:
finite b-quark mass effects ≈ +1.5% at LEP I

calculated perturbatively, e.g. using NLO event generator 
by Nason and Oleari.

could perform resummation for this part, using SCET, 
but presumably not worth it.

hadronisation  ~ -1.5% at LEP I
estimated using Pythia to calculate transfer matrix

uncertainty is estimated by comparing Pythia to Herwig and 
Ariadne: 2.5% at LEP I. Now the dominant uncertainty! 

Our precise perturbative prediction can and should be used 
to study hadronisation effects in more detail, using also 
lower energy data.



 

COMPARISON WITH PYTHIA

hadronic Pythia agrees perfectly with the ALEPH data

partonic Pythia does much better than NLL
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1 TEV LEPTON COLLIDER

Partonic Pythia now looks much more NLL like.

Will need to retune (or redesign) the shower.

Can tune partonic shower to our theoretical prediction. 
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FUTURE WORK

study of power corrections

hand over the prediction to experiments, so that the 
fit to data can be redone including all correlations 

other 2-jet event shapes Bauer, Fleming, Lee and Sterman arXiv:0801.4569 

3-jet event shapes

pp → 2 jets, ...

pp → t t, ...
relation to / implementation into MCs? Bauer and Schwartz ’06; 
Bauer, Tackmann, Thaler ‘08

...



SUMMARY

Have used effective field theory methods to resum thrust 
distribution to N3LL.

Traditional method works only up to NLL.

Logarithmically enhanced contributions dominate. Have 
evaluated all singular terms at αs3.

Strong check of NNLO calculation of e+e- → 3 jets.

Used result to determine αs from a fit to LEP data.

Value agrees well with low energy determinations.

Most precise determination of αs in high energy 
scattering. Perturbative uncertainty is1.5%, below 
hadronisation uncertainties.


