#### Lattice Study of the Conformal Window in QCD-Like Theories

George Fleming Ethan Neil TA

arXiv:0712.0609,  $\rightarrow$  PRL

Fermilab March 13, 2008

LSD Collaboration Lattice Strong Dynamics

J. C. Osborn Argonne National Laboratory

R. Babich, R. C. Brower, M. A. Clark, C. Rebbi, D. Schaich Boston University

M. Cheng, T. Luu, R. Soltz, P. M. Vranas Lawrence Livermore National Laboratory

T. Appelquist, G. T. Fleming, E. T. Neil Yale University

#### Beyond the Standard Model

Conformal or Near-Conformal Behavior in the IR:

Dynamical Electroweak Symmetry Breaking. (Walking Technicolor)

ADS/CFT

SUSY Flavor Hierarchies (Nelson & Strassler 2000/01)

For an asymptotically free theory, an IR fixed point can emerge already in the two-loop  $\beta$  function, depending on the number of fermions  $N_f$ 

Gross and Wilczek, antiquity Caswell, 1974 Banks and Zaks, 1982 Many Others

Reliable if the number of fermions is very close to the number at which asymptotic freedom is lost



 $\alpha^*$  increases as N<sub>f</sub> decreases.

Should be a range of  $N_f$  where IR fixed point exists, not necessarily accessible in PT. (This is known in certain SUSY theories.)

#### **Possibilities**

(1)  $\alpha^* < \alpha_c^*$  (N<sub>f</sub> > N<sub>fc</sub>) Conformal IR behavior (Non-abelian coulomb

phase).

(2)  $\alpha^* > \alpha_c^*$  (N<sub>f</sub> < N<sub>fc</sub>) Chiral symmetry breaking, confinement

(3)  $\alpha^* \ge \alpha_c^*$  (N<sub>f</sub>  $\le N_{fc}$ ) (fine tuning?) If the transition is continuous, breaking scale  $<< \Lambda$ ,  $\Rightarrow$  Walking at intermediate scales.



- 1. Value of  $N_{fc}$ ?
- 2. Order of the phase transition?
- 3. Physical states below and near the transition?
- 4. Implications for EW precision studies? (The S parameter etc)?
- 5. Implications for the LHC?

## $N_{fc} \text{ in SU(N)} \ \text{QCD}$

• Degree-of-Freedom Inequality (Cohen, Schmaltz, TA 1999). Fundamental rep:

 $N_{fc} \leq 4 N[1 - 1/18N^2 + ...]$ 

- Gap-Equation Studies, Instantons:  $N_{fc} \cong 4 N$
- Lattice Simulation (Iwasaki et al, Phys Rev D69, 014507 2004):

 $6 < N_{fc} < 7$  For N = 3

#### $N_{fc} \text{ in SUSY SU(N) QCD}$

Degree of Freedom Inequality:  $N_{fc} \leq (3/2) N$ 

Seiberg Duality:  $N_{fc} = (3/2) N !!$ 

Weakly coupled magnetic dual in the vicinity of this value

# Some Quasi-Perturbative Studies of the Conformal Window in QCD-like Theories

- 1. Gap Equation studies in the mid 1990s
- 2. V. Miransky and K. Yamawaki hep-th/9611142 (1996)
- 3. E. Gardi, G. Grunberg, M. Karliner hep-ph/9806462 (1998)
- 4. E. Gardi and G. Grunberg JHEP/004A/1298 (2004)

"The IRFP is perturbative in the entire conformal window"

- 5. Kurachi and Shrock, hep-ph/0605290
- 6. H. Terao and A. Tsuchiya arXiv:0704.3659 [hep-ph] (2007)

Lattice-Simulation Study of the Extent of the Conformal window in an SU(3) Gauge Theory with Dirac Fermions in the Fundamental Representation

#### Previous Lattice Work with Many Light Fermions

- 1. Brown et al (Columbia group) Phys. Rev. D12, 5655 (1992)  $N_f = 8$
- 2. Damgaard, Heller, Krasnitz and Oleson, hep-lat/9701008  $N_f = 16$
- 3. R. Mahwinney, hep/lat/9701030(1)  $(N_f \rightarrow 4)$ , Nucl.Phys.Proc.Suppl.83:57-66,2000. e-Print: hep-lat/0001032
- 4. C. Sui, Flavor dependence of quantum chromodynamics. PhD thesis, Columbia University, New York, NY, 2001. UMI-99-98219
- 5. Iwasaki et al, Phys. Rev, D69, 014507 (2004)

Focus: Gauge Invariant and Non-Perturbative Definition of the Running Coupling Deriving from the Schroedinger Functional of the Gauge Theory

ALPHA Collaboration: Luscher, Sommer, Weisz, Wolff, Bode, Heitger, Simma, ... Using Staggered Fermions as in U. Heller, Nucl. Phys. B504, 435 (1997) Miyazaki & Kikukawa

 $O(a^2)$  Chiral Breaking  $\implies$  Remaining Continuous Chiral Symmetry

Focus on  $N_f$  = Multiples of 4:

- 16: Perturbative IRFP
- 12: IRFP "expected", Simulate
- 8: IRFP uncertain , Simulate
- 4 : Confinement, ChSB

#### **The Shroedinger Functional**

- Transition amplitude from a prescribed state at t=0 to one at t=T (Dirichlet BC).
- Euclidean path integral with Dirichlet BC in time and periodic in space (L) to describe a constant chromoelectric background field.

$$Z[W,\zeta,\overline{\zeta};W',\zeta',\overline{\zeta'}] = \int \left[ DUD\chi D\overline{\chi} \right] e^{-S_G(W,W')-S_F(W,W',\zeta,\overline{\zeta},\zeta',\zeta')}$$

Abelian Boundary Fields  

$$W_k(x) = diag(e^{i\phi_1/L}, e^{i\phi_2/L}, e^{i\phi_3/L}),$$
  
 $W'_k(x) = diag(e^{i\phi_1/L}, e^{i\phi_2/L}, e^{i\phi_3/L}).$ 

$$\phi_{1} = -\frac{\pi}{3} + \eta, \quad \phi_{2} = -\frac{1}{2}\eta, \quad \phi_{3} = -\frac{\pi}{3} + \frac{1}{2}\eta,$$
$$\phi_{1}' = -\pi - \eta, \quad \phi_{2}' = \frac{\pi}{3} + \frac{1}{2}\eta, \quad \phi_{3}' = \frac{2\pi}{3} + \frac{1}{2}\eta.$$

- Constant chromoelectric background field of strength  $\frac{1}{L}$
- Can set  $m_f = 0$

Schroedinger Functional (SF) **Running Coupling on Lattice Define:**  $\frac{1}{\overline{g}^{2}(L,T)} \equiv \frac{-1}{k} \frac{\partial}{\partial \eta} \log Z|_{\eta=0},$  $=\frac{1}{2}+0(1)+0(g_0^2)+...$  $g_{0}$ Response of system to small changes in the background field.

$$k = 12\left(\frac{L}{a}\right)^2 \left[\sin\left(\frac{2\pi a^2}{3LT}\right) + \sin\left(\frac{\pi a^2}{3LT}\right)\right]$$

# SF Running Coupling

Then, to remove the O(a) bulk lattice artifact

$$\frac{1}{\overline{g}^{2}(L)} = \frac{1}{2} \left[ \frac{1}{\overline{g}^{2}(L,L-a)} + \frac{1}{\overline{g}^{2}(L,L+a)} \right]$$

Depends on only one scale L Look for conformal symmetry (IRFP) <u>at</u> the box scale L

**Loop Expansion**  
$$L\frac{\partial}{\partial L}\overline{g}^{2}(L) = \beta(\overline{g}^{2}(L)) = b_{1}\overline{g}^{4}(L) + b_{2}\overline{g}^{6}(L) + b_{3}\overline{g}^{8}(L) + \dots$$

$$b_{1} = \frac{2}{(4\pi)^{2}} \left( 11 - \frac{2}{3} N_{f} \right), \qquad b_{2} = \frac{2}{(4\pi)^{4}} \left( 102 - \frac{38}{3} N_{f} \right)$$
$$b_{3} = b_{3}^{\overline{MS}} + \frac{b_{2}c_{2}}{2\pi^{2}} - \frac{b_{1}(c_{3} - c_{2})}{8\pi^{2}}$$

$$b_{3}^{\overline{MS}} = \frac{1}{(4\pi)^{6}} \left[ \frac{2857}{2} - \frac{5033}{18} N_{f} + \frac{325}{54} N_{f}^{2} \right]$$

 $c_2 = 1.256 + 0.04N_f$  $c_3 = c_2^2 + 1.20 + 0.14N_f - 0.03N_f^2$ 

#### **Loop Expansion**

$$N_f = 16$$
 IRFP at  $g^{*2}_{SF} = 0.47$   $\left(\frac{\overline{g}^2}{4\pi^2} \approx .01\right)$ 

 $N_f = 12$  IRFP at  $g^{*2}_{SF} = 5.18$ 

$$\left(\frac{\overline{g}^2}{4\pi^2} \approx .13\right)$$

 $N_f \leq 8$  No perturbative IRFP

#### **Loop Expansion**



#### **Lattice Simulations**

MILC Code (Heller) Staggered Fermions

$$N_f = 8,12$$

Range of Lattice Couplings  $g_0^2$  (= 6/ $\beta$ ) and Lattice Sizes L/a  $\rightarrow$  20

O(a) Lattice Artifacts due to Dirichlet Boundary Conditions

#### Lattice Simulations

- An observable of correlation length  $R \ll L$  can be independently estimated  $(L/R)^3$  times on a single lattice.  $dS/d\eta$  can be estimated only once per lattice so more independent lattices must be generated.
- Locality of action means short distances are decorrelated faster than longer distances by the update algorithm, so computer must run longer to produce another independent lattice configuration for estimating  $dS/d\eta$ .
- Excursions at strong coupling the system can tunnel into other classical minima. Low excursion frequency means that we have to run even longer to average over them properly!
- **Bottom Line:** Schrödinger functional calculations require an order of magnitude more computer time than other lattice calculations on similar volumes.

 $N_f = 12$  Data

Bold results are recently updated.

Blue (Red) numbers indicate the number of trajectories collected for T = L + 1 (L - 1).

| $\bar{g}^2(L)$ |           |                   |           |                   | L/a        |                   |            |                   |            |                   |            |                   |          |                 |
|----------------|-----------|-------------------|-----------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|----------|-----------------|
| β              | 4         | Ntraj             | 6         | $N_{traj}$        | 8          | $N_{traj}$        | 10         | $N_{traj}$        | 12         | $N_{traj}$        | 16         | Ntraj             | 20       | Neraj           |
| 4.1            |           |                   | 65(14)    | 82K<br>82K        | 24.8(1.8)  | $\frac{28K}{38K}$ |            |                   |            |                   |            |                   |          |                 |
| 4.15           |           |                   | 26.6(1.3) | 81K<br>81K        | 15.80(68)  | 81K<br>81K        |            |                   |            |                   |            |                   |          |                 |
| 4.18           |           |                   | 17.50(84) | $\frac{42K}{52K}$ | 11.48(74)  | 13K<br>18K        |            |                   |            |                   |            |                   |          |                 |
| 4.2            |           |                   | 14.44(82) | 82K<br>82K        | 11.26(41)  | 82K<br>82K        | 11.50(60)  | $\frac{40K}{54K}$ |            |                   |            |                   |          |                 |
| 4.25           | 70.3(5.2) | 162K<br>162K      | 10.42(29) | 81K<br>81K        | 9.15(32)   | 81K<br>81K        | 9.39(57)   | $\frac{50K}{50K}$ |            |                   |            |                   |          |                 |
| 4.3            | 29.56(99) | 162K<br>162K      | 8.32(17)  | 82K<br>82K        | 7.40(19)   | 82K<br>82K        | 8.51(40)   | $\frac{60K}{65K}$ | 9.40(64)   | 51K<br>58K        | 8.29(74)   | $\frac{5K}{7K}$   |          |                 |
| 4.35           | 18.99(40) | 162K<br>162K      | 6.93(14)  | 82K<br>82K        | 6.81(20)   | 82K<br>82K        |            |                   |            |                   |            |                   |          |                 |
| 4.4            | 13.66(32) | 162K<br>162K      | 6.008(87) | 82K<br>82K        | 5.98(14)   | 82K<br>82K        | 6.13(35)   | 25K<br>37K        | 5.96(35)   | $\frac{40K}{50K}$ |            |                   |          |                 |
| 4.45           | 10.44(15) | 162K<br>162K      | 5.36(11)  | 82K<br>82K        | 5.33(12)   | 82K<br>82K        |            |                   |            |                   |            |                   |          |                 |
| 4.5            | 8.296(79) | 162K<br>162K      | 5.137(71) | 96K<br>96K        | 5.026(101) | 84K<br>98K        | 5.26(19)   | $\frac{55K}{45K}$ | 4.955(239) | 45K<br>53K        |            |                   |          |                 |
| 4.6            | 6.155(48) | 162K<br>162K      | 4.214(78) | 82K<br>82K        | 4.298(96)  | 82K<br>82K        | 4.44(11)   | $\frac{80K}{79K}$ | 3.896(93)  | 41K<br>57K        | 4.04(15)   | 19K<br>17K        | 2.93(13) | $\frac{2K}{2K}$ |
| 4.7            | 4.986(36) | 162K<br>162K      | 3.839(55) | 82K<br>80K        | 3.728(50)  | $\frac{86K}{88K}$ | 3.752(109) | 21K<br>24K        | 3.962(171) | $\frac{46K}{36K}$ | 4.749(423) | $\frac{52K}{54K}$ |          |                 |
| 4.8            | 4.244(28) | 162K<br>162K      | 3.483(46) | 82K<br>82K        | 3.511(57)  | 82K<br>82K        |            |                   |            |                   |            |                   |          |                 |
| 4.9            | 3.704(20) | 162K<br>162K      | 3.092(26) | 82K<br>82K        | 3.193(44)  | 82K<br>82K        |            |                   |            |                   |            |                   |          |                 |
| 5.0            | 3.30(4)   | 122K<br>41K       | 2.899(27) | $\frac{54K}{40K}$ | 2.916(34)  | $\frac{54K}{90K}$ | 2.998(58)  | 41K<br>41K        | 3.020(73)  | 44K<br>47K        | 2.971(148) | 27K<br>28K        |          |                 |
| 5.1            | 3.059(34) | 41K<br>41K        | 2.731(33) | $\frac{36K}{52K}$ |            |                   |            |                   |            |                   |            |                   |          |                 |
| 5.2            | 2.832(24) | 41K<br>41K        | 2.545(12) | $\frac{36K}{56K}$ | 2.568(26)  | $\frac{54K}{90K}$ |            |                   |            |                   |            |                   |          |                 |
| 5.3            | 2.622(17) | 41K<br>41K        | 2.468(29) | $\frac{36K}{56K}$ |            |                   |            |                   |            |                   |            |                   |          |                 |
| 5.4            | 2.483(19) | $\frac{41K}{41K}$ | 2.323(19) | $\frac{36K}{56K}$ | 2.311(1)   | $\frac{42K}{42K}$ |            |                   |            |                   |            |                   |          |                 |
| 5.5            | 2.342(12) | 41K<br>41K        | 2.196(10) | $\frac{36K}{56K}$ |            |                   |            |                   |            |                   |            |                   |          |                 |
| 5.6            | 2.237(12) | 41K<br>41K        | 2.098(5)  | $\frac{36K}{56K}$ | 2.118(1)   | $\frac{42K}{42K}$ |            |                   |            |                   |            |                   |          |                 |
| 5.7            | 2.126(9)  | 41K<br>41K        | 2.016(5)  | $\frac{36K}{56K}$ |            |                   |            |                   |            |                   |            |                   |          |                 |

24

# $N_f = 12$ Data with Fits



#### **Blow Up**



Renormalization Group  
(Step Scaling)  
$$\overline{g}^{2}\left(g_{0}^{2},\frac{a}{L}\right) = \overline{g}^{2}\left(\overline{g}^{2}(L_{0}),\frac{L}{L_{0}},\frac{a}{L_{0}}\right)$$
$$g_{0}^{2} \xrightarrow{a \to 0} \frac{1}{\ln(L_{0}/a)}$$

$$\xrightarrow{a/L_0 \to 0} \overline{g}^2 \left( \overline{g}^2 \left( L_0 \right), \frac{L}{L_0} \right) \equiv \overline{g}^2 \left( \frac{L}{L_0} \right) \qquad \left( \frac{L}{L_0} = 2 \right)$$

$$\overline{g}^{2}\left(\overline{g}^{2}(L), \frac{L'}{L}, \frac{a}{L}\right) \xrightarrow{\frac{a}{L} \to 0} \overline{g}^{2}\left(\frac{L'}{L}\right) \qquad \left(\frac{L'}{L} = 2\right)$$

#### N<sub>f</sub>=12 Extrapolation Curve







 $N_f = 8$  Data

Table 1: Schrödinger functional running coupling  $\overline{g}^{2}(L)$  for SU(3),  $N_{f}$ =8

| β    | L=4        | Nimj           | L=6       | Ntraj          | L=8       | $N_{\text{traj}}$ | L=10      | Ntraj          | L=12      | Ntraj          | L=16      | Ntraj          | L = 20 | Ntraj |
|------|------------|----------------|-----------|----------------|-----------|-------------------|-----------|----------------|-----------|----------------|-----------|----------------|--------|-------|
| 4.45 | 41.4(2.0)  | 82000<br>82000 | 37.4(2.4) | 28600<br>61900 |           |                   |           |                |           |                |           |                |        |       |
| 4.5  | 23.87(57)  | 82000<br>82000 | 17.75(78) | 60000<br>48000 | 35.4(4.1) | 26000<br>30000    |           |                |           |                |           |                |        |       |
| 4.55 | 16.28(53)  | 82000<br>82000 | 12.35(45) | 82000<br>56000 | 20.8(2.0) | 31000<br>13000    |           |                |           |                |           |                |        |       |
| 4.6  | 11.66(16)  | 82000<br>82000 | 9.73(30)  | 82000<br>82000 | 11.4(1.8) | 81000<br>81000    | 15.9(1.4) | 32000<br>21000 | 16.2(2.1) | 10500<br>10000 |           |                |        |       |
| 4.65 | 9.21(15)   | 82000<br>82000 | 8.04(19)  | 82000<br>82000 | 9.40(40)  | 27000<br>29000    | 10.58(59) | 34000<br>33000 | 16.0(1.4) | 29000<br>11000 |           |                |        |       |
| 4.7  | 7.52(14)   | 42000<br>42000 | 6.79(19)  | 42000<br>42000 | 8.17(50)  | 41000<br>41000    | 10.74(80) | 31000<br>26000 |           |                | 10.9(2.2) | 900<br>800     |        |       |
| 4.8  | 5.86(11)   | 42000<br>42000 | 5.62(12)  | 42000<br>42000 | 6.55(25)  | 41000<br>42000    | 7.10(31)  | 31000<br>22000 | 7.26(55)  | 16500<br>16500 | 8.04(65)  | 8500<br>8500   |        |       |
| 4.9  | 4.966(84)  | 42000<br>42000 | 4.75(18)  | 42000<br>42000 | 5.18(14)  | 42000<br>42000    |           |                |           |                |           |                |        |       |
| 5.0  | 4.157(65)  | 42000<br>42000 | 4.160(87) | 40500<br>40500 | 4.75(13)  | 40500<br>40500    | 4.90(14)  | 30000<br>41000 | 5.58(25)  | 40500<br>40500 | 6.18(78)  | 27000<br>26750 |        |       |
| 5.1  | 3.753(40)  | 41000<br>41000 | 3.813(67) | 41000<br>41000 | 4.226(94) | 41000<br>41000    |           |                |           |                |           |                |        |       |
| 5.2  | 3.386(39)  | 41000<br>41000 | 3.387(37) | 41000<br>41000 | 3.756(71) | 41000<br>41000    |           |                |           |                |           |                |        |       |
| 5.3  | 3.108(22)  | 41000<br>41000 | 3.087(27) | 41000<br>41000 | 3.307(53) | 59000<br>60000    |           |                |           |                |           |                |        |       |
| 5.4  | 2.891(26)  | 41000<br>41000 | 2.958(38) | 41000<br>41000 | 3.163(40) | 41000<br>41000    |           |                |           |                |           |                |        |       |
| 5.5  | 2.735(24)  | 41000<br>41000 | 2.731(21) | 41000<br>41000 | 2.977(38) | 40500<br>40500    | 3.113(52) | 41000<br>41000 | 3.374(73) | 40500<br>40500 | 3.361(73) | 25750<br>25500 |        |       |
| 5.6  | 2.571(21)  | 41000<br>41000 | 2.599(18) | 41000<br>41000 | 2.794(31) | 41000<br>41000    |           |                |           |                |           |                |        |       |
| 5.7  | 2.406(11)  | 41000<br>41000 | 2.442(11) | 41000<br>41000 | 2.592(15) | 41000<br>41000    |           |                |           |                |           |                |        |       |
| 5.8  | 2.2829(97) | 41000<br>41000 | 2.322(10) | 41000<br>41000 | 2.494(15) | 41000<br>41000    |           |                |           |                |           |                |        |       |

Blue (Red) numbers indicate the number of trajectories collected for T=L+1 (L-1).

Sat Mar 8 01:08:06 EST 2008

#### $N_f = 8$ Data with Fits







# N<sub>f</sub> = 8 Features

- 1. No evidence for IRFP or even inflection point up through  $\overline{g}^2(L) \approx 15$ .
- 2. Exceeds rough estimate  $(\alpha_c^*/\pi \approx 1/4)$  of strength required to break chiral symmetry, and therefore produce confinement. Must be confirmed by direct lattice simulations.
- 3. Rate of growth exceeds 3 loop perturbation theory.
- 4. Behavior similar to quenched theory [ALPHA N.P. Proc. Suppl.  $\underline{106}$ , 859 (2002)] and N<sub>f</sub>=2 theory [ALPHA, N.P.  $\underline{B713}$ , 378 (2005)], but slower growth as expected.

#### Conclusions

- 1. First lattice evidence that for an SU(3) gauge theory with N<sub>f</sub> Dirac fermions in the fundamental representation  $8 < N_{fc} < 12$
- 2. N<sub>f</sub>=12: Relatively weak IRFP
- 3. N<sub>f</sub>=8: Confinement and chiral symmetry breaking in disagreement with Iwasaki et al

Employing the Schroedinger functional running coupling defined <u>at</u> the box boundary L

# Things to Do

- 1. Refine the simulations at  $N_f$  = 8 and 12 and examine other values such as  $N_f$  = 10.
- 2. Study the phase transition as a function of  $N_{\rm f.}$
- 3. Consider other gauge groups and representation assignments for the fermions
- 4. Examine physical quantities such as the static potential (Wilson loop)

# 5. Examine chiral symmetry breaking directly: $\langle \psi \psi \rangle$ at zero temperature

6. Apply to BSM Physics. Is S naturally small as N<sub>f</sub>  $\rightarrow$  N<sub>fc</sub> due to approximate parity doubling?  $S(m_{H,ref}) = 4 \int_{0}^{\infty} \frac{ds}{s} \left\{ [Im \Pi_{VV}(s) - Im \Pi_{AA}(s)] - \frac{1}{48\pi} \left[ 1 - \left( 1 - \frac{m_{H,ref}}{s} \right)^{3} \theta(s - m_{H,ref}^{2}) \right] \right\}$ 

Includes the contribution of the  $[N_f^2 - 1 - 3]$  pseudo-Nambu-Goldstone bosons present in the model.