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Neutrino Mass: 1st Evidence for Beyond SM

Global Best Fit at 3σ level Schwetz 07

7.1 × 10−5 eV2 < ∆m2
21 < 8.3 × 10−5 eV2;

2.0 × 10−3 eV2 < |∆m2
31| < 2.8 × 10−3 eV2

0.26 < sin2 θ12 < 0.40; 0.34 < sin2 θ23 < 0.67; sin2 θ13 < 0.050P
i mi < 1.2 eV
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Lepton Number Violation (LNV) ��L

Challenge: mt/mν ∼ 1012

Dirac or Majorana nature of neutrino

Global U(1)L or U(1)B−L

U(1)L as global symmetry in SM. Quantum gravity effects
(wormhole or blackhole) only respects gauge symmetries. Hawking, 87

``HuHu/MPl

mν ∼ 10−5 eV
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Global U(1)L or U(1)B−L

Spontaneously broken U(1)L Chikashige, Mohapatra, Peccei, 80

Majoron Problem

Once imposing anomaly free condition, upto an overall
normalization, U(1)Y is the uniquely defined.

U(1)B−L is likely to be gauge symmetry. next simplest U(1) that
can be gauged.

No [SU(3)C ]2 × U(1)B−L or [SU(2)L]
2 × U(1)B−L anomalies

No [U(1)Y ]2 × U(1)B−L or U(1)Y × [U(1)B−L]2 anomalies

ONLY TRACE TrU(1)B−L and Cubic [U(1)B−L]3

SU(5) respect U(1)B−L.

One can gauge U(1)B−L by adding just ONE singlet!
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Theoretical Models

Type I seesaw yD`νcHu + MRνcνc , ∆L = 2
MR ∼ 1014GeV, mν ∼ M2

D/MR Yanagida,79; Gell-Man et

al.,79,Glashow,80;Mohapatra,Senjanovic,80

Type II seesaw yν`
T iσ2∆`, ∆L = 2

mν = yνv
′ ∼ 10−10GeV Minikowski,77;Cheng,Li,80;Mohapatra,Senjanovic,81;Shafi et

al., 81

Zee model, generates neutrino mass at two-loop ∆L = 2Zee 80,

Babu, 88

Type III seesaw, etc.......
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Light Triplet accessible at the LHC

µn``HuHu

Λn+1

�L

Λ
�L

must be within collider reach.

M∆ ∼ 100 GeV −−1 TeV

For instance, AMSB Mohpatra et al. 07,08
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LNV Direct Test: 0νββ

1/M4
WL

yνv
′/M2

∆ ∼ 1/M4
WL

mν/M2
∆

yνv
′

M2
∆

≤ 5× 10−8 GeV−1

M∆ > 0.1GeV
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Other Bounds on Triplet Higgs

Masses

CDF/D�0 Search bound: mH++ > 120 GeV (4
muons/muons+tau)

Lepton Flavor Violation Br(µ → e−e+e+) < 10−12

Unitarity WW scattering: gMW × v∆/v0

VEV

ρ-parameter Gunion, et. al, 1990;Chen, Dawson, 2002

Triplet vev breaks SU(2)L+R custodial symmetry

ρ =

(
mW

mZ cos θW

)2

; v∆ < 1 GeV
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Type II seesaw

Y = 2 SU(2)L Triplet

∆ =
1

2

(
H+

√
2H++

√
2H0 −H+

)
Breaking U(1)B−L

yν`
T
L Ciσ2∆` + µHT iσ2∆

†H + h.c . + ....

H++ → `+`+,W +W +

H+ → `+ν̄,W +h,W +Z , tb̄

H0 → νν, ν̄ν̄,ZZ ,W +W−,H1H1

(No tree level mass difference among triplet Higgses. Otherwise
H++ → H+W ∗,H+ → H2W

∗)
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H++ Decay BR: v ′ vs yν

ΓWW ∼ M3
H(longitutinal); Γ`` ∼ MH
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H+ Decay BR
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Neutrino and Triplet Leptonic Decay

−Yν`
T C iσ2 ∆` + h.c., where ∆ =

(
δ+/

√
2 δ++

δ0 −δ+/
√

2

)
No Majorana Phases sin θ23
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Doubly Charged (continued)
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Majorana Phase

Singly Charged Higgs BR is independent of Majorana phases.
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Singly Charged
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Decay length of H++

v∆ ∼ 10−4GeV: secondary vertex; Not longlived
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Distinguish Spectrum via LNV Higgs Decay
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Part II

Phenomenology

Searching at the Large Hadron Collider

19 Kai Wang, Pheno, Wisconsin Testing Origin of Neutrino Mass at the LHC



Production of Triplet Higgses

q(p1) + q̄(p2) → H++(k1) + H−−(k2)

q(p1) + q̄′(p2) → H++(k1) + H−(k2)

q(p1) + q̄′(p2) → H+(k1) + H2(k2)

Tree Level Cross-section of Triplet Higgses Production
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Remarks on Production

triplet vev v∆ suppresion

phase space suppression

Ward Identity (Longitutinal W, εµ → pµ)
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Remarks on Production (continued)

QCD correction for this mass range 25% (NLO K -factor 1.25)

real photon emission (γγ → H++H−−) 10%
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Photon-Photon

σγγ = σelastic + σinelastic + σsemi−elastic

σelastic =

Z 1

τ
dz1

Z 1

τ/z1

dz2fγ/p(z1)fγ/p′ (z2)σ(γγ → H++H−−)

σinelastic =

Z 1

τ
dx1

Z 1

τ/x1

dx2

Z 1

τ/x1/x2

dz1

Z 1

τ/x1/x2/z1

dz2fq(x1)f ′q (x2)fγ/q(z1)fγ/q′ (z2)σ(γγ → H++H−−)

σsemi−elastic =

Z 1

τ
dx1

Z 1

τ/x1

dz1

Z 1

τ/x1/z1

dz2fq(x1)fγ/q(z1)fγ/p′ (z2)σ(γγ → H++H−−)

τ =
4m2

S

Drees, Godbole 94
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Search via Leptonic Decays

Small vev limit v∆ < 10−4 GeV

All LNV, but not observable except for H++

H++ → `+`+; H+ → `+ν̄`; H2 → νν

µ,e and τ respectively

H2 → invisible and always produced via H±H2, another
missing ν from H+, impossible to reconstruct.

High pT event, e is better than µ

pp → H++H− → `+`+`−ν, `+`+τ−ν (` = e, µ)

pp → H++H−− → `+`+`−`−, `+`+τ−τ− (` = e, µ)
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4 Lepton (no τ final state)

pT (`max) > 30 GeV and pT (`)min > 15 GeV

|η(`)| < 2.5

∆R`` > 0.4

SM Background if there exists same flavor, opposite sign dilepton

ZZ/γ∗ → `+`−`+`−

Veto events of |M`+`− −MZ | > 15 GeV After reconstruction,
purely event counting
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Trilepton (no τ final state)

pT (`max) > 30 GeV and pT (`)min > 15 GeV

|η(`)| < 2.5

∆R`` > 0.4

�ET > 40 GeV

SM Background if there exists same flavor, opposite sign dilepton

W±Z/γ∗ → `±ν`+`−,W±W±W∓ → `±`+`− +�ET

Veto events of |M`+`− −MZ | > 15 GeV
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Trilepton

MT =
√

(E `
T +�ET )2 − (~p` + ��~p)2T
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τ Final State

τ → muνν̄ 17.36%

τ → eνν̄ 17.84%

τ → πν 10.9%

τ → h−π0ν 37.0%

Atlas TDR
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τ Leptonic decay

H+ → τν → ` +�ET

H+ → ` +�ET

Lepton pT

` from H+ Jaccobian Peak around MH/2 (may change due to
boost)

` from τ , purely boost effect, much softer

p`
T selection (GeV) 50 75 100 100 150 200

` misidentification rate 2.9% 9.4% 17.6% 4.6% 12.4% 22.2%
τ survival probability 57.0% 69.8% 78.8% 62.8% 75.7% 83.7%

τ selection:
pT < 100 GeV (for M+

H = 300 GeV)
pT < 200 GeV for M+

H = 600 GeV
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τ Reconstruction

No other �ET in final state:

pp → H++H−− → `+`+τ−τ−, `+`+µ−τ−, `+τ+τ−τ−

Highly Boosted τ

~p invisible = κ~p `; each τ corresponds to one unknown

Σ~p invisible
T = ~

�pT 2 independent equations

M`+`+ = Mrec
τ−τ− ; 1 more equation

UPTO THREE τs
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µµττ and µµµτ
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Measuring BR

N4µ = L × σ(pp → H++H−−)× BR2(H++ → µ+µ+)

N3µτ = L×σ(pp → H++H−−)×BR(H++ → µ+µ+)BR(H++ → µ+τ+)
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Large vev limit

To test doublet-triplet mixing µHT∆H.
Both H+ and H2 decay will tell this. But H2 → H1H1 has at least

6 jets final state.

pp → H++H− → W +W +W−H1/t̄b/W−Z → jjbb̄`+`+
�ET
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300 GeV-jjjj`+`+
��ET
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600 GeV-JJ`+`+
��ET
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Conclusion

We propose one scenario that Type II seesaw mechanism can
be tested directly at the LHC although it may require high
luminosity.

It has very different phenomenology like doubly charged
scalars that can decay into same sign dilepton.

If the doubly charged Higgs and its LNV decay has been
discovered, we will be able to extract information of neutrino
mass and mixing from BR of triplet Higgses.

Thank you!
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