

Testing Origin of Neutrino Mass at the LHC

Kai Wang

Phenomenology Institute, Department of Physics

University of Wisconsin-Madison

Theory Group Seminar Fermilab April 10, 2008

> Tao Han, Biswarup Mukhopadhyaya, Zongguo Si and KW Phys. Rev. D **76**, 075013 (2007) [arXiv:0706.0441 [hep-ph]] Pavel Fileviez Pére, Tao Han, Guiyu Huang, Tong Li and KW

> > [arXiv:0803.3450[hep-ph] and In Preparation

E

- Neutrino Masses: First Evidence for BSM Physics
- Triplet Model
- Decay of Triplet Higgses
- Neutrino Spectrum and Δ leptonic decays
- LHC Phenomenology
 - Production of triplet Higgs
 - Leptonic Decay: Reconstruction and BR
 - Testing Doublet/Triplet Mixing
- Conclusion

→ < Ξ → <</p>

$$\begin{array}{rl} 2.0 \times 10^{-3} \, \mathrm{eV}^2 &< |\Delta m_{31}^2| < 2.8 \times 10^{-3} \, \mathrm{eV}^2 \\ 0.26 &< \sin^2 \theta_{12} < 0.40; \ 0.34 &< \sin^2 \theta_{23} < 0.67; \ \sin^2 \theta_{13} < 0.050 \\ \sum_i m_i < 1.2 \ \mathrm{eV} \end{array}$$

Challenge: $m_t/m_{ m v} \sim 10^{12}$

- Dirac or Majorana nature of neutrino
- Global $U(1)_L$ or $U(1)_{\mathrm{B-L}}$

 $U(1)_L$ as global symmetry in SM. Quantum gravity effects (wormhole or blackhole) only respects gauge symmetries. Hawking, 87

 $\ell\ell H_u H_u / M_{\rm Pl}$

 $m_\nu \sim 10^{-5}~{\rm eV}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Spontaneously broken $U(1)_L$ Chikashige, Mohapatra, Peccei, 80

Majoron Problem

Once imposing anomaly free condition, upto an overall normalization, $U(1)_Y$ is the uniquely defined.

 $U(1)_{\rm B-L}$ is likely to be gauge symmetry. next simplest U(1) that can be gauged.

- No $[SU(3)_{\mathcal{C}}]^2 imes U(1)_{\mathrm{B-L}}$ or $[SU(2)_{\mathcal{L}}]^2 imes U(1)_{\mathrm{B-L}}$ anomalies
- No $[U(1)_Y]^2 imes U(1)_{
 m B-L}$ or $U(1)_Y imes [U(1)_{
 m B-L}]^2$ anomalies
- ONLY TRACE $\mathrm{Tr} U(1)_{\mathrm{B-L}}$ and Cubic $[U(1)_{\mathrm{B-L}}]^3$
- SU(5) respect $U(1)_{B-L}$.

One can gauge $U(1)_{\mathrm{B-L}}$ by adding just ONE singlet!

- 4 同 ト - 4 目 ト

Theoretical Models

• Type I seesaw $y_D \ell \nu^c H_u + M_R \nu^c \nu^c$, $\Delta L = 2$ $M_R \sim 10^{14} \text{GeV}$, $m_\nu \sim M_D^2/M_R$ Yanagida,79; Gell-Man et

al.,79,Glashow,80;Mohapatra,Senjanovic,80

- Type II seesaw $y_{\nu}\ell^{T}i\sigma_{2}\Delta\ell$, $\Delta L = 2$ $m_{\nu} = y_{\nu}\nu' \sim 10^{-10} \text{GeV}$ Minikowski,77;Cheng,Li,80;Mohapatra,Senjanovic,81;Shafi *et al.*, 81
- Zee model, generates neutrino mass at two-loop $\Delta L = 2z_{ee \ 80, Babu, \ 88}$
- Type III seesaw, etc.....

向下 イヨト イヨト

$$\frac{\mu^n \ell \ell H_u H_u}{\Lambda_{\not L}^{n+1}}$$

 $\Lambda_{\not\!L}$ must be within collider reach.

 $M_\Delta \sim 100~{\rm GeV} - -1~{\rm TeV}$

For instance, AMSB Mohpatra et al. 07,08

伺 とう きょう くらう

LNV Direct Test: $0\nu\beta\beta$

•
$$1/M_{W_L}^4 y_{\nu} v'/M_{\Delta}^2 \sim 1/M_{W_L}^4 m_{\nu}/M_{\Delta}^2$$

$$\frac{y_{\nu}v'}{M_{\Delta}^2} \le 5 \times 10^{-8} \text{ GeV}^{-1}$$

$$M_{\Delta} \ge 0.1 \text{GeV}$$

W

Masses

- CDF/DØ Search bound: m_{H⁺⁺} > 120 GeV (4 muons/muons+tau)
- Lepton Flavor Violation ${
 m Br}(\mu
 ightarrow e^- e^+ e^+) < 10^{-12}$
- Unitarity WW scattering: $gM_W \times v_\Delta/v_0$

VEV

 $\rho\text{-}\mathsf{parameter}$ Gunion, et. al, 1990;Chen, Dawson, 2002 Triplet vev breaks $SU(2)_{L+R}$ custodial symmetry

$$\rho = \left(\frac{m_W}{m_Z\cos\theta_W}\right)^2; \quad v_\Delta < 1 \,\, {\rm GeV} \label{eq:rho}$$

伺 とう きょう くらう

Type II seesaw

$Y = 2 SU(2)_L$ Triplet

$$\Delta = rac{1}{2} \left(egin{array}{cc} H^+ & \sqrt{2}H^{++} \ \sqrt{2}H^0 & -H^+ \end{array}
ight)$$

Breaking $U(1)_{\rm B-L}$

$$y_{\nu}\ell_{L}^{\mathsf{T}}\mathsf{C}i\sigma_{2}\Delta\ell+\mu\mathsf{H}^{\mathsf{T}}i\sigma_{2}\Delta^{\dagger}\mathsf{H}+\mathsf{h.c.}+...$$

$$\begin{array}{rcl} H^{++} & \rightarrow & \ell^+ \ell^+, \, W^+ W^+ \\ H^+ & \rightarrow & \ell^+ \bar{\nu}, \, W^+ h, \, W^+ Z, \, t \bar{b} \\ H^0 & \rightarrow & \nu \nu, \, \bar{\nu} \bar{\nu}, \, ZZ, \, W^+ W^-, \, H_1 H_1 \end{array}$$

(No tree level mass difference among triplet Higgses. Otherwise $H^{++} \rightarrow H^+ W^*, H^+ \rightarrow H_2 W^*$)

 $\Gamma_{WW} \sim M_H^3$ (longitutinal); $\Gamma_{\ell\ell} \sim M_H$

→ Ξ → → Ξ →

A ►

H^+ Decay BR

Neutrino and Triplet Leptonic Decay

$$-Y_{\nu}\ell^{T} C i\sigma_{2} \Delta\ell + \text{h.c.}, \text{ where } \Delta = \begin{pmatrix} \delta^{+}/\sqrt{2} & \delta^{++} \\ \delta^{0} & -\delta^{+}/\sqrt{2} \end{pmatrix}$$

No Majorana Phases

 $\sin \theta_{23}$

FIG. 12: Br $(H^{++} \rightarrow e_i^+ e_i^+)$ vs. the lowest neutrino mass for NH (left) and IH (right) when $\Phi_1 = 0$ and $\Phi_2 = 0$. $\Im \Im \Im$

Doubly Charged (continued)

- (E

• Singly Charged Higgs BR is independent of Majorana phases.

-∰ ► < ≣ ►

Singly Charged

Decay length of H^{++}

FIG. 14: Decay length and width of doubly charged Higgs ($\Phi_1 = 0$ and $\Phi_2 = 0$).

$v_{\Delta} \sim 10^{-4} \text{GeV}:$ secondary vertex; Not longlived

ALC: N DOWN
AND DOOR

Spectrum	Relations
NH	$\operatorname{Br}(\tau^+\tau^+), \operatorname{Br}(\mu^+\mu^+) \gg \operatorname{Br}(e^+e^+)$
$\Delta m_{31}^2 > 0$	$\operatorname{Br}(\mu^+\tau^+) \gg \operatorname{Br}(e^+\tau^+), \operatorname{Br}(e^+\mu^+)$
	$\operatorname{Br}(\tau^+\bar{\nu}), \operatorname{Br}(\mu^+\bar{\nu}) \gg \operatorname{Br}(e^+\bar{\nu})$
IH	$\operatorname{Br}(e^+e^+) > \operatorname{Br}(\mu^+\mu^+), \operatorname{Br}(\tau^+\tau^+)$
$\Delta m_{31}^2 < 0$	$\operatorname{Br}(\mu^+\tau^+) \gg \operatorname{Br}(e^+\tau^+), \operatorname{Br}(e^+\mu^+)$
	$\operatorname{Br}(e^+\bar{\nu}) > \operatorname{Br}(\mu^+\bar{\nu}), \operatorname{Br}(\tau^+\bar{\nu})$
QD	$\operatorname{Br}(e^+e^+) \approx \operatorname{Br}(\mu^+\mu^+) \approx \operatorname{Br}(\tau^+\tau^+)$
H	$\operatorname{Br}(\mu^+\tau^+) \approx \operatorname{Br}(e^+\tau^+) \approx \operatorname{Br}(e^+\mu^+) \text{ (suppressed)}$
	$\operatorname{Br}(e^+\bar{\nu}) \approx \operatorname{Br}(\mu^+\bar{\nu}) \approx \operatorname{Br}(\tau^+\bar{\nu})$

・ロト ・部ト ・ヨト ・ヨト

Part II PHENOMENOLOGY

Searching at the Large Hadron Collider

伺 と く ヨ と く ヨ と

Production of Triplet Higgses

Kai Wang, Pheno, Wisconsin Testing Origin of Neutrino Mass at the LHC

Remarks on Production

- triplet vev v_{Δ} suppression
- phase space suppression
- Ward Identity (Longitutinal W, $\epsilon_{\mu} \rightarrow p_{\mu}$)

Remarks on Production (continued)

- QCD correction for this mass range 25% (NLO K-factor 1.25)
- real photon emission $(\gamma \gamma \rightarrow H^{++}H^{--})$ 10%

σ

$$\sigma_{\gamma\gamma} = \sigma_{\text{elastic}} + \sigma_{\text{inelastic}} + \sigma_{\text{semi-elastic}}$$

$$\begin{split} \sigma_{\text{elastic}} &= \int_{\tau}^{1} dz_{1} \int_{\tau/z_{1}}^{1} dz_{2} f_{\gamma/p}(z_{1}) f_{\gamma/p'}(z_{2}) \sigma(\gamma\gamma \to H^{++}H^{--}) \\ \sigma_{\text{inelastic}} &= \int_{\tau}^{1} dx_{1} \int_{\tau/x_{1}}^{1} dx_{2} \int_{\tau/x_{1}/x_{2}}^{1} dz_{1} \int_{\tau/x_{1}/x_{2}/z_{1}}^{1} \\ dz_{2} f_{q}(x_{1}) f_{q}'(x_{2}) f_{\gamma/q}(z_{1}) f_{\gamma/q'}(z_{2}) \sigma(\gamma\gamma \to H^{++}H^{--}) \\ \sigma_{\text{semi-elastic}} &= \int_{\tau}^{1} dx_{1} \int_{\tau/x_{1}}^{1} dz_{1} \int_{\tau/x_{1}/z_{1}}^{1} dz_{2} f_{q}(x_{1}) f_{\gamma/q}(z_{1}) f_{\gamma/p'}(z_{2}) \sigma(\gamma\gamma \to H^{++}H^{--}) \\ \tau &= \frac{4m^{2}}{S} \end{split}$$
Drees, Godbole 94

・ロト ・回ト ・ヨト ・ヨト

Small vev limit $v_\Delta < 10^{-4}~{ m GeV}$

All LNV, but not observable except for H^{++}

$$H^{++} \rightarrow \ell^+ \ell^+; \quad H^+ \rightarrow \ell^+ \bar{\nu}_\ell; \quad H_2 \rightarrow \nu \nu$$

- μ , e and τ respectively
- H₂ → invisible and always produced via H[±]H₂, another missing ν from H⁺, impossible to reconstruct.
- High p_T event, e is better than μ

$$pp \rightarrow H^{++}H^- \rightarrow \ell^+ \ell^+ \ell^- \nu, \ell^+ \ell^+ \tau^- \nu$$
 $(\ell = e, \mu)$

$$m{
m op}
ightarrow H^{++} H^{--}
ightarrow \ell^+ \ell^+ \ell^- \ell^-, \ell^+ \ell^+ au^- au^- \qquad (\ell=e,\mu)$$

- $p_T(\ell_{\max}) > 30$ GeV and $p_T(\ell)_{\min} > 15$ GeV
- $|\eta(\ell)| < 2.5$
- $\Delta R_{\ell\ell} > 0.4$

SM Background if there exists same flavor, opposite sign dilepton

$$ZZ/\gamma^* \to \ell^+ \ell^- \ell^+ \ell^-$$

Veto events of $|M_{\ell^+\ell^-}-M_Z|>15~{\rm GeV}$ After reconstruction, purely event counting

ヨト イヨト イヨト

- $p_T(\ell_{\max}) >$ 30 GeV and $p_T(\ell)_{\min} >$ 15 GeV
- $|\eta(\ell)| < 2.5$
- $\Delta R_{\ell\ell} > 0.4$
- $\not E_T > 40 \text{ GeV}$

SM Background if there exists same flavor, opposite sign dilepton

$$W^{\pm}Z/\gamma^* \to \ell^{\pm}\nu\ell^+\ell^-, W^{\pm}W^{\pm}W^{\mp} \to \ell^{\pm}\ell^+\ell^- + \mathscr{E}_T$$

Veto events of $|M_{\ell^+\ell^-} - M_Z| > 15~{
m GeV}$

医子宫医子宫医

Trilepton

$$M_T = \sqrt{(E_T^\ell + \not E_T)^2 - (\vec p^\ell + \vec p)_T^2}$$

au Final State

- $\tau \rightarrow m u \nu \bar{\nu}$ 17.36%
- $\tau \rightarrow e \nu \bar{\nu} 17.84\%$
- $\tau \rightarrow \pi \nu$ 10.9%
- $\tau \rightarrow h^- \pi^0 \nu$ 37.0%

Figure 9-31 Jet rejection as a function of the τ efficiency, as obtained over the region $|\eta| < 2.5$ and in various p_{T} ranges. Straight-line fits are superimposed.

Atlas TDR

• • • • • • • • • • •

τ Leptonic decay

$$H^{+} \to \tau \nu \to \ell + \not\!\!\! E_{T}$$
$$H^{+} \to \ell + \not\!\!\! E_{T}$$

Lepton p_T

- ℓ from H^+ Jaccobian Peak around $M_H/2$ (may change due to boost)
- ℓ from τ , purely boost effect, much softer

p_T^ℓ selection (GeV)	50	75	100	100	150	200
ℓ misidentification rate	2.9%	9.4%	17.6%	4.6%	12.4%	22.2%
au survival probability	57.0%	69.8%	78.8%	62.8%	75.7%	83.7%

au selection:

$$p_T < 100 \text{ GeV} \text{ (for } M_H^+ = 300 \text{ GeV} \text{)} \\ p_T < 200 \text{ GeV} \text{ for } M_H^+ = 600 \text{ GeV} \end{cases}$$

通 と く ヨ と く ヨ と

No other $\mathcal{E}_{\mathcal{T}}$ in final state:

$$\textit{pp} \rightarrow \textit{H}^{++}\textit{H}^{--} \rightarrow \ell^+ \ell^+ \tau^- \tau^-, \ell^+ \ell^+ \mu^- \tau^-, \ell^+ \tau^+ \tau^- \tau^-$$

Highly Boosted au

•
$$\vec{p}$$
 invisible = $\kappa \vec{p}$ ℓ ; each τ corresponds to one unknown
• $\Sigma \vec{p}_T$ invisible = \vec{p}_T 2 independent equations
• $M_{\ell^+\ell^+} = M_{\tau^-\tau^-}^{\text{rec}}$; 1 more equation
UPTO THREE τ s

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

< □ > < □ > < □ > < □ >

< ≣ >

$$\begin{split} N_{4\mu} &= \mathcal{L} \times \sigma(pp \to H^{++}H^{--}) \times \mathrm{BR}^2(H^{++} \to \mu^+\mu^+) \\ N_{3\mu\tau} &= \mathcal{L} \times \sigma(pp \to H^{++}H^{--}) \times \mathrm{BR}(H^{++} \to \mu^+\mu^+) \mathrm{BR}(H^{++} \to \mu^+\tau^+) \end{split}$$

Large vev limit

To test doublet-triplet mixing $\mu H^T \Delta H$. Both H^+ and H_2 decay will tell this. But $H_2 \rightarrow H_1 H_1$ has at least 6 jets final state.

900

Kai Wang, Pheno, Wisconsin Testing Origin of Neutrino Mass at the LHC

$\sigma(fb)$	Basic	p_T^t cut	p_T^j cut	$M_{\rm Cluster}$	M_W rec.	$M_{X}\ \mathrm{rec.}$	M_T	M_{jjjj}
cuts	Cuts	$> 50 { m GeV}$	$> 100 { m GeV}$	$> 600 { m ~GeV}$	$M_W \pm 15 { m ~GeV}$	or M_t veto	$< 300 { m GeV}$	$300\pm50~{ m GeV}$
$t\bar{b}$	0.13	0.12	0.12	0.11	0.11	0.094^{*}	0.094	0.092
WH	0.074	0.069	0.065	0.061	0.06	0.046	0.045	0.045
WZ	0.06	0.056	0.053	0.05	0.05	0.038	0.038	0.038
$H^{\pm\pm}H^{\mp}$ sum	0.26	0.25	0.24	0.22	0.22	0.18	0.18	0.17
$H^{\pm\pm}H^{\mp\mp}$	0.24	0.23	0.22	0.21	0.21	0.18	0.17	0.17
$t\bar{t}W$	3.1	2.5	1.8	1.4	1.4	0.88*	0.52	0.095
					$(M_H \text{ rec.} \rightarrow)$	0.15	0.097	0.045
					$(M_Z \text{ rec.} \rightarrow)$	0.11	0.071	0.032
					$(M_W \text{ rec.} \rightarrow)$	0.096	0.06	0.026

・ロン ・四 と ・ ヨ と ・ ヨ と

$\sigma(fb)$	Basic	p_T^ℓ cut	p_T^j cut	M_{J_1} rec.	M_{J_2} rec.	M_{JJ}
cuts	Cuts	$> 80~{ m GeV}$	$> 200~{ m GeV}$	$M_W \pm 15~{\rm GeV}$	$M_X \pm 15 { m GeV}$	$600\pm75~{ m GeV}$
WH	1.1×10^{-2}	9.5×10^{-8}	$9.5 imes 10^{-3}$	9.4×10^{-3}	$9.1 imes 10^{-3}$	9.0×10^{-3}
WZ	1.0×10^{-2}	1.0×10^{-2}	1.0×10^{-2}	1.0×10^{-2}	9.9×10^{-8}	9.8×10^{-8}
$H^{\pm\pm}H^{\mp\mp}$	$3.3 imes 10^{-2}$	3.2×10^{-2}	3.1×10^{-2}	3.1×10^{-2}	3.1×10^{-2}	3.1×10^{-2}
$JJW^{\pm}W^{\pm}$	14.95	7.65	4.69	0.24		
				$(M_H \text{ rec.} \rightarrow)$	6×10^{-2}	$4.0 imes 10^{-5}$
				$(M_Z \ \mathrm{rec.}{\rightarrow})$	0.13	$1.4 imes 10^{-4}$
				$(M_W \text{ rec.} \rightarrow)$	0.1	1.6×10^{-4}

- We propose one scenario that Type II seesaw mechanism can be tested directly at the LHC although it may require high luminosity.
- It has very different phenomenology like doubly charged scalars that can decay into same sign dilepton.
- If the doubly charged Higgs and its LNV decay has been discovered, we will be able to extract information of neutrino mass and mixing from BR of triplet Higgses.

THANK YOU!