# Light-quark baryon spectroscopy with staggered fermions 

Jon A. Bailey<br>C. Bernard<br>Washington University in St. Louis

January 31, 2008

## Rooted staggered QCD

- Applications of rooted staggered QCD (Davies etal. [HPQCD, UKQCD, MILC, Fermilab], 2004)
- heavy-light decay constants and form factors (Aubin etal. FFermilab, MILC, HPQCD], 2005)
- strong coupling (Mason etal. [HPQCD], 2005)
- quark masses (Aubin etal. [HPQCD, MILC, UKQCD], 2004)
- Unresolved theoretical questions (Kronfeld 2007 and refs therein)
- 4 lattice species, or tastes, per physical flavor
- Fourth root of fermion determinant
- Taste $S U(4)_{T}$ symmetry is broken on the lattice
- Calculations of experimentally well-known quantities are valuable crosschecks of rooted staggered QCD


## Staggered baryon spectroscopy

- Use rooted staggered QCD to extract masses of lightest octet and decuplet baryons in isospin limit
- Complete control of systematic errors
- Extrapolation to physical quark masses
- Continuum limit
- Infinite volume limit
- Presence of valence taste quantum numbers complicates continuum limit
- Spin-taste violations split and mix baryon spectrum
- Need to account for taste quantum numbers and spin-taste violations


## Effective field theory approach

- Symanzik's effective continuum action describes taste degrees of freedom and spin-taste violations in terms of continuum quarks and gluons ${ }_{\text {(Lee and Sharpe, }}$ 1999; Lepage, 1999; Aubin and Bernard, 2003; Sharpe and Van de Water, 2004; Bernard, Golterman, Shamir, 2007)

$$
S_{\mathrm{eff}}=S_{\mathrm{QCD}}^{\prime}+a^{2} S_{6}+a^{4} S_{8}+\ldots
$$

- Valence sector of rooted staggered QCD contains 12 light quarks
- Chiral perturbation theory corresponding to Symanzik's effective continuum action describes tastes and spin-taste violations in terms of hadrons of rooted staggered QCD (Bernard, 2006; Bermard, Golterman, Shamir, 2007)
- Extrapolation to physical quark masses
- Continuum limit
- Infinite volume limit


## Staggered heavy baryon chiral perturbation theory

- Incorporate lattice spacing in power counting: $\quad \Lambda_{\mathrm{QCD}} a \sim \frac{m_{\pi}}{\Lambda_{\chi}} \sim \frac{\Lambda_{\mathrm{QCD}}}{m_{B}}$
- Map operators of Symanzik action to operators of heavy baryon $\chi \mathrm{PT}$
- Hadrons of chiral theory transform in irreducible representations of $S U(12)_{f}$

$$
\begin{array}{rll}
\text { meson } \mathbf{8} & \Rightarrow \text { meson } \mathbf{1 4 3} \\
\text { baryon } \mathbf{8}_{\mathrm{M}} & \Rightarrow & \text { baryon } \mathbf{5 7 2} 2_{\mathrm{M}} \\
\text { baryon } \mathbf{1 0}_{\mathrm{S}} & \Rightarrow & \text { baryon } \mathbf{3 6 4} 4_{\mathrm{S}}
\end{array}
$$

Where are the physical octet and decuplet?

## Identifying physical baryons

- If rooted staggered QCD is correct, then in the continuum limit:
- Dynamics of sea correct (fourth root works)
- Taste $S U(4)_{T}$ is restored
- Taste violations (taste changing interactions) vanish, taste quantum numbers are conserved
- All tastes in valence sector are physically equivalent
- Tastes are like extra flavors that play no dynamical role-sterile labels
- Staggered baryons composed of quarks of a single taste correspond to physical states in the continuum limit.
- Testing this picture and its consequences means testing rooted staggered QCD.


## Flavor-taste basis

- Disentangle flavor $S U(3)_{F}$ and taste $S U(4)_{T}$ quantum numbers:

$$
\begin{aligned}
S U(12)_{f} \quad \supset & S U(3)_{F} \times S U(4)_{T} \\
\mathbf{5 7 2}_{\mathbf{M}} \rightarrow & \left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{M}}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{2 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{2 0}_{\mathbf{M}}\right) \\
& \oplus\left(\mathbf{8}_{\mathbf{M}}, \overline{\mathbf{4}}_{\mathbf{A}}\right) \oplus\left(\mathbf{1}_{\mathbf{A}}, \mathbf{2 0}_{\mathbf{M}}\right) \\
\mathbf{3 6 4}_{\mathbf{S}} \rightarrow & \left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{2 0}_{\mathbf{M}}\right) \oplus\left(\mathbf{1}_{\mathbf{A}}, \overline{\mathbf{4}}_{\mathbf{A}}\right)
\end{aligned}
$$

- In the continuum limit, all members of a given taste multiplet are degenerate
- All 20s baryons correspond to physical states


## Continuum symmetry

- Continuum symmetry is larger than taste alone $m_{x}=m_{y}=\hat{m}, m_{z}=m_{s}$

$$
\begin{aligned}
M & =\left(\begin{array}{ccc}
\hat{m} I_{4} & 0 & 0 \\
0 & \hat{m} I_{4} & 0 \\
0 & 0 & m_{s} I_{4}
\end{array}\right)=\left(\begin{array}{cc}
\hat{m} I_{8} & 0 \\
0 & m_{s} I_{4}
\end{array}\right) \\
& \Rightarrow S U(8)_{x, y} \times S U(4)_{z} \supset S U(4)_{T}
\end{aligned}
$$

- Baryons transforming within a given irrep of continuum symmetry group are physically equivalent


## Continuum irreps

$$
\begin{gathered}
S U(12)_{f} \supset S U(8)_{x, y} \times S U(4)_{z} \\
\mathbf{3 6 4}_{\mathbf{S}} \rightarrow\left(\mathbf{1 2 0}_{\mathbf{S}}, \mathbf{1}\right) \oplus\left(\mathbf{3 6}_{\mathbf{S}}, \mathbf{4}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathbf{S}}\right) \\
\mathbf{5 7 2}_{\mathbf{M}} \rightarrow\left(\begin{array}{l}
\mathbf{1 6 8} \\
\mathbf{M}
\end{array}, \mathbf{1}\right) \oplus\left(\mathbf{2 8}_{\mathbf{A}}, \mathbf{4}\right) \oplus\left(\mathbf{3 6}_{\mathbf{S}}, \mathbf{4}\right) \oplus \ldots \\
\\
\\
\left(\mathbf{8}, \mathbf{6}_{\mathbf{A}}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathbf{M}}\right)
\end{gathered}
$$

- Deduce correspondence between continuum irreps and physical states by locating single-taste baryons in each continuum irrep


## Correspondence with physical baryons

$$
\begin{aligned}
& S U(12)_{f} \supset S U(8)_{x, y} \times S U(4)_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathbf{8}, \mathbf{6}_{\mathrm{A}}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathbf{M}}\right) \\
& \begin{array}{c}
\Lambda_{s} \\
(1400)
\end{array} \quad \Xi \quad \begin{array}{r}
N_{s} \\
(1600)
\end{array}
\end{aligned}
$$

- All irreps but two correspond to physical states
- Exceptions are degenerate with partially quenched baryons; continuum symmetry forbids their mixing with physical subspace


## Masses of $\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{M}}\right)$ nucleons in $\mathrm{S} \chi \mathrm{PT}$

- Self-energy for each member of $\mathbf{1 0}_{\mathbf{S}}$ is $20 \times 20$ matrix in baryon taste space $\sim \mathbf{2 0}_{\mathbf{M}}$ of $S U(4)_{T}$


$$
\begin{aligned}
M & =\text { const. }+m_{q}+a^{2} \\
& +\left(m_{q}+a^{2}\right)^{3 / 2}+a^{2}\left(m_{q}+m_{q}^{1 / 2} a+a^{2}\right)^{1 / 2} \\
& +\Delta\left(m_{q}+a^{2}+\Delta^{2}\right) \ln \left(m_{q}+a^{2}\right)+\ldots
\end{aligned}
$$

## Masses of $\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{M}}\right)$ nucleons in $\mathrm{S} \chi \mathrm{PT}$

- Taste breaking occurs in two stages:


$$
\begin{aligned}
S U(4)_{T} & \supset \Gamma_{4} \rtimes S O(4)_{T} \supset \Gamma_{4} \rtimes S U(2)_{T} \\
\mathbf{2 0}_{\mathbf{M}} & \rightarrow \mathbf{1 2} \oplus \mathbf{4} \oplus \mathbf{4} \rightarrow \mathbf{8} \oplus \mathbf{4} \oplus \mathbf{4} \oplus \mathbf{4}
\end{aligned}
$$

- Taste violations
- lift continuum degeneracies
- introduce off-diagonal elements in mass matrix


## Degeneracies and Mixings of $\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathrm{M}}\right)$ nucleons: Loops

- Loops break taste: $\quad S U(4)_{T} \supset \Gamma_{4} \rtimes S O(4)_{T}$

$$
20_{\mathrm{M}} \rightarrow 12 \oplus 4 \oplus 4
$$

- Loops are degenerate $\sim$ irreps of remnant taste, $\Gamma_{4} \rtimes S O(4)_{T}$
- States with the same conserved quantum numbers mix

$$
\left(\begin{array}{cccccccc}
a & 0 & c & 0 & \cdots & & & \\
0 & a & 0 & -c & & & & \\
c & 0 & b & 0 & & & & \\
0 & -c & 0 & b & & & & \\
\vdots & & & & a & 0 & c & 0 \\
& & & & 0 & a & 0 & -c \\
& & & & c & 0 & b & 0 \\
& & & & 0 & -c & 0 & b
\end{array}\right)
$$

- To third order, these loop contributions have been explicitly calculated


## Degeneracies and Mixings of $\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{M}}\right)$ nucleons: Analytic $\mathcal{O}\left(a^{2}\right)$ terms

- Taste breaking: $\quad S U(4)_{T} \supset \Gamma_{4} \rtimes S U(2)_{T}$

$$
\mathbf{2 0}_{\mathrm{M}} \rightarrow \mathbf{8} \oplus \mathbf{4 \oplus 4 \oplus 4}
$$

- Contributions are degenerate $\sim$ irreps of remnant taste, $\Gamma_{4} \rtimes S U(2)_{T}$
- States with the same conserved quantum numbers mix

$$
\left(\begin{array}{ccccccc}
a & 0 & d & 0 & e & 0 & \cdots \\
0 & a & 0 & -d & 0 & -e & \\
d & 0 & b & 0 & f & 0 & \\
0 & -d & 0 & b & 0 & f & \\
e & 0 & f & 0 & c & 0 & \\
0 & -e & 0 & f & 0 & c & \\
\vdots & & & & & & \ddots
\end{array}\right)
$$

- These tree-level contributions have been calculated


## $\mathcal{O}\left(m_{q}^{3 / 2}\right)$ chiral forms for $\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{2 0}_{\mathbf{M}}\right)$ nucleons

$S U(4)_{T} \supset \Gamma_{4} \rtimes S U(2)_{T}$
$\mathbf{2 0}_{\mathrm{M}} \rightarrow \mathbf{8} \oplus 3(4)$

- At larger quark mass
- forms $\sim-m_{\pi}^{3}$
- cut-off reg?
- Taste violations split $\mathbf{2 0}_{\mathbf{M}}$
- ~ $10-40 \mathrm{MeV}$
- excited states close to ground state
- Operators for each state?



## Operators for ( $x x x, \mathbf{2 0}_{\mathbf{M}}$ ) nucleons

- operators $\sim$ irreps of geometrical time slice group (GTS): 8, 8', 16 (Golterman and Smit, 1984)

$$
\begin{aligned}
S U(2)_{S} \times S U(4)_{T} & \rightarrow \mathrm{GTS} \\
\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{2 0}_{\mathbf{M}}\right) & \rightarrow \mathbf{1 6} \oplus 3(\mathbf{8})
\end{aligned}
$$



8 16
$\Rightarrow$ operators $\sim \mathbf{8}$ of GTS create three states in the $\mathbf{2 0}_{\mathbf{M}}$
$\Rightarrow$ operators $\sim \mathbf{1 6}$ of GTS create one state in the $\mathbf{2 0}_{\mathbf{M}}$

## Connecting operators with chiral forms

- In the context of spin, consider taste breaking in $\mathrm{S} \chi \mathrm{PT}$ :

$$
\begin{aligned}
S U(2) \times S U(4)_{T} & \supset S U(2) \times\left[\Gamma_{4} \rtimes S U(2)_{T}\right] \\
\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{2 0}_{\mathbf{M}}\right) & \rightarrow\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}\right) \oplus 3\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{4}\right)
\end{aligned}
$$

- Decompose spin-taste irreps of the chiral forms into irreps of GTS:

$$
\begin{aligned}
S U(2) \times\left[\Gamma_{4} \rtimes S U(2)_{T}\right] & \supset \mathrm{GTS} \\
\left(\frac{\mathbf{1}}{2}, \mathbf{8}\right) & \rightarrow \mathbf{1 6} \\
\left(\frac{\mathbf{1}}{\mathbf{2}}, 4\right) & \rightarrow 8
\end{aligned}
$$

$\Rightarrow \quad$ operators $\sim \mathbf{8}$ of GTS create the three 4 s of $\Gamma_{4} \rtimes S U(2)_{T}$
$\Rightarrow$ operators $\sim \mathbf{1 6}$ of GTS create the $\mathbf{8}$ of $\Gamma_{4} \rtimes S U(2)_{T}$

## Degeneracies and Mixings

- Spin-taste violations break continuum irreps into lattice irreps
- Lattice symmetry governs degeneracies, mixings at nonzero lattice spacing

$$
\begin{aligned}
& S U(2)_{S} \times S U(8)_{x, y} \times S U(4)_{z} \supset S U(2)_{I} \times \mathrm{GTS} \\
& \left(\begin{array}{l}
\mathbf{3}, \mathbf{3 6} \mathbf{s}, \mathbf{4}) \rightarrow \\
\Sigma^{*}
\end{array} \quad \begin{array}{l}
3(\mathbf{1}, \mathbf{8})_{-1} \oplus 3\left(\mathbf{1}, \mathbf{8}^{\prime}\right)_{-1} \oplus 7(\mathbf{1}, \mathbf{1 6})_{-1} \oplus \ldots \\
\\
(\mathbf{0}, \mathbf{8})_{-1} \oplus\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1} \oplus 5(\mathbf{0}, \mathbf{1 6})_{-1}
\end{array}\right.
\end{aligned}
$$

$\Rightarrow 20$ lattice energy levels degenerate with $\Sigma^{*}$ in continuum limit

## Lattice irreps per continuum irrep

- Decompose remaining continuum irreps into lattice irreps
- Many lattice irreps correspond to each continuum irrep

$$
S U(2)_{S} \times S U(8)_{x, y} \times S U(4)_{z} \supset S U(2)_{I} \times \mathrm{GTS}
$$

$$
\begin{gathered}
\mathbf{3 6 4}_{\mathbf{S}} \rightarrow\left(\mathbf{1 2 0}_{\mathbf{S}}, \mathbf{1}\right) \oplus(\mathbf{3 6} \mathbf{s}, \mathbf{4}) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathbf{S}}\right) \\
\Delta \Sigma^{*} 20
\end{gathered}
$$

$$
\begin{gathered}
N 12 \\
\mathbf{5 7 2}_{\mathbf{M}} \rightarrow\left(\mathbf{1 6 8}_{\mathbf{M}}, \mathbf{1}\right) \oplus\left(\mathbf{2 8}_{\mathbf{A}}, \mathbf{4}\right) \oplus\left(\mathbf{3 6} \mathbf{\Sigma},{ }^{\Sigma} 12\right. \\
\mathbf{4}) \oplus \ldots
\end{gathered}
$$

$$
\left(\mathbf{8}, \mathbf{6}_{\mathrm{A}}\right) \oplus\left(\mathbf{8}, \mathbf{1 0}_{\mathrm{S}}\right) \oplus\left(\mathbf{1}, \mathbf{2 0}_{\mathrm{M}}\right)
$$

$$
\begin{array}{lll}
\Lambda_{s} 5 & \Xi 7 & N_{s} 4
\end{array}
$$

## Mixing at nonzero lattice spacing

- Spin-taste violations mix corresponding members of same type of lattice irrep-baryons with same (conserved) lattice quantum numbers

$$
\begin{aligned}
& \Sigma^{*} \\
&\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{3 6} \mathbf{6}_{\mathbf{S}}, \mathbf{4}\right) \rightarrow 3(\mathbf{1}, \mathbf{8})_{-1} \oplus 3\left(\mathbf{1}, \mathbf{8}^{\prime}\right)_{-1} \oplus 7(\mathbf{1}, \mathbf{1 6})_{-1} \oplus \ldots \\
&(\mathbf{0}, \mathbf{8})_{-1} \oplus\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1} \oplus 5(\mathbf{0}, \mathbf{1 6})_{-1}
\end{aligned}
$$

$\Lambda$
$\left(\frac{1}{2}, \mathbf{2 8} \mathbf{A}_{\mathbf{A}}, \mathbf{4}\right) \rightarrow 4(\mathbf{1}, \mathbf{8})_{-1} \oplus(\mathbf{1}, \mathbf{1 6})_{-1} \oplus 4(\mathbf{0}, \mathbf{8})_{-1} \oplus 3(\mathbf{0}, \mathbf{1 6})_{-1}$
$\left(\frac{1}{2}, \mathbf{3 6}_{\mathbf{S}}, 4\right) \rightarrow 4(\mathbf{1}, \mathbf{8})_{-1} \oplus 3(\mathbf{1}, \mathbf{1 6})_{-1} \oplus 4(\mathbf{0}, \mathbf{8})_{-1} \oplus(\mathbf{0}, \mathbf{1 6})_{-1}$

- There is a 9 -dimensional mixing matrix for each member of the $(\mathbf{0}, \mathbf{1 6})_{-1}$
- Operators with quantum numbers of a given member of $(\mathbf{0}, \mathbf{1 6})_{-1}$ create all 9 corresponding states: 3 states $\sim \Lambda, 1 \Sigma, 5$ states $\sim \Sigma^{*}$


## Implications for practical calculations

- Rooted staggered QCD contains many baryons corresponding to each physical baryon (taste $\sim$ flavor in continuum limit)
- At nonzero lattice spacing, spin-taste violations lift degeneracies within continuum multiplets and introduce mixing ( $\sim 10-40 \mathrm{MeV}$ )
- Irreducible operators create states in corresponding lattice irreps
- In general, accounting for splitting and mixing of the spectrum at nonzero $a$ promises to be difficult (labor and numerics)
- Compute and fit correlation matrices of mixing operators
- Calculate and diagonalize corresponding matrices in chiral theory
- Special cases in which splitting and mixing is less problematic
- Sufficiently improved lattice action (e.g., HISQ) squashes spin-taste violations beneath statistical uncertainties
- Sufficiently large lattice spacing might be numerically easier


## Examine spectra of operators

- Are there any operators whose spectra are not split and mixed by spin-taste violations? ~ "optimal" operators

| Operator irreps (for $a \neq 0)$ | States created/mixed |
| :--- | :---: |
| $\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{8}\right)_{0}$ | $3 N$ and $2 \Delta$ |
| $\left(\frac{3}{2}, \mathbf{1 6}\right)_{0}$ | $1 N$ and $3 \Delta$ |
| $\left(\frac{\mathbf{1}}{2}, \mathbf{8}\right)_{0}$ | $5 N$ and $1 \Delta$ |
| $\left(\frac{1}{2}, \mathbf{8}^{\prime}\right)_{0}$ | $1 \Delta$ |
| $\left(\mathbf{1}, \mathbf{8}^{\prime}\right)_{-1}$ | $3 \Sigma^{*}$ |
| $(\mathbf{1}, \mathbf{1 6})_{-1}$ | $1 \Lambda, 3 \Sigma$, and $7 \Sigma^{*}$ |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ | $1 \Sigma^{*}$ |
| $(\mathbf{0}, \mathbf{1 6})_{-1}$ | $3 \Lambda, 1 \Sigma$, and $5 \Sigma^{*}$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}\right)_{-2}$ | $4 \Xi, 4 \Lambda_{s}$, and $3 \Xi^{*}$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}^{\prime}\right)_{-2}$ | $3 \Xi^{*}$ |
| $\left(\mathbf{0}, \mathbf{8}_{-3}\right.$ | $3 N_{s}$ and $2 \Omega$ |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-3}$ | $2 \Omega$ |

## Examine spectra of operators

- Operators $\sim\left(1 / 2,8^{\prime}\right)_{0}$ create a lattice state $\sim \Delta$;

$$
m_{x}=m_{y}=\hat{m}, m_{z}=m_{s}
$$

- Operators $\sim\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ create a lattice state $\sim \Sigma^{*}$

| Operator irreps (for $a \neq 0)$ | States created $/$ mixed |
| :--- | :---: |
| $\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{8}\right)_{0}$ | $3 N$ and $2 \Delta$ |
| $\left(\frac{3}{2}, \mathbf{1 6}\right)_{0}$ | $1 N$ and $3 \Delta$ |
| $\left(\frac{\mathbf{1}}{2}, \mathbf{8}\right)_{0}$ | $5 N$ and $1 \Delta$ |
| $\left(\frac{1}{2}, \mathbf{8}^{\prime}\right)_{0}$ | $1 \Delta$ |
| $\left(\mathbf{1}, \mathbf{8}^{\prime}\right)_{-1}$ | $1 \Lambda, 3 \Sigma$ and $7 \Sigma^{*}$ |
| $(\mathbf{1}, \mathbf{1 6})_{-1}$ | $3 \Lambda, 1 \Sigma$, and $5 \Sigma^{*}$ |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ | $4 \Xi, 4 \Lambda_{s}$, and $3 \Xi^{*}$ |
| $(\mathbf{0}, \mathbf{1 6})_{-1}$ | $3 \Xi^{*}$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}\right)_{-2}$ | $3 N_{s}$ and $2 \Omega$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}^{\prime}\right)_{-2}$ | $2 \Omega$ |
| $\left(\mathbf{0}, \mathbf{8}_{-3}\right.$ | $2 \Omega$ |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-3}$ |  |

## Partial quenching

- We are free to vary valence quark masses and sea quark masses independently

$$
\begin{aligned}
\langle\bar{B} B\rangle=\frac{1}{Z} \int \mathcal{D} \mathcal{U} & \sum\left(\not D_{\text {stag }}+m_{x}\right)^{-1}\left(\not D_{\text {stag }}+m_{y}\right)^{-1} \times \\
& \times\left(\not D_{\text {stag }}+m_{z}\right)^{-1}\left[\operatorname{det}\left(\not D_{\text {stag }}+m_{u, d, s}\right)\right]^{1 / 4} e^{-S_{g}[\mathcal{U}]}
\end{aligned}
$$

- We have considered

$$
m_{x}=m_{y}=\hat{m} \quad \text { and } \quad m_{z}=m_{s}
$$

- Now consider

$$
m_{x}=m_{y}=m_{s} \quad \text { and } \quad m_{z}=\hat{m}
$$

## Reconsider the spectrum

- Valence sector symmetries unchanged everywhere in decompositions
- Pattern of degeneracies and mixings unchanged in continuum and on lattice

$$
S U(2)_{S} \times S U(8)_{x, y} \times S U(4)_{z} \supset S U(2)_{I} \times \mathrm{GTS}
$$

- Continuum masses of lattice irreps change

$$
\begin{array}{rll}
\Delta & \rightleftarrows & \Omega \\
\Sigma^{*} & \rightleftarrows & \Xi^{*} \\
\Sigma & \rightleftarrows & \Xi \\
N & \rightleftarrows & N_{s} \\
\Lambda & \rightleftarrows & \Lambda_{s}
\end{array}
$$

## Recall spectra of operators

- Operators $\sim\left(1 / 2,8^{\prime}\right)_{0}$ create a lattice state $\sim \Delta$;

$$
m_{x}=m_{y}=\hat{m}, m_{z}=m_{s}
$$

- Operators $\sim\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ create a lattice state $\sim \Sigma^{*}$

| Operator irreps $($ for $a \neq 0)$ | States created $/$ mixed |
| :--- | :---: |
| $\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{8}\right)_{0}$ | $3 N$ and $2 \Delta$ |
| $\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{1 6}\right)_{0}$ | $1 N$ and $3 \Delta$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}\right)_{0}$ | $5 N$ and $1 \Delta$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}^{\prime}\right)_{0}$ | $1 \Delta$ |
| $\left(\mathbf{1}, \mathbf{8}^{\prime}\right)_{-1}$ | $1 \Lambda, 3 \Sigma^{2}$, and $7 \Sigma^{*}$ |
| $(\mathbf{1}, \mathbf{1 6})_{-1}$ | $3 \Lambda, 1 \Sigma$, and $5 \Sigma^{*}$ |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ | $4 \Xi, 4 \Lambda_{s}$, and $3 \Xi^{*}$ |
| $(\mathbf{0}, \mathbf{1 6})_{-1}$ | $3 \Xi^{*}$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}\right)_{-2}$ | $3 N_{s}$ and $2 \Omega$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}^{\prime}\right)_{-2}$ | $2 \Omega$ |
| $\left(\mathbf{0}, \mathbf{8}_{-2}\right.$ | $2 \Omega$ |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-3}$ |  |

## Change masses of valence quarks

- Operators $\sim\left(1 / 2, \mathbf{8}^{\prime}\right)_{0}$ create a lattice state $\sim \Omega ; \quad m_{x}=m_{y}=m_{s}, m_{z}=\hat{m}$
- Operators $\sim\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ create a lattice state $\sim \Xi^{*}$

| Operator irreps (for $a \neq 0)$ | States created/mixed |
| :--- | :---: |
| $\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{8}\right)_{0}$ | $3 N_{s}$ and $2 \Omega$ |
| $\left(\frac{3}{2}, \mathbf{1 6}\right)_{0}$ | $1 N_{s}$ and $3 \Omega$ |
| $\left(\frac{\mathbf{1}}{2}, \mathbf{8}\right)_{0}$ | $5 N_{s}$ and $1 \Omega$ |
| $\left(\frac{\mathbf{1}}{2}, \mathbf{8}^{\prime}\right)_{0}$ | $1 \Omega$ |
| $\left(\mathbf{1}, \mathbf{8}^{\prime}\right)_{-1}$ | $1 \Lambda_{s}, 3 \Xi$, and $7 \Xi^{*}$ |
| $(\mathbf{1}, \mathbf{1 6})_{-1}$ | $3 \Lambda_{s}, 1 \Xi$, and $5 \Xi^{*}$ |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ | $4 \Sigma, 4 \Lambda$, and $3 \Sigma^{*}$ |
| $(\mathbf{0}, \mathbf{1 6})_{-1}$ | $3 \Sigma^{*}$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}\right)_{-2}$ | $3 N$ and $2 \Delta$ |
| $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}^{\prime}\right)_{-2}$ | $2 \Delta$ |
| $\left(\mathbf{0}, \mathbf{8}_{-2}\right.$ |  |
| $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-3}$ |  |

## Avoiding splittings and mixings

- Choosing appropriate quark masses and operators allows us to extract masses of decuplet and nucleon w/o accounting for splittings and mixings
- Only possible with operators $\sim$ irreps of lattice symmetry group
- Operators in all lattice irreps have been constructed

| Valence quark masses | Operator irreps | States created/mixed |
| :--- | :--- | :---: |
| $m_{x}=m_{y}=\hat{m}, m_{z}=m_{s}$ | $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}^{\prime}\right)_{0}$ | $1 \Delta$ |
|  | $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ | $1 \Sigma^{*}$ |
| $m_{x}=m_{y}=m_{s}, m_{z}=\hat{m}$ | $\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{8}^{\prime}\right)_{0}$ | $1 \Omega$ |
|  | $\left(\mathbf{0}, \mathbf{8}^{\prime}\right)_{-1}$ | $1 \Xi^{*}$ |
| $m_{x}=m_{y}=m_{z}=\hat{m}$ | $(\mathbf{1} \mathbf{A}, \mathbf{1 6})$ | $1 N$ and $1 \Delta$ |
| $m_{x}=m_{y}=m_{z}=m_{s}$ | $\left(\mathbf{1}_{\mathbf{A}}, \mathbf{1 6}\right)$ | $1 N_{s}$ and $1 \Omega$ |

## Constructing operators with

## $S U(3)_{F}$ quantum numbers

- Consider objects that are
- composed of three staggered fields $\sim$ fundamental irrep of GTS (8)
- color singlets
- fermions-completely anti-symmetric under simultaneous perms of all indices:
- color - $a b c$
- GTS - $A B C$
- flavor - ijk
- Leads us to consider the object (cf. Golterman and Smit, 1984):

$$
{ }_{i j k} \tilde{B}_{A B C} \equiv \sum_{\mathbf{x}, x_{k} \text { even }} \frac{1}{6} \epsilon_{a b c} D_{A} \chi_{i}^{a}(\mathbf{x}) D_{B} \chi_{j}^{b}(\mathbf{x}) D_{C} \chi_{k}^{c}(\mathbf{x})
$$

$$
{ }_{i j k} \tilde{B}_{A B C}={ }_{j k i} \tilde{B}_{B C A}={ }_{k i j} \tilde{B}_{C A B}={ }_{j i k} \tilde{B}_{B A C}={ }_{i k j} \tilde{B}_{A C B}={ }_{k j i} \tilde{B}_{C B A}
$$

## Exploiting $S U(N)$

- GTS is a proper subgroup of $S U(8)$
- Embed GTS in $S U(8)$ such that the fundamental of $S U(8)$ transforms as the fundamental of GTS:

$$
\begin{aligned}
S U(8) & \supset \mathrm{GTS} \\
\mathbf{8} & \rightarrow \mathbf{8}
\end{aligned}
$$

- Then we recognize the symmetric irrep of $S U(24)$ :

$$
\Rightarrow \tilde{B} \sim 2600_{\mathrm{S}}
$$

- Decompose this irrep to obtain operators with definite $S U(3)$ :

$$
\begin{gathered}
S U(24) \supset S U(3)_{F} \times S U(8) \\
\mathbf{2 6 0 0}_{\mathbf{S}} \quad \rightarrow\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{1 2 0}_{\mathbf{S}}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{1 6 8}_{\mathbf{M}}\right) \oplus\left(\mathbf{1}_{\mathbf{A}}, \mathbf{5 6}_{\mathbf{A}}\right)
\end{gathered}
$$

## Operators $\sim S U(3)_{F} \times \mathrm{GTS}$

- Decompose the $S U(8)$ irreps under GTS:

$$
\begin{aligned}
\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{1 2 0}_{\mathbf{S}}\right) & \rightarrow 5\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{8}\right) \oplus 2\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{8}^{\prime}\right) \oplus 4\left(\mathbf{1 0}_{\mathbf{S}}, \mathbf{1 6}\right) \\
\left(\mathbf{1}_{\mathbf{A}}, \mathbf{5 6}_{\mathbf{A}}\right) & \rightarrow 3\left(\mathbf{1}_{\mathbf{A}}, \mathbf{8}\right) \oplus 2\left(\mathbf{1}_{\mathbf{A}}, \mathbf{1 6}\right) \\
\left(\mathbf{8}_{\mathbf{M}}, \mathbf{1 6 8}_{\mathbf{M}}\right) & \rightarrow 6\left(\mathbf{8}_{\mathbf{M}}, \mathbf{8}\right) \oplus\left(\mathbf{8}_{\mathbf{M}}, \mathbf{8}^{\prime}\right) \oplus 7\left(\mathbf{8}_{\mathbf{M}}, \mathbf{1 6}\right)
\end{aligned}
$$

- These operators could be used to extract the masses of all the lightest spin$1 / 2$ and spin- $3 / 2$ baryons

$$
\begin{aligned}
S U(24) & \supset S U(2)_{S} \times S U(12)_{f} \\
\mathbf{2 6 0 0}_{\mathbf{S}} & \rightarrow\left(\frac{\mathbf{3}}{\mathbf{2}}, \mathbf{3 6 4}_{\mathbf{S}}\right) \oplus\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{5 7 2}_{\mathbf{M}}\right)
\end{aligned}
$$

## Summary and Outlook

- Relationship between staggered baryons and physical spectrum suggests additional nontrivial tests of rooted staggered QCD
- Irreducible lattice operators for staggered baryons constructed; certain of these promising for extraction of nucleon and decuplet masses (Bailey, 2007)
- Baryon sector of staggered chiral perturbation theory developed to control extrapolation to physical quark masses and continuum limit (Bailey, 2008)
- Analysis of spectrum and operator spectra can be extended to excited lightquark baryons, heavy-light-light baryons, heavy-light mesons, . . .

