Light-quark baryon spectroscopy with staggered fermions

Jon A. Bailey
C. Bernard
Washington University in St. Louis

January 31, 2008

Rooted staggered QCD

- Applications of rooted staggered QCD (Davies et al. [HPQCD, UKQCD, MILC, Fermilab], 2004)
 - heavy-light decay constants and form factors (Aubin et al. [Fermilab, MILC, HPQCD], 2005)
 - strong coupling (Mason et al. [HPQCD], 2005)
 - quark masses (Aubin et al. [HPQCD, MILC, UKQCD], 2004)
- Unresolved theoretical questions (Kronfeld 2007 and refs therein)
 - 4 lattice species, or *tastes*, per physical flavor
 - Fourth root of fermion determinant
 - Taste $SU(4)_T$ symmetry is broken on the lattice
- Calculations of experimentally well-known quantities are valuable crosschecks of rooted staggered QCD

Staggered baryon spectroscopy

- Use rooted staggered QCD to extract masses of lightest octet and decuplet baryons in isospin limit
- Complete control of systematic errors
 - Extrapolation to physical quark masses
 - Continuum limit
 - Infinite volume limit
- Presence of valence taste quantum numbers complicates continuum limit
- Spin-taste violations split and mix baryon spectrum
- Need to account for taste quantum numbers and spin-taste violations

Effective field theory approach

• Symanzik's effective continuum action describes taste degrees of freedom and spin-taste violations in terms of continuum quarks and gluons (Lee and Sharpe, 1999; Lepage, 1999; Aubin and Bernard, 2003; Sharpe and Van de Water, 2004; Bernard, Golterman, Shamir, 2007)

$$S_{\text{eff}} = S'_{\text{QCD}} + a^2 S_6 + a^4 S_8 + \dots$$

- Valence sector of rooted staggered QCD contains 12 light quarks
- Chiral perturbation theory corresponding to Symanzik's effective continuum action describes tastes and spin-taste violations in terms of hadrons of rooted staggered QCD (Bernard, 2006; Bernard, Golterman, Shamir, 2007)
 - Extrapolation to physical quark masses
 - Continuum limit
 - Infinite volume limit

Staggered heavy baryon chiral perturbation theory

- Incorporate lattice spacing in power counting: $\Lambda_{\rm QCD} a \sim \frac{m_\pi}{\Lambda_\chi} \sim \frac{\Lambda_{\rm QCD}}{m_B}$
- Map operators of Symanzik action to operators of heavy baryon χPT
- Hadrons of chiral theory transform in irreducible representations of $SU(12)_f$

$$egin{array}{lll} \operatorname{meson} & \mathbf{8} & \Rightarrow & \operatorname{meson} & \mathbf{143} \\ \operatorname{baryon} & \mathbf{8_M} & \Rightarrow & \operatorname{baryon} & \mathbf{572_M} \\ \operatorname{baryon} & \mathbf{10_S} & \Rightarrow & \operatorname{baryon} & \mathbf{364_S} \end{array}$$

Where are the physical octet and decuplet?

Identifying physical baryons

- If rooted staggered QCD is correct, then in the continuum limit:
 - Dynamics of sea correct (fourth root works)
 - Taste $SU(4)_T$ is restored
 - Taste violations (taste changing interactions) vanish, taste quantum numbers are conserved
 - All tastes in valence sector are physically equivalent
 - Tastes are like extra flavors that play no dynamical role—sterile labels
- Staggered baryons composed of quarks of a single taste correspond to physical states in the continuum limit.
- Testing this picture and its consequences means testing rooted staggered QCD.

Flavor-taste basis

• Disentangle flavor $SU(3)_F$ and taste $SU(4)_T$ quantum numbers:

$$SU(12)_f \supset SU(3)_F \times SU(4)_T$$

$$\mathbf{572_M} \rightarrow (\mathbf{10_S}, \ \mathbf{20_M}) \oplus (\mathbf{8_M}, \ \mathbf{20_S}) \oplus (\mathbf{8_M}, \ \mathbf{20_M})$$

$$\oplus (\mathbf{8_M}, \ \overline{\mathbf{4_A}}) \oplus (\mathbf{1_A}, \ \mathbf{20_M})$$

$$\mathbf{364_S} \rightarrow (\mathbf{10_S}, \ \mathbf{20_S}) \oplus (\mathbf{8_M}, \ \mathbf{20_M}) \oplus (\mathbf{1_A}, \ \overline{\mathbf{4_A}})$$

- In the continuum limit, all members of a given taste multiplet are degenerate
- All **20**_S baryons correspond to physical states

Continuum symmetry

• Continuum symmetry is larger than taste alone $m_x = m_y = \hat{m}, \; m_z = m_s$

$$M = \begin{pmatrix} \hat{m}I_4 & 0 & 0 \\ 0 & \hat{m}I_4 & 0 \\ 0 & 0 & m_sI_4 \end{pmatrix} = \begin{pmatrix} \hat{m}I_8 & 0 \\ 0 & m_sI_4 \end{pmatrix}$$

$$\Rightarrow SU(8)_{x,y} \times SU(4)_z \supset SU(4)_T$$

• Baryons transforming within a given irrep of continuum symmetry group are physically equivalent

Continuum irreps

$$SU(12)_f \supset SU(8)_{x,y} \times SU(4)_z$$
 364_S \to (120_S, 1) \oplus (36_S, 4) \oplus (8, 10_S) \oplus (1, 20_S)

$$egin{array}{lll} {\bf 572_M} &
ightarrow & ({f 168_M},\ {f 1}) \oplus ({f 28_A},\ {f 4}) \oplus ({f 36_S},\ {f 4}) \oplus \dots \ & ({f 8},\ {f 6_A}) \oplus ({f 8},\ {f 10_S}) \oplus ({f 1},\ {f 20_M}) \end{array}$$

• Deduce correspondence between continuum irreps and physical states by locating single-taste baryons in each continuum irrep

Correspondence with physical baryons

$$SU(12)_{f} \supset SU(8)_{x,y} \times SU(4)_{z}$$

$$\Delta \qquad \Sigma^{*} \qquad \Xi^{*} \qquad \Omega$$

$$364_{S} \rightarrow (120_{S}, 1) \oplus (36_{S}, 4) \oplus (8, 10_{S}) \oplus (1, 20_{S})$$

$$572_{M} \rightarrow (168_{M}, 1) \oplus (28_{A}, 4) \oplus (36_{S}, 4) \oplus \dots$$

$$(8, 6_{A}) \oplus (8, 10_{S}) \oplus (1, 20_{M})$$

$$\Lambda_{s} \qquad \Xi \qquad N_{s}$$

$$(1400) \qquad (1600)$$

- All irreps but two correspond to physical states
- Exceptions are degenerate with partially quenched baryons; continuum symmetry forbids their mixing with physical subspace

Masses of $(\mathbf{10_S},\,\mathbf{20_M})$ nucleons in $\mathsf{S}\chi\mathsf{PT}$

• Self-energy for each member of $\mathbf{10}_{S}$ is 20 x 20 matrix in baryon taste space $\sim \mathbf{20}_{M}$ of $SU(4)_{T}$

$$M = const. + m_q + a^2 + (m_q + a^2)^{3/2} + a^2(m_q + m_q^{1/2}a + a^2)^{1/2} + \Delta(m_q + a^2 + \Delta^2) \ln(m_q + a^2) + \dots$$

Masses of $(\mathbf{10_S}, \, \mathbf{20_M})$ nucleons in $S\chi PT$

• Taste breaking occurs in two stages:

$$SU(4)_T\supset \Gamma_4
times SO(4)_T\supset \Gamma_4
times SU(2)_T$$
 $\mathbf{20_M}
ightarrow \mathbf{12} \oplus \mathbf{4} \oplus \mathbf{4}
ightarrow \mathbf{8} \oplus \mathbf{4} \oplus \mathbf{4} \oplus \mathbf{4}$

- Taste violations
 - lift continuum degeneracies
 - introduce off-diagonal elements in mass matrix

Degeneracies and Mixings

of $(\mathbf{10_S},\,\mathbf{20_M})$ nucleons: Loops

• Loops break taste: $SU(4)_T\supset \Gamma_4
times SO(4)_T$ ${f 20_M}
ightarrow {f 12}\oplus {f 4}\oplus {f 4}$

- Loops are degenerate \sim irreps of remnant taste, $\Gamma_4 \rtimes SO(4)_T$
- States with the same conserved quantum numbers mix

$$\begin{pmatrix} a & 0 & c & 0 & \cdots \\ 0 & a & 0 & -c \\ c & 0 & b & 0 \\ 0 & -c & 0 & b \\ \vdots & & & a & 0 & c & 0 \\ & & & 0 & a & 0 & -c \\ & & & c & 0 & b & 0 \\ & & & 0 & -c & 0 & b \end{pmatrix}$$

• To third order, these loop contributions have been explicitly calculated

Degeneracies and Mixings

of $(\mathbf{10_S}, \, \mathbf{20_M})$ nucleons: Analytic $\mathcal{O}(a^2)$ terms

• Taste breaking: $SU(4)_T\supset \Gamma_4
times SU(2)_T$ ${f 20_M} o {f 8}\oplus {f 4}\oplus {f 4}\oplus {f 4}$

- Contributions are degenerate ~ irreps of remnant taste, $\Gamma_4 \rtimes SU(2)_T$
- States with the same conserved quantum numbers mix

$$\begin{pmatrix} a & 0 & d & 0 & e & 0 & \cdots \\ 0 & a & 0 & -d & 0 & -e \\ d & 0 & b & 0 & f & 0 \\ 0 & -d & 0 & b & 0 & f \\ e & 0 & f & 0 & c & 0 \\ 0 & -e & 0 & f & 0 & c \\ \vdots & & & \ddots \end{pmatrix}$$

• These tree-level contributions have been calculated

$\mathcal{O}(m_q^{3/2})$ chiral forms for $(\mathbf{10_S},\,\mathbf{20_M})$ nucleons

$$SU(4)_T \supset \Gamma_4 \rtimes SU(2)_T$$

 $\mathbf{20_M} \to \mathbf{8} \oplus \mathbf{3(4)}$

- At larger quark mass
 - forms $\sim -m_{\pi}^3$
 - cut-off reg?
- Taste violations split 20_M
 - $\sim 10-40 \text{ MeV}$
 - excited states close to ground state
- Operators for each state?

Operators for $(xxx, 20_{\mathbf{M}})$ nucleons

• operators ~ irreps of geometrical time slice group (GTS): **8**, **8'**, **16** (Golterman and Smit, 1984)

$$SU(2)_S \times SU(4)_T \to \text{GTS}$$

 $(\frac{1}{2}, \mathbf{20_M}) \to \mathbf{16} \oplus \mathbf{3(8)}$

8 16

- \Rightarrow operators \sim 8 of GTS create three states in the $20_{\rm M}$
- \Rightarrow operators ~ 16 of GTS create one state in the $20_{\rm M}$

Connecting operators with chiral forms

• In the context of spin, consider taste breaking in $S\chi PT$:

$$SU(2) \times SU(4)_T \supset SU(2) \times [\Gamma_4 \rtimes SU(2)_T]$$

 $(\frac{1}{2}, \mathbf{20_M}) \rightarrow (\frac{1}{2}, \mathbf{8}) \oplus \mathbf{3}(\frac{1}{2}, \mathbf{4})$

• Decompose spin-taste irreps of the chiral forms into irreps of GTS:

$$SU(2) imes [\Gamma_4 imes SU(2)_T] \supset GTS$$

$$(\frac{1}{2}, 8) \rightarrow 16$$

$$(\frac{1}{2}, 4) \rightarrow 8$$

- \Rightarrow operators ~ 8 of GTS create the three 4 s of $\Gamma_4 \rtimes SU(2)_T$
- \Rightarrow operators ~ 16 of GTS create the 8 of $\Gamma_4 \rtimes SU(2)_T$

Degeneracies and Mixings

- Spin-taste violations break continuum irreps into lattice irreps
- Lattice symmetry governs degeneracies, mixings at nonzero lattice spacing

$$SU(2)_S \times SU(8)_{x,y} \times SU(4)_z \supset SU(2)_I \times GTS$$

 \Rightarrow 20 lattice energy levels degenerate with Σ^* in continuum limit

Lattice irreps per continuum irrep

- Decompose remaining continuum irreps into lattice irreps
- Many lattice irreps correspond to each continuum irrep

$$SU(2)_S imes SU(8)_{x,y} imes SU(4)_z \supset SU(2)_I imes GTS$$
 ${f 364_S}
ightarrow ({f 120_S}, {f 1}) \oplus ({f 36_S}, {f 4}) \oplus ({f 8}, {f 10_S}) \oplus ({f 1}, {f 20_S}) \\
ightarrow \Delta \ {f 13} \qquad \Sigma^* \ {f 20} \qquad \Xi^* \ {f 13} \qquad \Omega^- \ {f 7}$
 ${f 572_M}
ightarrow ({f 168_M}, {f 1}) \oplus ({f 28_A}, {f 4}) \oplus ({f 36_S}, {f 4}) \oplus \dots$
 $({f 8}, {f 6_A}) \oplus ({f 8}, {f 10_S}) \oplus ({f 1}, {f 20_M}) \\
ightarrow \Lambda_S \ {f 5} \qquad \Xi \ {f 7} \qquad N_S \ {f 4}$

Mixing at nonzero lattice spacing

• Spin-taste violations mix corresponding members of same type of lattice irrep—baryons with same (conserved) lattice quantum numbers

- There is a 9-dimensional mixing matrix for each member of the $(0, 16)_{-1}$
- Operators with quantum numbers of a given member of $(0, 16)_{-1}$ create all 9 corresponding states: 3 states $\sim \Lambda$, 1 Σ , 5 states $\sim \Sigma^*$

Implications for practical calculations

- Rooted staggered QCD contains many baryons corresponding to each physical baryon (taste ~ flavor in continuum limit)
- At nonzero lattice spacing, spin-taste violations lift degeneracies within continuum multiplets and introduce mixing (~ 10-40 MeV)
- Irreducible operators create states in corresponding lattice irreps
- In general, accounting for splitting and mixing of the spectrum at nonzero *a* promises to be difficult (labor and numerics)
 - Compute and fit correlation matrices of mixing operators
 - Calculate and diagonalize corresponding matrices in chiral theory
- Special cases in which splitting and mixing is less problematic
 - Sufficiently improved lattice action (e.g., HISQ) squashes spin-taste violations beneath statistical uncertainties
 - Sufficiently large lattice spacing might be numerically easier

Examine spectra of operators

• Are there any operators whose spectra are not split and mixed by spin-taste violations? ~ "optimal" operators

States created/mixed
$3 N \text{ and } 2 \Delta$
1 N and 3 Δ
$5~N~{ m and}~1~\Delta$
$1~\Delta$
$3~\Sigma^*$
$1 \Lambda, 3 \Sigma, \text{ and } 7 \Sigma^*$
$1~\Sigma^*$
$3 \Lambda, 1 \Sigma, \text{ and } 5 \Sigma^*$
4Ξ , $4 \Lambda_s$, and $3 \Xi^*$
3 Ξ *
$3 N_s \text{ and } 2 \Omega$
$2~\Omega$

Examine spectra of operators

- Operators $\sim (\frac{1}{2}, \frac{8'}{0})_0$ create a lattice state $\sim \Delta$; $m_x = m_y = \hat{m}, \ m_z = m_s$
- Operators \sim (0, 8')₋₁ create a lattice state $\sim \Sigma^*$

Operator irreps (for $a \neq 0$)	States created/mixed
$(\frac{3}{2}, 8)_0$	$3~N~{ m and}~2~\Delta$
$(\frac{3}{2}, 16)_0$	$1~N~{ m and}~3~\Delta$
$(\frac{1}{2}, 8)_0$	$5~N~{ m and}~1~\Delta$
$ \frac{\left(\frac{3}{2}, 8\right)_{0}}{\left(\frac{3}{2}, 16\right)_{0}} \\ \left(\frac{1}{2}, 8\right)_{0} \\ \left(\frac{1}{2}, 8'\right)_{0} $	(1Δ)
$(1, \ 8')_{-1}$	$3 \Sigma^*$
$(1, \ 16)_{-1}$	$1 \Lambda, 3 \Sigma, \text{ and } 7 \Sigma^*$
$(0, \ \mathbf{8'})_{-1}$	$(1 \Sigma^*)$
$(0, \ 16)_{-1}$	$3 \Lambda, 1 \Sigma, \text{ and } 5 \Sigma^*$
$(\frac{1}{2}, 8)_{-2}$	4Ξ , $4 \Lambda_s$, and $3 \Xi^*$
$(\frac{1}{2}, 8')_{-2}$	3 Ξ *
$(0, \ 8)_{-3}$	$3 N_s \text{ and } 2 \Omega$
$(0, 8')_{-3}$	$2~\Omega$

Partial quenching

 We are free to vary valence quark masses and sea quark masses independently

$$\langle \bar{B}B \rangle = \frac{1}{Z} \int \mathcal{D}\mathcal{U} \sum (\not D_{\text{stag}} + m_x)^{-1} (\not D_{\text{stag}} + m_y)^{-1} \times (\not D_{\text{stag}} + m_z)^{-1} \left[\det (\not D_{\text{stag}} + m_{u,d,s}) \right]^{1/4} e^{-S_g[\mathcal{U}]}$$

We have considered

$$m_x = m_y = \hat{m}$$
 and $m_z = m_s$

Now consider

$$m_x = m_y = m_s$$
 and $m_z = \hat{m}$

Reconsider the spectrum

- Valence sector symmetries unchanged everywhere in decompositions
- Pattern of degeneracies and mixings unchanged in continuum and on lattice

$$SU(2)_S \times SU(8)_{x,y} \times SU(4)_z \supset SU(2)_I \times GTS$$

• Continuum masses of lattice irreps change

Recall spectra of operators

- Operators $\sim (\frac{1}{2}, \frac{8'}{0})_0$ create a lattice state $\sim \Delta$; $m_x = m_y = \hat{m}, \ m_z = m_s$
- Operators $\sim (0, 8')_{-1}$ create a lattice state $\sim \Sigma^*$

Operator irreps (for $a \neq 0$)	States created/mixed
$(\frac{3}{2}, 8)_0$	$3 N \text{ and } 2 \Delta$
$(\frac{3}{2}, 16)_0$	1 N and 3 Δ
$(\frac{1}{2}, 8)_0$	$5~N~{ m and}~1~\Delta$
$ \begin{array}{ccc} \left(\frac{3}{2}, \ 8\right)_{0} \\ \left(\frac{3}{2}, \ 16\right)_{0} \\ \left(\frac{1}{2}, \ 8\right)_{0} \\ \left(\frac{1}{2}, \ 8'\right)_{0} \end{array} $	(1Δ)
$(1, \ \mathbf{8'})_{-1}$	$3 \Sigma^*$
$({f 1},\ {f 16})_{-1}^{\ \ \ \ }$	$1 \Lambda, 3 \Sigma, \text{ and } 7 \Sigma^*$
$(0, \ 8')_{-1}$	$(1 \Sigma^*)$
$({f 0},\ {f 16})_{-1}$	$3 \Lambda, 1 \Sigma, \text{ and } 5 \Sigma^*$
$(\frac{1}{2}, 8)_{-2}$	4Ξ , $4 \Lambda_s$, and $3 \Xi^*$
$(\frac{1}{2}, 8')_{-2}$	3 Ξ *
$(0, \ 8)_{-3}$	$3 N_s \text{ and } 2 \Omega$
$(0, 8')_{-3}$	$2~\Omega$

Change masses of valence quarks

- Operators $\sim (\frac{1}{2}, \frac{8'}{0})_0$ create a lattice state $\sim \Omega$; $m_x = m_y = m_s, \ m_z = \hat{m}$
- Operators $\sim (0, 8')_{-1}$ create a lattice state $\sim \Xi^*$

Operator irreps (for $a \neq 0$)	States created/mixed
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$3 N_s \text{ and } 2 \Omega$
$(\frac{3}{2}, \ 16)_0$	$1 N_s \text{ and } 3 \Omega$
$(\frac{1}{2}, 8)_0$	$5~N_s~{ m and}~1~\Omega$
$(\frac{1}{2}, 8')_0$	(1Ω)
$(\bar{\bf 1}, \; {\bf 8}')_{-1}$	3 E*
$({f 1},\ {f 16})_{-1}$	$1 \Lambda_s, 3 \Xi, \text{ and } 7 \Xi^*$
$(0, \ \mathbf{8'})_{-1}$	$\left(\begin{array}{c}1\ \Xi^{*}\end{array}\right)$
$(0, \ 16)_{-1}$	$3 \Lambda_s$, 1Ξ , and $5 \Xi^*$
$\left(rac{{f 1}}{{f 2}},\;{f 8} ight)_{-2}$	4Σ , 4Λ , and $3 \Sigma^*$
$(\frac{1}{2}, 8')_{-2}$	$3~\Sigma^*$
$({f 0},\ {f 8})_{-3}$	$3~N~{ m and}~2~\Delta$
$(0, 8')_{-3}$	2 Δ

Avoiding splittings and mixings

- Choosing appropriate quark masses and operators allows us to extract masses of decuplet and nucleon w/o accounting for splittings and mixings
- Only possible with operators ~ irreps of lattice symmetry group
- Operators in all lattice irreps have been constructed

Valence quark masses	Operator irreps	States created/mixed
$m_x = m_y = \hat{m}, \ m_z = m_s$	$egin{pmatrix} \left(rac{1}{2}, \ \mathbf{8'} ight)_0 \\ \left(0, \ \mathbf{8'} ight)_{-1} \end{pmatrix}$	$egin{array}{ccc} 1 & \Delta \ 1 & \Sigma^* \end{array}$
$m_x = m_y = m_s, \ m_z = \hat{m}$	$egin{pmatrix} \left(rac{1}{2}, \ 8' ight)_0 \ \left(0, \ 8' ight)_{-1} \end{pmatrix}$	$egin{array}{ccc} 1 & \Omega \ 1 & \Xi^* \end{array}$
$m_x = m_y = m_z = \hat{m}$	$({f 1_A},\ {f 16})$	1 N and 1 Δ
$m_x = m_y = m_z = m_s$	$({f 1_A},\ {f 16})$	1 N_s and 1 Ω

Constructing operators with $SU(3)_F$ quantum numbers

- Consider objects that are
 - composed of three staggered fields ~ fundamental irrep of GTS (8)
 - color singlets
 - fermions—completely anti-symmetric under simultaneous perms of all indices:
 - color abc
 - GTS *ABC*
 - flavor *ijk*
- Leads us to consider the object (cf. Golterman and Smit, 1984):

$$_{ijk}\tilde{B}_{ABC} \equiv \sum_{\mathbf{x}, x_k \text{ even}} \frac{1}{6} \epsilon_{abc} D_A \chi_i^a(\mathbf{x}) D_B \chi_j^b(\mathbf{x}) D_C \chi_k^c(\mathbf{x})$$

$$_{ijk}\tilde{B}_{ABC}=_{jki}\tilde{B}_{BCA}=_{kij}\tilde{B}_{CAB}=_{jik}\tilde{B}_{BAC}=_{ikj}\tilde{B}_{ACB}=_{kji}\tilde{B}_{CBA}$$

Exploiting SU(N)

- GTS is a proper subgroup of *SU*(8)
- Embed GTS in SU(8) such that the fundamental of SU(8) transforms as the fundamental of GTS:

$$SU(8) \supset GTS$$

 $\mathbf{8} \rightarrow \mathbf{8}$

• Then we recognize the symmetric irrep of SU(24):

$$\Rightarrow \tilde{B} \sim \mathbf{2600_S}$$

• Decompose this irrep to obtain operators with definite SU(3):

$$SU(24) \supset SU(3)_F \times SU(8)$$

2600_S \rightarrow (10_S, 120_S) \oplus (8_M, 168_M) \oplus (1_A, 56_A)

Operators $\sim SU(3)_F \times GTS$

• Decompose the SU(8) irreps under GTS:

$$\begin{array}{ccc} ({\bf 10_S},\,{\bf 120_S}) & \to & 5({\bf 10_S},\,8) \oplus 2({\bf 10_S},\,8') \oplus 4({\bf 10_S},\,{\bf 16}) \\ \\ ({\bf 1_A},\,{\bf 56_A}) & \to & 3({\bf 1_A},\,8) \oplus 2({\bf 1_A},\,{\bf 16}) \\ \\ ({\bf 8_M},\,{\bf 168_M}) & \to & 6({\bf 8_M},\,8) \oplus ({\bf 8_M},\,8') \oplus 7({\bf 8_M},\,{\bf 16}) \end{array}$$

• These operators could be used to extract the masses of all the lightest spin-1/2 and spin-3/2 baryons

$$SU(24) \supset SU(2)_S \times SU(12)_f$$

$$\mathbf{2600_S} \rightarrow (\frac{3}{2}, \mathbf{364_S}) \oplus (\frac{1}{2}, \mathbf{572_M})$$

Summary and Outlook

- Relationship between staggered baryons and physical spectrum suggests additional nontrivial tests of rooted staggered QCD
- Irreducible lattice operators for staggered baryons constructed; certain of these promising for extraction of nucleon and decuplet masses (Bailey, 2007)
- Baryon sector of staggered chiral perturbation theory developed to control extrapolation to physical quark masses and continuum limit (Bailey, 2008)
- Analysis of spectrum and operator spectra can be extended to excited light-quark baryons, heavy-light-light baryons, heavy-light mesons, . . .