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Introduction and Disclaimers

This is a work in progress:
e "Best” way to package the results still not clear.
e Lots of loose ends!
* Mention these as they crop up.

x Won't save them all for the end.




Why Use the Parke-Shadmi Spin Basis? / Lessons from ¢t

Let the ZMF production angle be 6*, and the ZMF speed be £.

For the spin axis defined by

32 cos 0* sin? 6*

|~ P’ 0" (off-diagonal basis),

tan) =

the tops are produced exclusively with unlike spins.
The i and || spin configurations vanish!

This observation allows us to say where the top decay products prefer to go.




Why Use the Parke-Shadmi Spin Basis? / Lessons from ¢t

sinw = (Bsinf”

(t £ms)? =0

Preferred charged lepton (or d-type quark) emission directions:

M spin configuration: =(t 4+ ms) (top)

(t + ms) (antitop)

DO~ N[

1 spin configuration: =(t — ms) (top)

(t — ms) (antitop)

N N[




Why Use the Parke-Shadmi Spin Basis?

Spin-dependent amplitudes with arbitrary spin-axis:
e predict final state particle emission directions:

sinw = (3 sin 6%

(32 cos 0* sin 0* t-ms
tany = ) 2
1 — (2 sin” 6* q
o 5(t +ms) (top) e
%(t + ms) (antitop) t+ms
2 -
I 5(t —ms) (top) |
= (t — ms3) (antitop)

e maximize angular correlations for easier observation: no 1} or | pairs.

e provide a deeper understanding of the structure of the collision.




What is the Parke-Shadmi Spin Basis?

adapted from Parke and Shadmi, Phys. Lett. B387 (1996), 199.

zero momentum frame P rest frame

beam #1 /{;*

/ ) beam #2

Can recover (traditional) helicity basis by letting £ — .




Spinor Products

Write (massless) 4-momenta as p = (po, p1, P2, P3); ¢ = (o, 41,92, q3)
e (1,2,3) need not be (z,y, z)

e 3-axis = singular axis

Define
p_|_ = Do +p3
d, = qo + g3.

Then, for positive energy spinors:

(p+lg—) =up)5(1 —~)ul(q
_ (@p, — p1q+) +1(p2q, — q2p. )

N




Spinor Products

Properties:
(p+lg—) =—(¢+lp—)
(p+lg—) =+/2p-qe®
Pitfalls:

e Phase depends on choice of singular axis.

e Phase is not always simple to write down.

o —1
. — S
Typical example: e!® = Pt ce = inse
1 4 Bee

e Phase is frame-dependent!

Prudent strategy: choose singular axis orientation to make all spinor products
real, if possible.




Basis Spinors for Massive Fermions

Decompose fermion 4-momentum into two pieces:
P=pi+ps; P°=M?* pi,po— i(pEMs); pi=p;=0.
Fermion spin states are then

= |p14+) —€e®ps—) and wu;(P)=|p1—)+e ®|ps+)

()

positive  negative negative  positive
spin chlrallty chirality spin  chirality  chirality
up egenstate eigenstate down eigenstate eigenstate
eigenstate eigenstate
o _ P2 — ;)
M




Basis for Massive Vector Bosons

The three polarization states for a massive vector boson may be represented in
spinor notation by

L0 -7 dlp) = VB LT NP2 2]

m

%(1_75) d(po) = [Py —){p1 — |?;|P2 —){p2 — |7

and

p2 —)(p1 —|
3(1=9°) dpy) = -2 -
m
These polarizations satisfy the usual properties:

1. Transversality: p-e(py) = 0.

2. Orthonormality: €(py) - €*(py) = =

. Pubu
3. Completeness: Zeu(px)@(p/\) = —Guv T —,:12

A
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Spin Identities

P rest frame
Rotate spin axis from & to & + A& using

rotation operator: b
;
|J m)erae = exp(iALTy)|j m)e. /////)V
A
Suppose that A¢ — 0. Then exp(tA&J,) — 1 +1AEJ,, and

|7 M)erne —|J m)e
AE

— inU m>€

Left-hand side is just a derivative. Also, recall that i.J, = 2 (J4 — J_):

0

Sl mle = 5T = L)l mhe.
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Spin Identities

General: 3
el Mle = (J+ —J-)|7 m)e.
Spin-1:
Spin-1:
Ag = —fz%
A = (1 + 2 g—;) Ag
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Spin Identities

Some consequences:
e Starting at the end of the chain, one can obtain all other spin-amplitudes
by (simple) differentiation!

(Is this starting point necessary, or merely sufficient?)
e [f helicity amplitudes are desired, set £ = 7.

e The Wigner d-functions satisfy the same differential equations.
= All spin amplitudes are linear combinations of these functions.

= Explains why we see the same functions over and over in apparently
unrelated processes.

13



Example: ud — tb (W* process)

Retain b-quark mass for the sake of illustration.

Start by calculating

Nt ~ {t2 =Id ) +lbr )
~ {\/1—69\/1—ﬁtsin%—l—\/1—|—69\/1—1—ﬁt608%}
X {\/1+09\/1+ﬁbsin%+\/1—69\/1—ﬁb008%}

Remaining spins by differentiation:

02N
080,

ONy1 |
0

ONy1 |

N =—2 ,
I O,

Ny = -2 Ny =4

Set & = &, = m for helicity basis.
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Example: ezef — WTW—

Starting point:

— (K’ +|W2 =) (W1 =]k +) (k+[Wy —)(Wa —|k +)
+<k/+ — Y (W —|Wy +)(Wa +|W1 —) (W3 — |k +)
+ (K Wy =) (Wa — |k +) (b +|W5 =) (W] —|k +)

— (K" Wy =) (Wo —|W] +) (W] +|W5 —) (W] — |k +)

Insert spinor products and simplify:

A\ Ao

Ny~ 28y H(se, — se.) v/ Z
— By ?so(1+ce ce) )
¥ W
+ (3 — 3%)Bsgse, se_ e/ \

+287; feg(se, ce. 4 ce,5e)
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Example: ezef — WTW—

Ny~ 2877 (se, — s¢_)
— 07 %so(1+ ce,ce)
+ (3 — 3%)Bsgse, s
+207, ea(se, ce +ce, e )

Apply spin-1 relations to obtain

K2 9 0

0
N’Ql:—\/i@./\/}l; ./\/'T():ﬂag_./\/'”; NOO:_28§+ 8§_N”;
0? 02

Extract helicity basis by setting £, =& = .
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Combining Spins (ud — tb)

Can obtain additional instances of the identities by setting &, = &; and forming
the appropriate linear combinations of amplitudes. For example,

1 1) ~ Ny

~ {(1_69)\/1_&7\/1_6’5_(1"_69)\/1"‘@)\/1—1—@5}COSf
+ :_|80|\/1—|—ﬁb\/1—ﬁt - |39|¢1—5b\/1+5t} sin &
* :(1_09)\/1_55\/1_ﬁt+(1—|—09)\/1—|—ﬁb\/1—|—ﬁt}
1 —1) ~ N},

~ {(1 + o)V 1+ Bo/1+ B — (1 —co) /1 — Bpy/1 _@} cos &

+ (Il VI= B/ T B + ol VI T Bon/T— By sin
+ :(1+C9)\/1+ﬁb\/1+ﬁt—|—(1—69)\/1—ﬁb\/l_ﬁt}
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Combining Spins

L
NG
V2[5V 1+ Bov/T = B+ [solv/1 = Bo/T+ ] cose

+ {(1 — o)1= Bo/1— B — (1 4+ o) /1 + Bo/1 + @} sin £

1 0) {Nu +Nm}

0 0) N\% {Nu —NH}
V2| 1ol VIH Bo/T= B — Isolv/T= /T4 ]

e |1 m) states satisfy the spin-1 relations.

e |0 0) is independent of £ (c.f. the spin-0 relation).
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Zero Hunting

Let H) = helicity amplitude for spin projection \.
M), = &-basis amplitude for spin projection .

Then, we know that

Mx(§) = Z dg\x (&) Hx
N

Viewing the H)'s as a bunch of coefficients, we can try to construct a spin
basis (i.e. choice of &) where a particular M, vanishes.

e This may not always be possible.
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Zero Hunting: Spin-1 Example

Transverse amplitude:
My =dy H,+d (Hy+d}_H_
= (1+ce)Hy —V2s¢Hy+ (1 —ce)H-
Basis with M, = 0 would satisfy
0= (Hy +H_ )4 ce(Hy — H_) — s¢HyV?2

Solution for & may or may not exist, depending on values of Hy, H.

Longitudinal amplitude:
Mo =dy, Hy + dyoHo + dj_H_

S¢ S¢
= ——H +cHy— —=H_
N G
Basis with My = 0 satisfies
Hov?2
0=scHy +ce(HoV2) —se H. = tanf = 0V2
H —H,
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Zero Hunting: Spin-1 Example

Helicity amplitudes for ¢, §, — tt are

H+NA2l:1—CQ
H_N.szl—FC@

ATT . Ali
Ha ~ L L _ _18 \/§
0 \@ Y 7
Basis with My = 0 satisfies
Hyv?2 (v 150v/2)V2
an & 0 -, or tang T+ oo — (1= c)

tan& =~y ! tané.

This is precisely the off-diagonal basis!

i.e. tt spins purely 1 and {1: no 1) or | present.
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Zero Hunting: Spin-1 Example

Helicity amplitudes for e, e, — Zh are

vl
Hy ~ ﬁ(l — Cp)

—1
H_ ~ L(l + ¢p)

V2

Basis with My = 0 satisfies

Hov/2 59V 2

tan§ = —> or tan& =
¢ H_—H; : V27~ e

tan& = ytané.

This is precisely the Zh-transverse basis.

i.e. Z's are all (+) or (—) spin projection; (0) projection is absent.
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Current Status & Future Directions

e We have a method to easily generate all of the helicity amplitudes for a
2 — 2 scattering from a calculation of just one!

* Use independent spin axis orientation for each particle.
* Start at end of spin chain.
*x Obtain remaining spin amplitudes by (simple) differentiation.
* Set & = 7 for helicity amplitudes, if desired.
e Cases explicitly investigated:
* ud —tb (J=0,%,1)
* gb— W™t (J=1,1,32)
x ete” - WTW~ (J=0,1,2)

e Generalize to 2 — n processes?
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