Charm physics on the lattice with highly improved staggered quarks

Eduardo Follana

The Ohio State University

(Fermilab, April 2008)

HPQCD collaboration

Work in collaboration with:

- C.T.H. Davies (University of Glasgow)
- K. Hornbostel (Dallas Southern Methodist University)
- G.P. Lepage (Cornell University)
- Q. Mason (Cambridge University)
- J. Shigemitsu (The Ohio State University)
- H. Trottier (Simon Fraser University)
- K. Wong (University of Glasgow)

Thanks: The MILC collaboration for making their configurations publicly available.

Outline

- Motivation.
- Staggered quarks.
 - HISQ (Highly improved staggered quarks.)
- Heavy quarks.
- Charmed systems: masses and decay constants.
- Outlook.

Phys.Rev.D75:054502,2007, Phys.Rev.Lett.100:062002,2008.

Motivation

- ► Low-energy QCD is a strongly-coupled QFT. We need non-perturbative tools to deal with it.
 - Other strongly-coupled sectors BSM?
- ▶ Lattice QCD provides a non-perturbative definition of QCD. It also provides a quantitative calculational tool. And lately it is also becoming a precise tool.

Goals

- To make precise calculations in QCD.
 - To test lattice field theory as a tool for studying strongly coupled field theories. (CLEO-c).
 - $ightharpoonup f_D$, f_{D_s}
 - To calculate theoretical quantities needed in the analysis of experimental data, for example, in the determination of elements of the CKM matrix.
 - ▶ To further test QCD as the theory of strong interactions.
- ► To deepen our understanding of the physics of QCD, for example, confinement.

LQCD: Quenched vs Unquenched

- Fermions are numerically very hard to include.
- ▶ Ignore fermion pair production \Rightarrow quenched QCD.

Plus the successful prediction of m_{B_c} (I. Allison et al).

(Some) systematic errors

- ► Finite volume: $m_{\pi}^{-1} \ll L$. In practice, $L \approx 2.5, 3 fm$
- ▶ Finite lattice spacing: we need simulations at different values of a, to extrapolate to the continuum limit $a \rightarrow 0$.
 - ► To simulate at small values of *a*, while keeping the physical *L* constant is very expensive.
 - ▶ Typically, error $\propto a, a^2$
 - Improved actions (and operators) decrease the error, making the extrapolation from a given set of lattice spacings more precise.
- ▶ Chiral extrapolation: In practice, we are not able to simulate at physical values of the light quark masses $m_{u,d}$.
- Lattice spacing determination: Error in the determination of the lattice spacing in physical units (r_1) .

Improved Staggered Quarks

- ▶ The staggered action describes 4 tastes (in 4D). The spectrum on the lattice has a multiplicity of states corresponding to the same continuum state. There are unphysical taste-changing interactions that lift the degeneracy between such states.
- ► These effects are lattice artifacts, of order a^2 , and vanish in the continuum limit $a \to 0$. They involve at leading order the exchange of a gluon of momentum $q \approx \pi/a$.
- Such interactions are perturbative for typical values of the lattice spacing, and can be corrected systematically a la Symanzik.

Smear the gauge field to remove the coupling between quarks and gluons with momentum π/a .

In an unquenched simulation, $\sqrt[4]{\det}$. \rightarrow "Rooting trick".

Improved Staggered Actions

► FAT7(TAD)

Improved Staggered Actions

► ASQ(TAD)

- (S. Naik, the MILC collaboration, P. Lepage.)
- ▶ Discretization errors $\approx \mathcal{O}(\alpha_s a^2, a^4)$.

Improved Staggered Actions

► HISQ

Two levels of smearing: first a FAT7 smearing on the original links, followed by a projection onto SU(3), then a modified ASQ on these links.

$$\mathsf{FAT7}\|_{SU(3)}\otimes\mathsf{ASQ'}$$

(E.F., Q. Mason, C. Davies, K. Hornbostel, P. Lepage, H. Trottier.)

- ▶ Discretization errors $\approx \mathcal{O}(\alpha_s a^2, a^4)$.
- Substantially reduced taste-changing with respect to ASQTAD.

Heavy Quarks

- ► The discretization errors grow with the quark mass as powers of *am*.
- ▶ For a direct simulation, we need:

```
am_h \ll 1 (heavy quarks) La \gg m_\pi^{-1} (light quarks)
```

- Two scales. Difficult to do directly.
- ▶ Instead take advantage of the fact that m_h is large: \Rightarrow effective field theory (NRQCD, HQET). Very successful for b quarks.

Charm Quarks

- ► The charm quark is in between the light and heavy mass regime.
- Quite light for an easy application of NRQCD.
- ightharpoonup Quite large for the usual relativistic quark actions, $am_c \stackrel{\textstyle <}{\sim} 1.$
- However, if we use a very accurate action (HISQ) and fine enough lattices (MILC), it is possible to get accurate results.
 - Errors for HISQ: $\mathcal{O}((am)^4, \alpha_s(am)^2)$.
 - Non-relativistic system: can be tuned for further suppression by factors of (v/c).
 - Can reduce the errors to the few percent level.
 - ▶ Simple: use the same action in the heavy and the light sector.
- We will use this action both for heavy-heavy and heavy-light systems ⇒ consistency check.

Fixing the parameters

The free parameters in the lattice formulation are fixed by setting a set of calculated quantities to their measured physical values.

- Scale: lattice spacing a: Fixed through the upsilon $(b\bar{b})$ spectrum, $m_{\Upsilon(2S)} m_{\Upsilon(1S)}$.
- ▶ Quark masses: $m_{u,d}, m_s, m_c$. Fixed by m_{π}, m_K, m_{η_c} .
- ▶ In the HISQ charm quark formulation: improvement parameter ϵ . Fixed by requiring relativistic dispersion relation, $c^2 = 1$.

Configurations

MILC ensembles: 2+1 ASQTAD sea quarks: (m_l, m_l, m_s)

- ▶ Very coarse: $a \approx 0.16 \text{ fm}$, $16^3 x$ 48
 - $m_I = m_s/2.5, m_s/5$
 - ▶ Valence HISQ: $am_c = .85$
- ▶ Coarse: $a \approx 0.12 \text{ fm}$
 - $m_I = m_s/2, m_s/4 \quad 20^3 x 64$
 - $m_l = m_s/8, \quad 24^3 \times 64$
 - ▶ Valence HISQ: $am_c = .66$
- ► Fine: $a \approx 0.09 \text{ fm}$, $28^3 \times 96$.
 - $m_l = m_s/2.5, m_s/5$
 - ▶ Valence HISQ: $am_c = .43$.

We adjust the coefficient of the Naik term to have $c^2 = 1$. This further reduces the discretization errors by factors of $\frac{v}{c}$.

Masses

▶ We use the mass of the η_c to fix the mass of the charm quark.

Meson decay constants:

$$\Gamma(P \to I\nu_I(\gamma)) = \frac{G_F^2 |V_{ab}|^2}{8\pi} f_P^2 m_I^2 m_P \left(1 - \frac{m_I^2}{m_P^2}\right)^2$$
$$\langle 0|A^{\mu}|P(p)\rangle = f_P p_{\mu}$$

PCAC:

$$f_P m_P^{\ 2} = (m_a + m_b) < 0|\bar{a}\gamma_5 b|P>$$

- ► We do a simultaneous bayesian fit of the masses and decay constants to the chiral and continuum limits.
- ▶ Essentially the same calculation for f_{π} , f_{K} , f_{D} , $f_{D_{s}}$.

Masses and decay constants

 $m_{D_s} = 1.963(5)$ (exp. 1.968) GeV. $m_D = 1.869(6)$ (exp. 1.869) GeV.

$$\frac{(2m_{D_s}-m_{\eta_c})}{(2m_D-m_{\eta_c})}=1.249$$
 (14)
(exp. 1.260(2)) GeV

Mass differences

▶ We plot $m_{D_s}(m_l) - m_D(m_l)$ and $m_{B_s}(m_l) - m_B(m_l)$ as a function of the sea light quark mass, m_l .

$$f_{\pi} = 132(2) \text{ (Exp 130.5(4)) MeV}$$

 $f_{K} = 157(2) \text{ (Exp 156.0(8)) MeV}$

$$\frac{f_K}{f_\pi} = 1.189(7) \; (\text{Exp } 1.196(6))$$

Using experimental leptonic branching fractions (KLOE)

$$V_{us} = 0.2262(13)(4)$$

This gives the unitarity relation

$$1 - V_{ud}^2 - V_{us}^2 - V_{ub}^2 = 0.0006(8)$$

 $f_{D_s} = 241(3) \text{ MeV}$ $f_D = 208(4) \text{ (Exp 223(17)) MeV}$

Using experimental values from CLEO-c for μ decay:

$$V_{cs} = 1.07(1)(7) (PDG : 0.96(9))$$

	r_1	stat	a ²	m_I	m _s evol	vol	isospin, QED	tot
% error f_{D_s}	1.0	0.6	0.5	0.3	0.3	0.1	0.0	1.3

$$\frac{f_{D_s}}{f_D} = 1.162(9)$$

Using experimental values from CLEO-c for μ decay:

$$\frac{V_{cs}}{V_{cd}} = 4.42(4)(41)$$

Double ratios:

$$\frac{f_{D_s}/f_D}{f_K/f_{\pi}} = 0.977(10)$$

$$\frac{f_{B_s}/f_B}{f_{D_s}/f_D} = 1.03(3)$$

 f_{D_s}

(Bogdan A. Dobrescu, Andreas S. Kronfeld, arXiv:0803.0512)

HISQ2 and hyperfine splitting

PRELIMINARY

Conclusions

- ► The use of a highly improved quark action and fine enough lattices provides a very good way of studying systems with charm quarks from first principles.
- ▶ We can calculate accurately a number of interesting quantities. At present all but f_{D_e} agree with experiment.

Outlook

- ▶ Direct determination of m_c from the lattice. Needs perturbative calculation (underway.) Accurate m_c/m_s .
- New method for the calculation of m_c (in collaboration with K. Chetyrkin et al, Karlsruhe.) combining continuum perturbation results for the moments of the η_c correlator with lattice data. Preliminary, work in progress.
- ▶ Leptonic decay width $\psi \rightarrow e^+e^-$. Known accurately from experiment ($\sim 2\%$).
- ▶ Semileptonic form factors: $D \rightarrow \pi I \nu, D \rightarrow K I \nu$

