Electroweak Model based on the Nonlinearly realized Gauge Group SU(2)XU(1).

D. Bettinelli R. Ferrari A. Quadri

Physics Department, University of Milano

Fermilab, July 10 2008

ヘロト ヘ戸ト ヘヨト ヘヨト

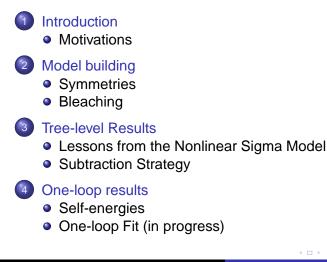
3

- PRD 77 (2008) 105012 [arXiv:0709.0644].
- PRD 77 (2008) 045021 [arXiv:0705.2339].
- IJMPA 23 (2008) 211 [arXiv:hep-th/0701197].
- IJTP 46 (2007) 2560 [arXiv:hep-th/0611063].
- JHEP 0703 (2007) 065 [arXiv:hep-th/0701212].
- And more to come ...

< □ > < 同 >

→ Ξ →

Outline

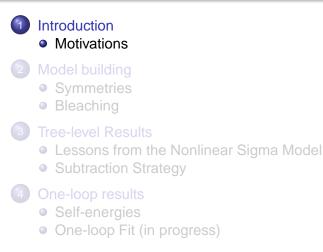


-

ъ

Motivations

Outline



< □ > < 同 >

→ ∃ > < ∃ >

Motivations

Motivations

- One of the major open problems in QFT is the quest for the origin of the mass of elementary particles.
- Standard solution: the Higgs mechanism (linear realization of the gauge group on the scalar sector).
 - Renormalizability, physical unitarity (+).
 - Very good agreement with experimental data (+).
 - No direct experimental evidence of the Higgs particle (-).
 - Hierarchy problem (–).
- Alternative models that overcome the drawbacks of the SM: SUSY, TC, composite Higgs, extra dimensions ...

・ロン ・聞と ・ 聞と

Motivations

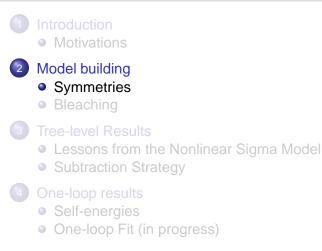
- We explore another possibility, i.e. that of managing the divergences of non p.c. renormalizable models.
- In a field theoretical model where the gauge group is realized nonlinearly on the scalar sector there are no fundamental scalar particles in the perturbative spectrum.
- Due to the presence of non-polynomial vertices in the tree level action the model is not p.c. renormalizable.

 - How to subtract the divergences ?
 - How many physical parameters are there ?
 - Is the model unique?

< ロ > < 同 > < 回 > < 回 > .

Symmetries Bleaching

Outline



< □ > < 同 >

Symmetries Bleaching

Notations

- We will consider a $SU(2) \times U(1)$ gauge group and denote by $A_{\mu} = A_{a\mu}\frac{\tau_a}{2}$ and B_{μ} the gauge connections. τ_a are the Pauli matrices.
- The nonlinear sigma model field Ω is an element of the SU(2) group, which is parameterized in terms of the coordinate fields φ_a as follows:

$$\Omega = \frac{1}{v_D} (\phi_0 + i\tau_a \phi_a) \quad \text{with} \quad \phi_0^2 + \phi_a^2 = v_D^2 \,,$$

where $v_D = v^{(D/2-1)}$ is a mass scale.

• We introduce a *SU*(2) flat connection (its field strength vanishes)

$$F_{\mu} = i\Omega\partial_{\mu}\Omega^{\dagger} = F_{a\mu} \, rac{ au_{a}}{2} \, .$$

Symmetries Bleaching

$SU(2)_L$ transformations

• Under a local SU(2) left transformation $U_L = \exp\left(ig_2 \alpha_a^L \frac{\tau_a}{2}\right)$ one gets

$$\begin{split} \Omega'' &= U_L \Omega \,, \quad F''_\mu = U_L F_\mu U_L^\dagger + i U_L \partial_\mu U_L^\dagger \,, \\ B''_\mu &= B_\mu \,, \qquad A''_\mu = U_L A_\mu U_L^\dagger + i U_L \partial_\mu U_L^\dagger \,. \end{split}$$

 The SU(2) gauge symmetry is nonlinearly realized on the fields φ_a,

$$\delta_2 \phi_{\mathbf{a}} = \frac{g_2}{2} \phi_0 \alpha_{\mathbf{a}}^L + \frac{g_2}{2} \epsilon_{\mathbf{a}\mathbf{b}\mathbf{c}} \phi_{\mathbf{b}} \alpha_{\mathbf{c}}^L \,,$$

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Symmetries Bleaching

$U(1)_{\rm Y}$ transformations

• Under a local U(1) right transformation $V_R = \exp\left(ig_1 \alpha^R \frac{\tau_3}{2}\right)$ one gets

$$\begin{split} \Omega' &= \Omega \; V_R^{\dagger} \,, \qquad F'_{\mu} = F_{\mu} + i \Omega \; V_R^{\dagger} \partial_{\mu} V_R \, \Omega^{\dagger} \,, \\ A'_{\mu} &= A_{\mu} \,, \qquad B'_{\mu} = B_{\mu} + i V_R \partial_{\mu} V_R^{\dagger} \,. \end{split}$$

 In passing we note that also the U(1) symmetry is nonlinearly realized

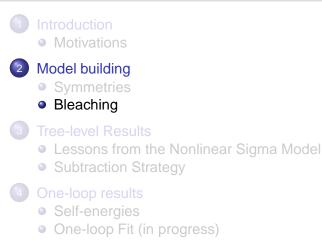
$$\delta_1 \phi_1 = \frac{g_1}{2} \phi_2 \, \alpha^R \,, \ \ \delta_1 \phi_2 = -\frac{g_1}{2} \phi_1 \, \alpha^R \,, \ \ \delta_1 \phi_3 = -\frac{g_1}{2} \phi_0 \, \alpha^R \,.$$

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Symmetries Bleaching

Outline



< □ > < 同 >

→ ∃ > < ∃ >

Symmetries Bleaching

Bleaching

 It is possible to trivialize the SU(2) gauge symmetry by introducing the "bleached" field, a_μ,

$$oldsymbol{a}_{\mu}=\Omega^{\dagger}(oldsymbol{A}_{\mu}-oldsymbol{F}_{\mu})\Omega=\Omega^{\dagger}oldsymbol{A}_{\mu}\Omega-oldsymbol{i}\partial_{\mu}\Omega^{\dagger}\Omega\,.$$

 By construction a_μ is invariant under SU(2), while it transforms as a connection (plus a piece in the adjoint representation) under U(1)

$$a_{\mu}^{\prime\prime}=a_{\mu}\,,\quad a_{\mu}^{\prime}=V_{R}a_{\mu}V_{R}^{\dagger}+iV_{R}\partial_{\mu}V_{R}^{\dagger}\,.$$

Finally we can trivialize also the abelian gauge symmetry

$$w_{\mu} = a_{\mu} - B_{\mu} \frac{\tau_3}{2}$$
 so that
 $w_{\mu}'' = w_{\mu}, \quad w_{\mu}' = V_R w_{\mu} V_R^{\dagger}.$

Symmetries Bleaching

• The above relations allow us to introduce a charged bleached field, $w_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (w_{1\mu} \mp i w_{2\mu})$, and a neutral bleached field, $w_{3\mu}$, satisfying

$$\delta_1 \mathbf{w}^{\pm}_{\mu} = \pm i \mathbf{g}_1 \, \alpha^R \, \mathbf{w}^{\pm} \,, \quad \delta_1 \, \mathbf{w}_{3\mu} = \mathbf{0} \,.$$

- There are many possible local monomials allowed on the basis of symmetry arguments. All of them can enter the tree-level lagrangian with independent parameters.
- Just to mention some of them. We have two gauge mass terms

$$M^2 w^- \cdot w^+, \quad \frac{1+\kappa}{2} M^2 w_3^2.$$

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Symmetries Bleaching

 One can also construct higher dimension operators such as:

$$(w^- \cdot w^+)^n, \quad (w_3^2)^m.$$

 Then there are all possible electrically neutral monomials containing w[±], w₃ and derivatives thereof.

$$\begin{aligned} \partial_{\mu} w_{\nu}^{-} \partial^{\mu} w^{+\nu} , & \partial w^{-} \cdot \partial w^{+} , \\ \partial_{\mu} w_{3\nu} \partial^{\mu} w_{3}^{\nu} , & \partial w_{3} \cdot \partial w_{3} , \\ \partial^{\mu} w_{3}^{\nu} w_{\mu}^{-} w_{\nu}^{+} , & \partial^{\mu} w^{+\nu} w_{\mu}^{-} w_{3\nu} ... \end{aligned}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Symmetries Bleaching

Inclusion of Fermions

• We introduce the left-handed doublets and the right-handed singlets

$$L_i^L = \begin{pmatrix} \nu_i^L \\ l_i^L \end{pmatrix}$$
, $Q_i^L = \begin{pmatrix} u_i^L \\ d_i^L \end{pmatrix}$, l_i^R , u_i^R , d_i^R .

We can bleach the left-handed doublets

$$\widetilde{\Psi}^L = \Omega^\dagger \, \Psi^L$$
 .

• Both components of the bleached fermions are separately invariant under SU(2), thus their hypercharge coincides with the electrical charge.

< ロ > < 同 > < 回 > < 回 > < □ > <

Symmetries Bleaching

 Again on the basis of symmetry arguments, we have too many allowed interaction terms. There are the fermion mass terms,

$$m_{jk}^{\prime}\overline{\tilde{l}L}_{j} I_{k}^{R} + \text{h.c.}, \quad m_{jk}^{u}\overline{\tilde{u}L}_{j} u_{k}^{R} + \text{h.c.}, \quad m_{jk}^{d}\overline{\tilde{d}L}_{j} d_{k}^{R} + \text{h.c.} .$$

• There are kinetic terms,

$$i\overline{\widetilde{\nu}^{L}}_{i}\partial \widetilde{\nu}_{j}^{L}, \quad i\overline{\widetilde{l}_{i}^{L}}\widetilde{\mathcal{P}}\widetilde{l}_{i}^{L}, \quad i\overline{l_{i}^{R}}\widetilde{\mathcal{P}}l_{i}^{R}...$$

where \widetilde{D} denotes the covariant derivative w.r.t. B_{μ} only.

• There are couplings with the gauge bosons,

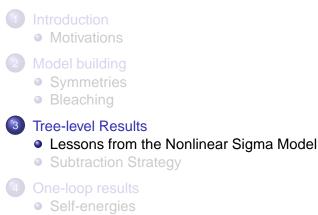
$$h_{jk}^{L}\overline{\widetilde{u}^{L}}_{j} \psi^{+} \widetilde{d}_{k}^{L} + \text{h.c.}, \quad h_{jk}^{R}\overline{u^{R}}_{j} \psi^{+} d_{k}^{R} + \text{h.c.}, \quad g_{jk}^{L}\overline{\widetilde{u}^{L}}_{j} \psi_{3} \widetilde{u}_{k}^{L} \dots$$

(日)

Lessons from the Nonlinear Sigma Model Subtraction Strategy

(日)

Outline



• One-loop Fit (in progress)

Lessons from the Nonlinear Sigma Model Subtraction Strategy

< ロ > < 同 > < 回 > < 回 > .

Local Functional Equation

The D-dimensional classical action of the NLSM,

$$\Gamma^{(0)}[ec{\phi},ec{J},K_0] = rac{v_D^2}{8}\int d^D x \left(F_{a\mu} - J_{a\mu}
ight)^2 + \int d^D x \, K_0 \phi_0 \, ,$$

is invariant under local left multiplication provided that \vec{J} transforms as a background connection.

 Enforcing the invariance of the path integral Haar measure under local left multiplication we obtain

$$-\partial^{\mu}\frac{\delta\Gamma}{\delta J^{\mu}_{a}} - g\epsilon_{abc}J^{\mu}_{b}\frac{\delta\Gamma}{\delta J^{\mu}_{c}} + g\frac{1}{2}\epsilon_{abc}\phi_{c}\frac{\delta\Gamma}{\delta\phi_{b}} + g^{2}\frac{1}{2}\phi_{a}K_{0} + \frac{1}{2}\frac{\delta\Gamma}{\delta K_{0}}\frac{\delta\Gamma}{\delta\phi_{a}} = 0\,.$$

Lessons from the Nonlinear Sigma Model Subtraction Strategy

Hierarchy

 All the amplitudes involving at least one φ field are fixed once those involving only insertions of the flat connection and of the source of the nonlinear constraint, K₀, are given.

Example

At first order in the loopwise expansion we take one derivative of the local functional equation w.r.t. J_b^{ν} and then w.r.t. ϕ_c .

$$\begin{split} &-\partial^{\mu}\frac{\delta\Gamma^{(1)}}{\delta J^{\mu}_{a}J^{\nu}_{b}}+\frac{v_{D}}{2}\frac{\delta\Gamma^{(1)}}{\delta\phi_{a}\delta J^{\nu}_{b}}=0\,,\\ &-\partial^{\mu}\frac{\delta\Gamma^{(1)}}{\delta J^{\mu}_{a}\phi_{c}}+\frac{v_{D}}{2}\frac{\delta\Gamma^{(1)}}{\delta\phi_{a}\delta\phi_{c}}=0\,. \end{split}$$

Lessons from the Nonlinear Sigma Model Subtraction Strategy

(日)

The weak power-counting bound

- At every order of perturbation theory there is a finite number of divergent ancestor amplitudes (i.e. involving *F* and/or *J*, but no φ).
- The superficial degree of divergence of a 1-PI amplitude with *n* loops, N_J insertions of *F* and N_{K₀} insertions of K₀ is

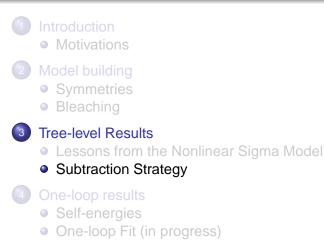
$$\delta = (D-2)n+2-N_J-2N_{K_0}$$
 .

 At fixed n, δ becomes negative with a finite number of insertions. Notice, however, that this number of required insertions grows with n.

Lessons from the Nonlinear Sigma Model Subtraction Strategy

(日)

Outline



Lessons from the Nonlinear Sigma Model Subtraction Strategy

(日)

Subtraction Strategy

- In order to obtain a consistent and predictive theory out of the set of Feynman rules of a model where the gauge group is nonlinearly realized we proposed to:
 - Write down the most general action compatible with the symmetry requirements and the wpc criterion (i.e. finite number of divergent ancestor amplitudes).
 - Subtract only the pole parts of properly normalized ancestor amplitudes. Finite renormalizations are not allowed since the corresponding invariants cannot be reinserted back at tree-level without violating either the wpc or the symmetries.

Lessons from the Nonlinear Sigma Model Subtraction Strategy

(日)

wpc at work

• We show on a simple example how the wpc can reduce the number of allowed monomials.

Example

Consider a pure Y-M theory with gauge group SU(2). The allowed monomials on the basis of symmetry considerations are

 $\partial_{\mu} a_{\nu} \partial^{\mu} a^{\nu} \,, \quad \partial a \cdot \partial a \,, \quad \epsilon_{abc} \partial_{\mu} a_{a\nu} a^{\mu}_{b} a^{\nu}_{c} \,, \quad (a^{2})^{2} \,, \quad a_{a\mu} a^{\mu}_{b} a_{a\nu} a^{\nu}_{b} \,.$

They all contains a dangerous vertex with two *A*'s, two ϕ 's and two derivatives which gives rise to infinitely many divergent ancestor amplitudes.

Lessons from the Nonlinear Sigma Model Subtraction Strategy

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Example

Figure: A weak power-counting violating graph.

The only safe linear combination of them is

$$\begin{aligned} \partial_{\mu}a_{\nu}\partial^{\mu}a^{\nu} &- \partial a \cdot \partial a + 2\epsilon_{abc}\partial_{\mu}a_{a\nu}a^{\mu}_{b}a^{\nu}_{c} \\ &+ \frac{1}{2}(a^{2})^{2} - \frac{1}{2}a_{a\mu}a^{\mu}_{b}a_{a\nu}a^{\nu}_{b} = \frac{1}{4}G_{a\mu\nu}[A]G^{\mu\nu}_{a}[A] \,.\end{aligned}$$

Lessons from the Nonlinear Sigma Model Subtraction Strategy

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Tree-level lagrangian

By imposing the validity of the wpc one is left with

$$\mathcal{L} = \Lambda^{(D-4)} \left[-\frac{1}{4} G_{a\mu\nu} [A] G_a^{\mu\nu} [A] - \frac{1}{4} F_{\mu\nu} [B] F^{\mu\nu} [B] \right. \\ \left. + \frac{M^2 w^- \cdot w^+ + \frac{1+\kappa}{2} M^2 w_3^2}{+i \overline{L^L}_j \mathcal{D} L_j^L + i \overline{Q^L}_j \mathcal{D} Q_j^L} \right. \\ \left. + i \overline{I_j^R} \mathcal{D} I_j^R + i \overline{u_j^R} \mathcal{D} u_j^R + i \overline{d_j^R} \mathcal{D} u_j^R \\ \left. - \frac{h_{jk}^I \overline{\widetilde{l}_j} I_k^R - h_{jk}^u \overline{\widetilde{u}_j} u_k^R - h_{jk}^d \overline{\widetilde{d}_j} d_k^R \right],$$

where Λ is a mass scale introduced to define the theory in D dimensions.

Lessons from the Nonlinear Sigma Model Subtraction Strategy

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

Custodial Symmetry

- The model is unique in the sense that it is the most general one which is locally invariant under $SU(2) \times U(1)$ and at the same time it satisfies the wpc criterion.
- We still have two independent gauge mass terms, which means that the ratio of the gauge boson masses is not fixed by the Weinberg angle only.
- For $g_1 = 0$ and $\kappa = 0$ we have a SU(2) custodial symmetry.
- For g₁ = 0 and κ ≠ 0 the custodial symmetry is broken along the τ₃ direction.

Lessons from the Nonlinear Sigma Model Subtraction Strategy

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Gauge Mass Terms in the SM

- The bleaching procedure can be worked out also in the linearly realized theory.
- Let Φ be the usual Higgs doublet. We consider a 2 × 2 matrix field H = (Φ^c, Φ) whose SU(2) transformation is

$$H'' = U_L H$$
.

• We can construct a SU(2)-invariant matrix field,

$$h_\mu = H^\dagger D_\mu H = h_{0\mu} \mathbb{I} + h_{a\mu} rac{ au_a}{2} \,.$$

Lessons from the Nonlinear Sigma Model Subtraction Strategy

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

 The bleached field h_µ is in a one-to-one correspondence with the gauge fields.

$$h_\mu|_{\phi_{m{a}}=m{0}}=m{A}_\mu-m{B}_\mu\delta_{m{a}m{3}}$$
 .

There are three allowed gauge mass terms on the basis of symmetry

$$h_0^2, h_3^2, h_1^2 + h_2^2,$$

but only one linear combination of them gives rise to a power-counting renormalizable lagrangian

$$h_0^2 + \vec{h}^2 = rac{1}{2} \mathrm{Tr} \Big[\left(D_\mu H
ight)^\dagger D_\mu H \Big] \,.$$

Lessons from the Nonlinear Sigma Model Subtraction Strategy

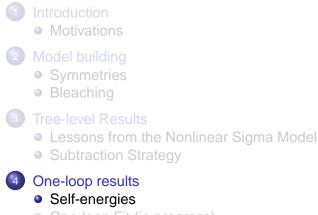
(日)

Fermionic Sector

- The couplings of the fermions to the gauge bosons are those of the SM. (Every possible anomalous coupling is forbidden by the wpc).
- There are no fermion-Higgs couplings, ψψH, but there are non-polynomial couplings of the fermions with the unphysical scalars, ψψ√(v_D² - φ²).
- The effective degree of divergence of the fermions in the wpc bound is 1 instead of 3/2.

Self-energies One-loop Fit (in progress)

Outline



One-loop Fit (in progress)

< □ > < 同 >

→ ∃ > < ∃ >

Self-energies One-loop Fit (in progress)

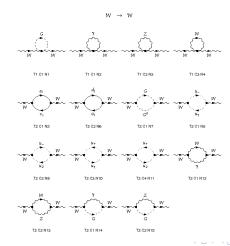
Physical Unitarity

- The 't Hooft gauge can be worked out (D. B., R. Ferrari and A. Quadri, arXiv:0712.1410).
- In the Landau gauge the unphysical modes stay massless. In this way we have checked the cancellation of the unphysical contributions to the W[±] and Z self-masses, for arbitrary values of κ (physical unitarity).
- The photon stays massless, i.e. the photon self-energy vanishes on its mass-shell.
- The self-masses of the gauge particles are gauge independent.

< ロ > < 同 > < 回 > < 回 > .

Self-energies One-loop Fit (in progress)

W self-energy



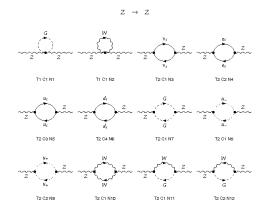
Daniele Bettinelli Nonlinearly realized EW model

지 사실에서 들어야.

€ 990

Self-energies One-loop Fit (in progress)

Z self-energy



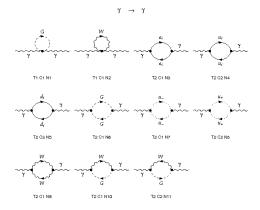
Daniele Bettinelli Nonlinearly realized EW model

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Self-energies One-loop Fit (in progress)

Photon self-energy



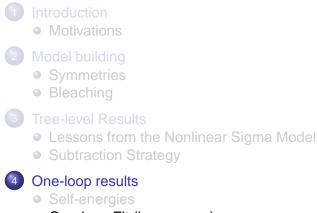
Daniele Bettinelli Nonlinearly realized EW model

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Self-energies One-loop Fit (in progress)

Outline



One-loop Fit (in progress)

→ ∃ > < ∃ >

< □ > < 同 >

Self-energies One-loop Fit (in progress)

Free Parameters

- In the bosonic sector our model has four free parameter (g_1, g_2, M, κ) , while in the SM there are only three of them $(\kappa = 0)$, but then there is the Higgs mass.
- The free parameters of the fermionic sector coincide with those of the SM, in particular there are the fermion masses and the CKM matrix.
- A change in the scale Λ cannot be compensated by a shift in the tree-level parameters. Thus also Λ has to be kept as an additional parameter to be fitted against experiments.

< ロ > < 同 > < 回 > < 回 > .

Self-energies One-loop Fit (in progress)

The fit strategy

- The aim of the fit is to assess the impact of the second mass parameter on the radiative corrections.
- We include the self-energy corrections only, no vertex correction (QED,QCD,EW) is taken into account.
- $\alpha_{EM}(0)$ and G_{μ} are used to fix g_1 and g_2 .
- Massless fermions (except for m_t = 174.2GeV) are considered.
- $M_W = g_2 M$, κ , Λ are fitted over the leptonic asymmetries.

・ロト ・聞 と ・ ヨ と ・ ヨ と

Self-energies One-loop Fit (in progress)

Results

Tree level fit

$$\chi^2 = 3824.4,$$

 $M_W = (79.02 \pm 0.02) GeV,$
 $\kappa = 0.0353 \pm 0.0004.$ (1)

One-loop fit

$$\chi^2 = 10.2,$$

 $M_W^{(0)} = (77.541 \pm 0.004) GeV,$
 $\kappa = 0.0107 \pm 0.0001,$
 $\Lambda = (242.6 \pm 0.5) GeV.$ (2)

ヘロト 人間 とくほ とくほ とう

∃ 990

Self-energies One-loop Fit (in progress)

Observ.	Exp.value	Tree-level	χ^2_{0L}	One-loop	χ^2_{1L}
M_W (GeV)	80.450	79.044	1782.5	80.414	0.71
	80.392				
M _Z (GeV)	91.1876	91.188	0.0006	91.188	0.002
A ^e _{FB}	0.0145	0.0356	71.03	0.0169	0.922
A_{FB}^{μ}	0.0169	0.0356	206.26	0.0169	0
$A_{FB}^{ au}$	0.0188	0.0356	97.31	0.0169	1.25
s ²	0.2324	0.2224	68.86	0.2311	3.27
	0.2238				
A _e	0.15138	0.2178	1248.94	0.1501	0.85
	0.1544				
	0.1498				
A_{μ}	0.142	0.2178	25.52	0.1501	0.29
$A_{ au}$	0.136	0.2178	324.90	0.1501	2.98
	0.1439				

- The nonlinearly realized EW model can be symmetrically subtracted to all orders of perturbation theory.
- The tree-level action is unique and depends on a finite number of free parameters. At variance with the SM there are two gauge mass terms.
- The second mass parameters has a sizeable effect on the one-loop radiative corrections.

- Is there a renormalization group equation for the proposed subtraction scheme?
- Does this model become nonperturbative around 1 TeV (providing a way to unitarize W – W scattering) ?
- Is it possible to generalize the proposed subtraction scheme to other groups (e.g. SU(5)) ?