Heavy Quarks Above the "Top" at Hadron Colliders

Anupama Atre Fermilab

In collaboration with Kaustubh Agashe, Marcela Carena, Tao Han, Jose Santiago

Outline

- Introduction
- Tevatron
- LHC
- Future analysis
- Conclusion

Introduction

- Standard Model of particle interactions is very successful
- Agrees remarkably well with experiments
- Not the whole story dark matter, neutrino mass....
- Hierarchy problem

Heavy Quarks in New Physics

- In the era of hadron colliders!
- Chiral quarks couplings to light quarks very constrained
- Vector like fermions many BSM scenarios
- Eg: SM + two vector like doublets

 $(\chi^{u}_{L,R}, \chi^{d}_{L,R})_{7/6} (q^{u}_{L,R}, q^{d}_{L,R})_{1/6}$ $M_{\chi} = M_{q} \text{ and } m = m_{\chi u} = m_{qu} >> m_{u}$ $\chi \text{ and } q \text{ mix only with } u_{R}$

• Appear in RS models, e.g Carena, Ponton, Santiago, Wagner

We study generic heavy quarks!

What we study

• Generic heavy quarks with arbitrary couplings

$$\frac{g}{\sqrt{2}}W^{+}_{\mu}(\kappa_{uD}\bar{u}_{R}\gamma^{\mu}D_{R} + \kappa_{Ud}\bar{U}_{R}\gamma^{\mu}d_{R}) + \frac{g}{2c_{W}}Z_{\mu}(\kappa_{uU}\bar{u}_{R}\gamma^{\mu}U_{R} + \kappa_{dD}\bar{d}_{R}\gamma^{\mu}D_{R}) + \text{h.c.}$$

- D_i : charge -1/3 heavy quarks that mix with SM quark *of* i^{th} generation
- U_i : charge 2/3 heavy quarks that mix with SM quark of i^{th} generation
- Study both CC and NC processes for Tevatron and LHC

Signal:
$$2j + \ell + \mathbb{E}_T$$

Cuts

Basic Cuts:

 $\begin{array}{ll} p_{T}(jet) > 15 \; GeV & |\eta_{jet}| < 3 & \Delta R_{jj} > 0.7 \\ p_{T}(lep) > 15 \; GeV & |\eta_{lep}| < 2 & \Delta R_{j\ell} > 0.5 \\ p_{T}(miss) > 15 \; GeV \end{array}$

Smearing:

Energy resolution parameterized by:
$$\frac{\Delta E}{E} = \frac{a}{\sqrt{E}} \oplus b$$

ECAL:
$$a = 13.5\%$$
 $b = 1.5\%$ HCAL: $a = 75\%$ $b = 3\%$

Fermilab - Mar 2008

Fermilab - Mar 2008

channels	Basic cuts (9)	High p_T (10)	m_Q (11)
$CC D \rightarrow W^{\pm}q$	1.49×10^{3}	1.09×10^{3}	9.06×10^2
$CC \ U \rightarrow W^{\pm}q$	3.08×10^2	$2.19\ \times 10^2$	$1.81\ {\times}10^2$
$W^{\pm} + 2j$	6.81×10^4	5.54×10^2	$1.27\ \times 10^2$
$W^{\pm}W^{\mp}(\rightarrow 2j)$	1.50×10^3	9.32	8.59×10^{-1}
$W^{\pm}Z(\rightarrow 2j)$	2.41×10^2	2.99	3.15×10^{-1}
single top: $W^{\pm}b \ j$	$3.58\ {\times}10^2$	1.34	-
$\operatorname{NC} D \to Z(\to \ell \ell)q$	7.06×10^1	4.96×10^1	$4.92\ {\times}10^{1}$
NC $U \to Z(\to \ell \ell)q$	$1.78~{\times}10^2$	1.27×10^2	$1.26~{\times}10^2$
$Z(\rightarrow \ell\ell) + 2j$	6.06×10^{3}	5.89×10^{1}	7.46
$Z(\to \ell\ell)W^{\pm}(\to 2j)$	6.42×10^{1}	4.64×10^{-1}	6.12×10^{-2}
$Z(\to \ell\ell)Z(\to 2j)$	2.83×10^1	3.65×10^{-1}	3.61×10^{-2}
NC $D \rightarrow Z(\rightarrow \nu \nu)q$	2.47×10^2	1.74×10^2	1.44×10^2
${\rm NC}\; U \to Z (\to \nu \nu) q$	$6.24~{\times}10^2$	$4.44~{\times}10^2$	$3.68\ \times 10^2$
$Z(\rightarrow \nu\nu) + 2j$	$2.45~{\times}10^4$	$2.62\ \times 10^2$	6.91×10^1
$Z(\rightarrow \nu \nu)W^{\pm}(\rightarrow 2j)$	$2.62\ \times 10^2$	1.95	$1.82\ \times 10^{-1}$
$Z(\rightarrow \nu \nu)Z(\rightarrow 2j)$	1.13×10^2	1.65	2.16×10^{-1}

Current Constraints

- Searches for extra quarks
 - Limits on b` are around 250 GeV from $1 fb^{-1}$ data
 - Limits are from $b \rightarrow b Z \mod d$
 - $\text{No } b \rightarrow Wj \text{ mode analysis available}$

http://www-cdf.fnal.gov/physics/exotic/exotic.html

• Limits on a $t`(\rightarrow Wb)$ are 265 GeV with about $1 fb^{-1}$

http://www-cdf.fnal.gov/physics/new/top/top.html

Further analysis in progress

- Sensitivity at LHC similar study but different challenges
- Low/Intermediate mass and High mass
- Heavy quarks that mix with second and third generations
 - c-tagging, third generation bkg
- Studies including ISR/FSR, showering on going
- Quarsk with exotic charges (5/3) reconstruct charge of exotic quark via same sign leptons

Conclusions

- Considered single production of heavy quarks with arbitrary coupling
- Single production has enhanced sensitivity compared to QCD pair production
- Can probe heavy quark mass up to 800 GeV at the Tevatron
- Enhanced sensitivity at LHC plus exotic charge quarks
- Heavy quarks can be found in many new physics scenarios
 Example: Light Kaluza-Klein quarks in Randall-Sundrum models

We can still discover new physics at the Tevatron!

Supplementary Slides

$$\begin{split} X^{uL}_{ij} &= \delta_{ij} - \frac{v^2}{\Lambda^2} V_{ik} (\alpha^{(1)}_{\phi q} - \alpha^{(3)}_{\phi q})_{kl} V^{\dagger}_{lj}, \\ X^{uR}_{ij} &= -\frac{v^2}{\Lambda^2} (\alpha_{\phi u})_{ij}, \\ X^{dL}_{ij} &= \delta_{ij} + \frac{v^2}{\Lambda^2} (\alpha^{(1)}_{\phi q} + \alpha^{(3)}_{\phi q})_{ij}, \\ X^{dR}_{ij} &= \frac{v^2}{\Lambda^2} (\alpha_{\phi d})_{ij}, \\ W^{L}_{ij} &= \tilde{V}_{ik} (\delta_{kj} + \frac{v^2}{\Lambda^2} (\alpha^{(3)}_{\phi q})_{kj}), \\ W^{R}_{ij} &= -\frac{1}{2} \frac{v^2}{\Lambda^2} (\alpha_{\phi \phi})_{ij}, \\ Y^{u}_{ij} &= \delta_{ij} \lambda^{u}_{j} - \frac{v^2}{\Lambda^2} \left(V_{ik} (\alpha_{u\phi})_{kj} + \frac{1}{4} \delta_{ij} [V_{ik} (\alpha_{u\phi})_{kj} + (\alpha_{u\phi})^{\dagger}_{ik} V^{\dagger}_{kj}] \right), \\ Y^{d}_{ij} &= \delta_{ij} \lambda^{d}_{j} - \frac{v^2}{\Lambda^2} \left((\alpha_{d\phi})_{ij} + \frac{1}{4} \delta_{ij} (\alpha_{d\phi} + \alpha^{\dagger}_{d\phi})_{ij} \right), \end{split}$$

U

DY

 $\frac{1}{-\frac{1}{3}}$

U

D

 $\frac{1}{3}$

