Program Element(s): Hazards Survey/Hazards Assessment; Consequence Assessment Rev. 0 Approved: 7/10/07 QUESTION: When released to the atmosphere, uranium hexafluoride (UF₆) reacts with water vapor and undergoes hydrolysis producing hydrogen fluoride (HF) and uranyl fluoride (UO₂F₂). What Protective Action Criterion (PAC) and Threshold for Early Lethality (TEL) value(s) should be used when analyzing UF₆ releases for Emergency Planning Hazards Assessments (EPHAs)? **ANSWER:** The plume resulting from a release of UF₆ to the atmosphere will be a mixture of UF₆, UO_2F_2 and HF in proportions that vary, depending on the rate of hydrolysis and distance from the release point. According to supporting documentation, the development of the AEGL values for UF₆ considered the following: - 1) Inhaled UF₆ produces biological damage through its hydrolysis products (UO₂F₂ and HF); - 2) Inhaled UF₆ is quickly hydrolyzed in the airways and lungs; and - 3) The dominant biological effect that is the basis for the AEGL-2 value (kidney damage) is attributed to the intake of the soluble uranium compound UO_2F_2 . Since no AEGL values are currently available for UO₂F₂ and because of the disparity (cf. ANS presentation cited below) between the TEEL-2 value for UO₂F₂ and the AEGL-2 value for UF₆, the <u>AEGL-2 and -3 values for UF₆ should take precedence in estimating health impacts from UF₆ and UO₂F₂. This preference for AEGL values over TEEL values reflects a greater level of confidence associated with AEGLs, which are developed through a rigorous, peer-reviewed assessment of basic toxicological data. In contrast, TEELs are meant to be conservative default values developed primarily using other exposure limits, with some consideration of selected toxicological data. TEELs are intended for use when no AEGL or ERPG is available for a substance. With respect to exposures to the other hydrolysis component HF, since the hydrolysis products can be considered to act independently (i.e., they affect different target organs), using the UF₆ AEGL-2 and AEGL-3 as PAC and TEL values will be conservative with regard to HF exposure at concentrations near the PAC and TEL values.</u> Based on the information presented above, the transformation of UF₆ to its hydrolysis products during transport is not a major consideration for emergency planning and response purposes, since the health effect from inhaling a given concentration of UF₆ gas is expected to be the same as for inhalation of the <u>equivalent concentrations of the two hydrolysis products</u>. If, for example, an atmospheric transport model calculates the plume concentrations of either the two hydrolysis products or total "soluble uranium," those results should be converted to an equivalent UF₆ concentration, which should then be compared to the UF₆ AEGL-2 and -3 values to make planning and response decisions. Rev. 0 Approved: 7/10/07 ## **DOE O 151.1C FAQ** Program Element(s): Hazards Survey/Hazards Assessment; Consequence Assessment Rev. 0 Approved: 7/10/07 The technical basis for this recommended approach is described in the paper entitled *Proposed Department of Energy Protective Action Criteria for Uranium Hexafluoride* published in the proceedings of the American Nuclear Society (ANS) International Joint Topical Meeting on Emergency Preparedness and Response and Robotic and Remote Systems (February 11-16, 2006)...