MARSSIM Final Status Survey Design: Determining the Need for Additional Soil Samples Based on Scan MDC

Health Physics Society meeting in Cleveland, OH Decommissioning Section Session June 13, 2001
Eric W. Abelquist

Sign Test - Co-60 and Am-241 in Soil (Class 1)

- Site contaminants: Co-60 and Am-241
- Class 1 survey unit area is $1,500 \mathrm{~m}^{2}$
- Two strategies for determining need for additional samples based on scan MDCs
- RESRAD version 5.95 used to get DCGLs
- $3.4 \mathrm{pCi} / \mathrm{g}$ for Co-60
- $11.8 \mathrm{pCi} / \mathrm{g}$ for Am-241

Sign Test - DQO Inputs

- Unity rule is used for survey design
- Characterization data used for planning: Survey Unit
Co-60 $\quad 1.1 \pm 0.4$ (1б)
Am-241 3.8 ± 0.8 (1 σ)
- Type I and II decision errors set at 0.05

Calculate the Relative Shift

\square LBGR is set at expected concentration:

$$
1.1 / 3.4+3.8 / 11.8=0.65
$$

\square Standard deviations from survey unit are normalized according to MARSSIM eqn I-2:

$$
\sigma^{2}=\left(\frac{\sigma_{c_{0}-60}}{D C G L_{c_{0}-60}}\right)^{2}+\left(\frac{\sigma_{A m-241}}{D C G L_{A m-241}}\right)^{2}
$$

Calculate the Relative Shift (cont.)

- Normalized standard deviation is:
$\sigma^{2}=\left(\frac{0.4}{3.4}\right)^{2}+\left(\frac{0.8}{11.8}\right)^{2}=0.0184 ; \quad \sigma=0.14$
- $\Delta / \sigma=(1-0.65) / 0.14=2.5$
- MARSSIM Table 5.5 provides $\mathrm{N}=15$

Assess Data Needs for Elevated Measurement Comparison Test

- $1.25^{\prime \prime} \times 1.5^{\prime \prime} \mathrm{NaI}$ used for scans; scan MDC for Co-60 is $5.8 \mathrm{pCi} / \mathrm{g}$ and for Am-241 is 45 $\mathrm{pCi} / \mathrm{g}$
- Area bounded by systematic samples, a^{\prime}, is $1500 / 15=100 \mathrm{~m}^{2}$
- Area factors associated with a' are:
- 1.22 for Co-60 and 1.34 for Am-241

Area Factors for Co-60 and Am241 (from RESRAD)

Area (m^{2})	C0-60	Am-24
3000	1	1
1000	1.02	1.00
300	1.10	1.06
100	1.22	1.34
30	1.58	2.46
10	2.33	4.39
3	4.95	9.50
1	11.6	159

Assess data needs for EMC

- Determine required Scan MDC:
(DCGL ${ }_{W}$ Area Factor)
Co-60: $(3.4 \mathrm{pCi} / \mathrm{g})(1.22)=4.15 \mathrm{pCi} / \mathrm{g}$
Am-241: $(11.8 \mathrm{pCi} / \mathrm{g})(1.34)=15.8 \mathrm{pCi} / \mathrm{g}$
- Actual scan MDCs for both radionuclides are greater than the required scan MDCs we need additional samples for EMC

Strategies for Determining

Number of Additional Samples

- Determine which of the two radionuclides is the "driver" for the additional samples
- Calculate ratio of actual-to-required scan MDC
- Radionuclide with largest ratio is the driver
- Determine reasonable ratio (or range of ratios) between the radionuclides
- Scan MDC, DCGL, and area factors are determined for specific radionuclide mixture

Determine "driver" for the additional samples

- Actual-to-required scan MDCs:
- Co-60: 5.8/4.15 = 1.4
- Am-241: $45 / 15.8=2.8$
- Therefore, Am-241 is the driver
- $\mathrm{AF}=$ actual scan MDC/DCGL,
$\mathrm{AF}=45 / 11.8=3.81$
- Interpolate to get area that corresponds to this AF: a^{\prime} is $13.1 \mathrm{~m}^{2}$; new sample size $=1500 / 13.1=115$

Determine reasonable ratio (or range of ratios) between the radionuclides

- Requires determination of the scan MDC for a specific mixture of Co-60 and Am-241
...and modeling to determine $\mathrm{DCGL}_{\mathrm{W}}$ and area factors for this specific mixture
(simply stated, this approach is more work!)
- Let's briefly review scan MDC calculations

Scan MDC Determination

- Minimum detectable count rate based on signal detection theory \& human factors(NUREG -1507)
- Relate MDCR in cpm to minimum detectable exposure rate (MDER) based on NaI characteristics
- Microshield ${ }^{\mathrm{TM}}$ to model specific radionuclide(s) concentration and geometry - yields exposure rate
- Scan MDC $=$ MDER/CF, where CF is the exposure rate to concentration correction factor

Scan MDCs For $1.25 " \times 1.5 " \mathrm{NaI}$ Detector

Radionuclide

Cs-137
Am-241
Th-232
Co-60
Processed Uranium
Enriched Uranium (3\%)
Ra-226

Scan MDC (pCi/g)
10.4
44.6
2.8
5.8

115
137
4.5

Determine Additional Sample Needs for 30\% Am-241 and 70\% Co-60

- Based on process knowledge and characterization, 95% confidence level on fractional amount of Am-241: 0.3 to 0.8
- Determine additional sample needs for lower bound ratio: 30\% Am and 70\% Co
- Calculate scan MDC - expect it to be between $5.8 \mathrm{pCi} / \mathrm{g}(\mathrm{Co}-60)$ and $45 \mathrm{pCi} / \mathrm{g}$ (Am-241): scan MDC $=7.8 \mathrm{pCi} / \mathrm{g}$

Determine Additional Sample Needs for 30\% Am and 70\% Co (cont.)
$\square \mathrm{DCGL}_{\mathrm{W}}$ for $30 \% \mathrm{Am} / 70 \% \mathrm{Co}=4.8 \mathrm{pCi} / \mathrm{g}$

- AFs also generated for this mixture; the AF for $100 \mathrm{~m}^{2}$ (initial a^{\prime}) is 1.22
- Required scan MDC: $(4.8)(1.22)=5.9$ $\mathrm{pCi} / \mathrm{g}$ - need more samples
\square New $\mathrm{AF}=7.8 / 4.8=1.62 ;$ new a^{\prime} is $29 \mathrm{~m}^{2}$; new sample size $=1500 / 29=52$ samples

Determine Sample Needs for Various Am-241 to Co-60 Ratios

- Scan MDC for multiple radionuclides involves Microshield ${ }^{\mathrm{TM}}$ modeling or by observation

- For 80% Am/20\% Co: scan MDC using Microshield ${ }^{\text {TM }}$ was 19.1 ; using eqn $19.2 \mathrm{pCi} / \mathrm{g}$

Additional Sample Needs as a Function of Am/Co Mixture

Mixture DCGL Scan MDC Add'l Samples $\begin{array}{llll}0 \% \mathrm{Am} & 3.4 & 5.8 & 62\end{array}$ $\begin{array}{llll}30 \% A m & 4.8 & 7.8 & 52\end{array}$
$50 \% \mathrm{Am} \quad 6.6$
65% Am $\quad 9.3$
80% Am $\quad 14.7$
90\%Am 13.1
100% Am 11.8
10.3

42
$13.4 \quad 29$
19.2
$26.9 \quad 35$
45

Conclusions

- Using Am-241 as the "driver" requires 115 additional samples. . .no effort to get scan MDC for multiple radionuclides
- If range of ratios between Am and Co can be justified (e.g., 30 to 80% Am-241), the conservative additional sample size is 52...but approach requires effort to get scan MDC, DCGL, and Area Factors

