
Reconfigurable Computing
Applications for High
Perfomance Technical

Computing

Troy Benjegerdes, Sean Stanek

Problem Background

 Apply Reconfigurable Computing to High-
end Supercomputing applications

 Large, complex legacy codes
 64 bit floating point
 Multi-processor parallelism

Goals/Objectives

 Examine GAMESS computational chemistry code
as example code

 Computational chemistry is a 'hard' problem to
deal with.. if a methodology to accelerate this
problem for HPC can be developed, it may be
applicable to most HPC type codes

 (FFT, image processing, etc are relatively
'easy')

 Profile the target application
 Develop a projection on possible speedups
 Target a subrouting for execution on an FPGA

Initial Assumptions

 Primarily double precision floating point
math (precision is critical!!)

 Chemistry codes use many transcendental
functions (exp, pow, sqrt)

 Could reasonably offload at least one
transcendental function into an FPGA

 Initial estimates are that one function will use
up most of currently available FPGA's

 FPGA area continues to increase
 Signifigant advantages as fpga area grows

Experimental Setup

 Get a profile of calls to transcendental
functions vs calls to floating point
multiply/add

 Problem: transcendental functions are in
libm, floating point is in hardware

 Solution: Use software floating point!
 Not particularly trivial
 Requires rebuilding GCC, a c library (in this

case uCLibc, http://www.uclibc.org), Fortran
libg2c libraries, and convincing all these parts
to output profileing data

Profileing GAMESS

 System used: Debian Linux, 667mhz
PPC7455 (g4) CPU

 Time to build GAMESS + uCLibc + libg2c
measured in hours

 34 example simulations provided with
GAMESS, testing various code paths and
type of simulations

Achievements

 Profiling results
 Nothing stuck out except MAIN, and software

floating point subroutines
 VERY dependant on type of run

 projections of exp() performance on fpga
 matrix-multiply shows power and total GFLOPS

advantage over Pentium IV on Virtex2Pro

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Softfloat vs Hardfloat run time ratio

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

0

10

20

30

40

50

60

70

80

90

100

GAMESS w/softfloat profile results, % of time in function

Multiply %

Add %

sqrt %

exp %

Implementation

 Can be implemented on modern large FPGAs
 exp(x) = ex = 2x*log2e

 Generic algorithm tweaked and optimized for
hardware

 Sixty-four 64-bit floating-point multipliers
 Integer adder and variable shifter
 128-entry array of 64-bit floating-point numbers

 7 pipeline stages of multipliers
 Tree-style convolution

 1 pipeline stage for add & shift

Space Analysis

 Dillon Engineering 64-bit floating-point
multiply cores take 783 slices per multiply

 Roughly 50,000 slices are needed just for the
multiply logic

 Other logic is less space significant
 Largest Virtex II Pro part has 55,616 slices
 For smaller FPGAs, the algorithm could be

modified to reuse the multipliers at the cost
of speed

Time Analysis

 Multiply stages take between 8-23 clocks
 Overall latency of ~57-162 clocks
 Theoretical throughput of 1 result per clock
 Clock speeds reaching 130MHz - 200MHz

 2.0 GHz Opteron @ ~37M results/sec (54clk/op)
 550 MHz Athlon @ 7.6M results/sec (72clk/op)
 1.2 GHz Power4 @ 5.3M results/sec (226clk/op)
 667 MHz G4 7455 @ 2.7M results/sec (247clk/op)
 400 MHz G4 @ 1.8M results/sec (222clk/op)

Problems

 Figuring out how to integrate the FPGA with
software

 Memory bandwidth (200M * 64 bits =
12.8Gbps)

 Software must have a need for this many ops
 Design could be extended to include more

complex operations with less need for data
 Quick operations with low latency might be

difficult

Future work

 Run tightly-coupled on a VirtexII-Pro
 Use PPC-softfloat build, but replace _muldf3,

_adddf3, exp, and sqrt with fpga-memory
mapped operations?

 Needs some compiler/tool magic to deal with
pipelineing issues

 Verify correct operation with pipelined-C
code simulation of exp() on fpga

 Examine Feasability of re-codeing portions
to allow deeply-pipelined exp and sqrt
functions

