
Reconfigurable Computing
Applications for High
Perfomance Technical

Computing

Troy Benjegerdes, Sean Stanek

Problem Background

 Apply Reconfigurable Computing to High-
end Supercomputing applications

 Large, complex legacy codes
 64 bit floating point
 Multi-processor parallelism

Goals/Objectives

 Examine GAMESS computational chemistry code
as example code

 Computational chemistry is a 'hard' problem to
deal with.. if a methodology to accelerate this
problem for HPC can be developed, it may be
applicable to most HPC type codes

 (FFT, image processing, etc are relatively
'easy')

 Profile the target application
 Develop a projection on possible speedups
 Target a subrouting for execution on an FPGA

Initial Assumptions

 Primarily double precision floating point
math (precision is critical!!)

 Chemistry codes use many transcendental
functions (exp, pow, sqrt)

 Could reasonably offload at least one
transcendental function into an FPGA

 Initial estimates are that one function will use
up most of currently available FPGA's

 FPGA area continues to increase
 Signifigant advantages as fpga area grows

Experimental Setup

 Get a profile of calls to transcendental
functions vs calls to floating point
multiply/add

 Problem: transcendental functions are in
libm, floating point is in hardware

 Solution: Use software floating point!
 Not particularly trivial
 Requires rebuilding GCC, a c library (in this

case uCLibc, http://www.uclibc.org), Fortran
libg2c libraries, and convincing all these parts
to output profileing data

Profileing GAMESS

 System used: Debian Linux, 667mhz
PPC7455 (g4) CPU

 Time to build GAMESS + uCLibc + libg2c
measured in hours

 34 example simulations provided with
GAMESS, testing various code paths and
type of simulations

Achievements

 Profiling results
 Nothing stuck out except MAIN, and software

floating point subroutines
 VERY dependant on type of run

 projections of exp() performance on fpga
 matrix-multiply shows power and total GFLOPS

advantage over Pentium IV on Virtex2Pro

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Softfloat vs Hardfloat run time ratio

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

0

10

20

30

40

50

60

70

80

90

100

GAMESS w/softfloat profile results, % of time in function

Multiply %

Add %

sqrt %

exp %

Implementation

 Can be implemented on modern large FPGAs
 exp(x) = ex = 2x*log2e

 Generic algorithm tweaked and optimized for
hardware

 Sixty-four 64-bit floating-point multipliers
 Integer adder and variable shifter
 128-entry array of 64-bit floating-point numbers

 7 pipeline stages of multipliers
 Tree-style convolution

 1 pipeline stage for add & shift

Space Analysis

 Dillon Engineering 64-bit floating-point
multiply cores take 783 slices per multiply

 Roughly 50,000 slices are needed just for the
multiply logic

 Other logic is less space significant
 Largest Virtex II Pro part has 55,616 slices
 For smaller FPGAs, the algorithm could be

modified to reuse the multipliers at the cost
of speed

Time Analysis

 Multiply stages take between 8-23 clocks
 Overall latency of ~57-162 clocks
 Theoretical throughput of 1 result per clock
 Clock speeds reaching 130MHz - 200MHz

 2.0 GHz Opteron @ ~37M results/sec (54clk/op)
 550 MHz Athlon @ 7.6M results/sec (72clk/op)
 1.2 GHz Power4 @ 5.3M results/sec (226clk/op)
 667 MHz G4 7455 @ 2.7M results/sec (247clk/op)
 400 MHz G4 @ 1.8M results/sec (222clk/op)

Problems

 Figuring out how to integrate the FPGA with
software

 Memory bandwidth (200M * 64 bits =
12.8Gbps)

 Software must have a need for this many ops
 Design could be extended to include more

complex operations with less need for data
 Quick operations with low latency might be

difficult

Future work

 Run tightly-coupled on a VirtexII-Pro
 Use PPC-softfloat build, but replace _muldf3,

_adddf3, exp, and sqrt with fpga-memory
mapped operations?

 Needs some compiler/tool magic to deal with
pipelineing issues

 Verify correct operation with pipelined-C
code simulation of exp() on fpga

 Examine Feasability of re-codeing portions
to allow deeply-pipelined exp and sqrt
functions

