text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
Search  
Awards
design element
Search Awards
Recent Awards
Presidential and Honorary Awards
About Awards
Grant Policy Manual
Grant General Conditions
Cooperative Agreement Conditions
Special Conditions
Federal Demonstration Partnership
Policy Office Website


Award Abstract #0233971
Continuous Optical Fractionation of Biological Materials


NSF Org: DBI
Division of Biological Infrastructure
divider line
divider line
Initial Amendment Date: May 22, 2003
divider line
Latest Amendment Date: September 1, 2004
divider line
Award Number: 0233971
divider line
Award Instrument: Continuing grant
divider line
Program Manager: Gerald Selzer
DBI Division of Biological Infrastructure
BIO Directorate for Biological Sciences
divider line
Start Date: June 1, 2003
divider line
Expires: June 30, 2006 (Estimated)
divider line
Awarded Amount to Date: $553113
divider line
Investigator(s): David Grier david.grier@nyu.edu (Principal Investigator)
divider line
Sponsor: University of Chicago
5801 South Ellis Avenue
Chicago, IL 60637 773/702-8602
divider line
NSF Program(s): INSTRUMENTAT & INSTRUMENT DEVP
divider line
Field Application(s):
divider line
Program Reference Code(s): BIOT,9184
divider line
Program Element Code(s): 1108

ABSTRACT

This award supports development of a compact, integrated system for continuous separation of fluid-borne materials such as macromolecules, nanoclusters, colloidal particles, cell fragments and entire living cells. The device is based on optical fractionation, a recently discovered strategy based on differing interactions with light to distinguish and sort specified subpopulations of particles - for example, cells of differing size - within heterogeneous samples (complex mixtures). The device uses arrays of optical traps to selectively deflect materials into microfluidic channels for collection and processing. The basic principle has been demonstrated on the laboratory scale. The current grant will support (1) development of the technology into a less expensive and more compact, turn-key system, and (2) development of protocols for optically fractionating different classes of biomaterials. The optical fractionation instrument offers continuous sample sorting and separation with an unprecedented combination of accuracy, generality, ease of use and cost-effectiveness. Consequently, it should find widespread applications in biological research, ranging from laboratory purification of both synthetic and natural biomolecules to new modes of cell cytometry. In addition to development of the instrument, the project is expected to provide the basis for two doctoral theses and three undergraduate honors theses in biophysics.


PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

(Showing: 1 - 13 of 13).

B. A. Koss and D. G. Grier.  "Optical peristalsis,"  Applied Physics Letters,  v.82,  2003,  p. 3985.

D. G. Grier.  "A revolution in optical manipulation,"  Nature,  v.424,  2003,  p. 810.

D. G. Grier and E. R. Dufresne.  "Method for applying optical gradient forces and moving material,"  U. S. Patent 6,624,940,  2003,  p. 1.

D. G. Grier and S. H. Behrens.  "Optical peristaltic pumping with optical traps,"  U. S. Patent 6,639,208,  2003,  p. 1.

D. G. Grier, E. R. Dufresne, J. E. Curtis and B. A. Koss.  "Apparatus for using optical tweezers to manipulate materials,"  U. S. Patent 6,626,546,  2003,  p. 1.

J. E. Curtis and D. G. Grier.  "Structure of optical vortices,"  Physical Review Letters,  v.90,  2003,  p. 133901.

J. E. Curtis and D. G. Grier.  "Modulated optical vortices,"  Optics Letters,  v.28,  2003,  p. 872.

K. Ladavac and D. G. Grier.  "Colloidal hydrodynamic coupling in concentric optical vortices,"  Europhys. Lett.,  v.70,  2005,  p. 548.

M. Polin, K. Ladavac, S. Lee, Y. Roichman and D. G. Grier.  "Optimized holographic optical traps,"  Optics Express,  v.13,  2005,  p. 5831.

S. Lee and D. G. Grier.  "Flux reversal in a two-state optical thermal ratchet,"  Phys. Rev. E,  v.71,  2005,  p. 060102(R).

S. Lee and D. G. Grier.  "Robustness of holographic optical traps against phase scaling errors,"  Optics Express,  v.13,  2005,  p. 7458.

S. Lee and D. G. Grier.  "One-dimensional optical thermal ratchets,"  J. Phys.: Cond. Matt.,  v.17,  2005,  p. S3685.

S. Lee, K. Ladavac, M. Polin, and D. G. Grier.  "Observation of flux reversal in a symmetric optical thermal ratchet,"  Phys. Rev. Lett.,  v.94,  2005,  p. 110601.


(Showing: 1 - 13 of 13).

 

Please report errors in award information by writing to: awardsearch@nsf.gov.

 

 

Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Web Master | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
April 2, 2007
Text Only


Last Updated:April 2, 2007