AMSR-E Algorithm Development Work

First part of proposal:

Support Production Combined w. TRMM, continue improving ocean algorithm

Second part of proposal

Work on a more physical land algorithm

Cloud resolving Model Database

TRMM PR & Model Database

GPROF2008 Algorithm (All sensors)

Create Data base

Start with observed PR rain profiles and non-raining background
Compute Tb at TMI channels and resolution and compare to observations
Adjust rain profiles to be consistent with PR and TMI
Use adjusted 4 km rain profiles to compute Tb for any sensor
Create Database (raining and non-raining) pixels in 1K SST and 2 mm TPW bins.

Run Retrieval

Determine SST & TPW

Compare observed Tb to dbase entries within $\pm 1K$ (SST) and ± 2 mm (TPW)

Weight of profile depending upon rms of channel difference.

19V Tb (Sim-Obs) "default"

Hurricane Floyd from the GPROF 2008 Retrieval

Hurricane Floyd from the GPROF 2008 Retrieval

Hurricane Floyd Sep 3, 1999 TMI Algorithm Comparison 0.25 x 0.25 gridded

GPROF 2008 vs. GPROF 2004 Retrieval

10E

5E

0

15E

20E

25E

GPROF 2008 vs. GPROF 2004 Retrieval

Oceans (Gprof 2008)

- Will finish Dbase adjust by 9/1/08
- Will develop dbase for higher latitudes by lowering freezing level (i.e. simultaneously lowering SST and TPW).
- Implement and test algorithm for TMI, AMSR-E and SSMI by end of 2008
- Do extensive beta-testing in house before distribution to data systems.
- Reprocess AMSR-E internally (summer of 2009)

Land (Gprof 2012?)

Rainfall Errors over Land

Radar composite

Optimal Estimation Retrievial

$$P(\mathbf{x} | \mathbf{y}) = \frac{P(\mathbf{y} | \mathbf{x})P(\mathbf{x})}{P(\mathbf{y})}$$

- In terms of Bayes' Theorem, the optimal solution maximizes P(x|y) for a given y.
- Maximize P(y|x)P(x) when the cost function is minimized:

$$\Phi = (\mathbf{x} - \mathbf{x}_{\mathbf{a}})^{T} \mathbf{S}_{a}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{a}}) + (\mathbf{y} - \mathbf{f}(\mathbf{x}, \mathbf{b}))^{T} \mathbf{S}_{y}^{-1} (\mathbf{y} - \mathbf{f}(\mathbf{x}, \mathbf{b}))$$

Minimize the differences between the retrieved and a priori states

Minimize the differences between observed and simulated Tbs

Methodology

- 1. Retrieve surface emissivities in the absence of clouds. Use values from previous land emissivity retrievals for validation.
- 2. Use the correlations between emissivities at different channels to create an empirical emissivity model.
- 3. Use empirical emissivity model in an optimal estimation retrieval for the 10.7 GHz horizontally polarized emissivity, column water vapor (CWV) and cloud liquid water (CLW).
- 4. Evaluate the usefulness as a precipitation screen over land.

Surface Emissivity Retrieval

$$Tb = T_{s}\varepsilon e^{\frac{-\tau(0,H)}{\mu}} + T_{a^{\downarrow}}(1-\varepsilon)e^{\frac{-\tau(0,H)}{\mu}} + T_{a^{\uparrow}}$$

$$\varepsilon = \frac{Tb - T_{a^{\uparrow}} - T_{a^{\downarrow}} \times e^{\frac{-\tau(0,H)}{\mu}}}{\frac{-\tau(0,H)}{e} \times (T_{s} - T_{a^{\downarrow}})}$$

$$\varepsilon = \frac{Tb - T_{a^{\uparrow}} - T_{a^{\downarrow}} \times (T_{s} - T_{a^{\downarrow}})}{T_{a^{\downarrow}}}$$

- Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)
 - Level 1 Brightness temperatures
 - 10.65, 18.7, 23.8, 36.5, and 89.0 GHz
 - Horizontal and Vertical polarization
 - Deconvolved to 23.8 GHz footprint
- Atmospheric Infrared Sounder (AIRS)
 - Level 2 Standard Retrieval product
 - Surface temperature, pressure
 - Temperature, pressure, and humidity profiles
- Moderate Resolution Infrared Spectroradiometer (MODIS)
 - 5 km cloud mask product

Emissivity Retrieval Validation

Retrieved surface emissivities over 1 year (2006).

Used results from multiple studies to verify that average retrieved land emissivity values over given periods of time were comparable to previous results.

Selected Study Areas

Location Number	Description	Lat/Lon Boundaries	General Surface Type	
1	Southern Great Plains	34-39 N, 95-100 W	Cropland	
2	Southeastern United States	31-35 N, 82-88W	Deciduous forest	
3 Southwestern United States		32-37 N, 105-110 W	Semi-arid/ desert	

Southern Great Plains

Southern Great Plains, JJA

Season		Precip Detected	No Precip Detected	Success Rate
	$\chi^2 > 35$	1761	3905	80.36%
DJF	$\chi^2 < 35$	673	16975	
	$\chi^2 > 35$	1707	3895	86.81%
MAM	$\chi^2 < 35$	806	29228	
JJA	$\chi^2 > 35$	3625	5974	85.99%
	$\chi^2 < 35$	2781	50142	
SON	$\chi^2 > 35$	2852	6123	84.34%
	$\chi^2 < 35$	2305	52523	

Hits Misses False Alarms Correct Negatives

Southern Great Plains

Successful Non-precipitating case

Successful Precipitating Case

Bad Surface Temperature Input

262

0.85

263

0.90

264

0.95

35 -

34.

260

0.75

261

0.80

Cloud Liquid Water

Southeastern United States

Season		Precip Detected	No Precip Detected	Success Rate
	$\chi^2 > 35$	1673	1570	89.60%
DJF	$\chi^2 < 35$	1261	22705	
	$\chi^2 > 35$	1650	1709	92.62%
MAM	$\chi^2 < 35$	1284	35888	
JJA	$\chi^2 > 35$	1263	1426	93.50%
	$\chi^2 < 35$	1736	44236	
SON	$\chi^2 > 35$	1696	2710	86.68%
	$\chi^2 < 35$	2346	31204	

Southwest United States

■ Hits ■ Misses ■ False Alarms ■ Correct Negatives

	Season		Precip Detected	No Precip Detected	Success Rate
	1	$\chi^2 > 35$	396	9176	67.54%
ľ	DJF	$\chi^2 < 35$	474	19686	
		$\chi^2 > 35$	1125	9637	76.51%
	MAM	$\chi^2 < 35$	801	32865	
	JJA	$\chi^2 > 35$	2212	15712	61.37%
		$\chi^2 < 35$	1574	25252	
	SON	$\chi^2 > 35$	810	6370	69.78%
		$\chi^2 < 35$	301	14596	

Rainrate 37 36 -35 34 33-32. 251 250 252 253 254 255 6.04 12.03 18.02 24.01 30.00 0.05 mm/hr

Low Correlations

Season = JJA		Precip Detected	No Precip Detected	Success Rate
	$\chi^2 > 35$	2212	15712	61.37%
All Channels	$\chi^2 < 35$	1574	25252	
4	$\chi^2 > 35$	326	389	91.40%
Channels	$\chi^2 < 35$	3460	40575	
5	$\chi^2 > 35$	859	1618	89.84%
Channels	$\chi^2 < 35$	2927	39346	

Conclusions

- Retrieved surface emissivities match well to previous study values and exhibit correlations between channels.
- The correlations between channels can be used to create an empirical emissivity model valid for all surface characteristics.
- The empirical emissivity model can be used in a parametric retrieval to screen for precipitation.
- Over land, there are several factors that need to be improved before model is operational.