AMSR-E Science Team Meeting
La Jolla, CA
Sep. 6-8, 2006

Data assimilation of AMSR-E soil moisture and comparison with SMMR results

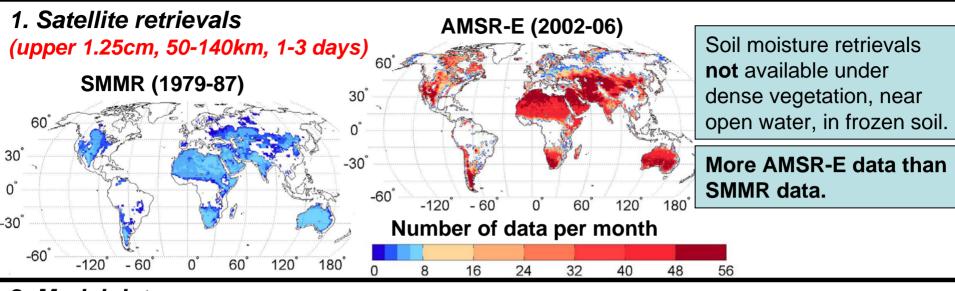
Rolf Reichle^{1,2}
R. Koster¹, P. Liu^{1,3}, S. Mahanama^{1,2}, and E. Njoku⁴

- 1 Global Modeling and Assimilation Office, NASA
- 2 GEST, University of Maryland, Baltimore County
- 3 SAIC
- 4 JPL

Outline

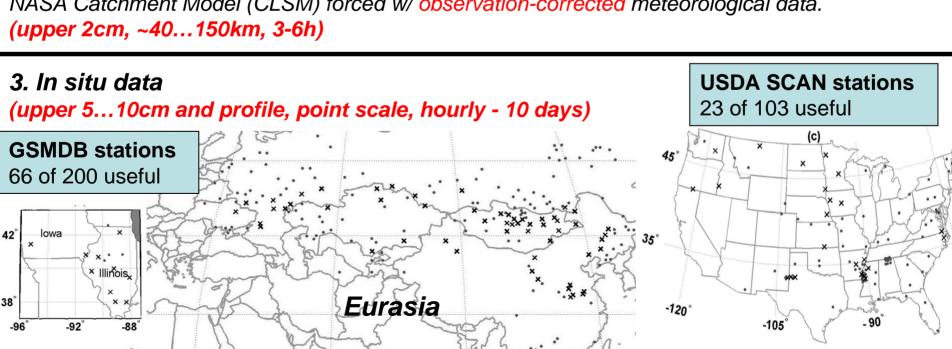
Biases	
Assimilation	

Global soil moisture data sets



2. Model data

NASA Catchment Model (CLSM) forced w/ observation-corrected meteorological data. (upper 2cm, ~40...150km, 3-6h)



Data sources

"SMMR period"

"AMSR-E period"

~2 deg

USDA SCAN

			· ·
		1979-87 (~8.5 years)	2002-06 (~4 years)
Soil moisture retrievals	Sensor	SMMR (Nimbus 7)	AMSR-E (Aqua)
	Frequency	C-Band (6.6 GHz)	X-Band (10.7 GHz)
	Sampling depth	~1.25 cm	~1 cm
	Horiz. Resolution	~150 km	~40 km
	Equator crossing	12 am/pm	1:30 am/pm
	Algorithm	Owe et al., 2001	Njoku et al. (http://nsidc.org)
Land surface model		NASA Catchment (~0.5°)	(same w/ minor updates)
	Author	Berg et al., 2005	GLDAS
Meteorol.	Baseline	Re-analysis (ERA-15)	NASA GEOS NWP analysis
forcing	Observations	Monthly	Daily/pentad
data (obs based)	Precipitation	GPCP satellite/gauge	CMAP (5-day)
	Radiation	SRB (1983-87 only)	AGRMET daily
	Air temp./humid.	CRU	(None)

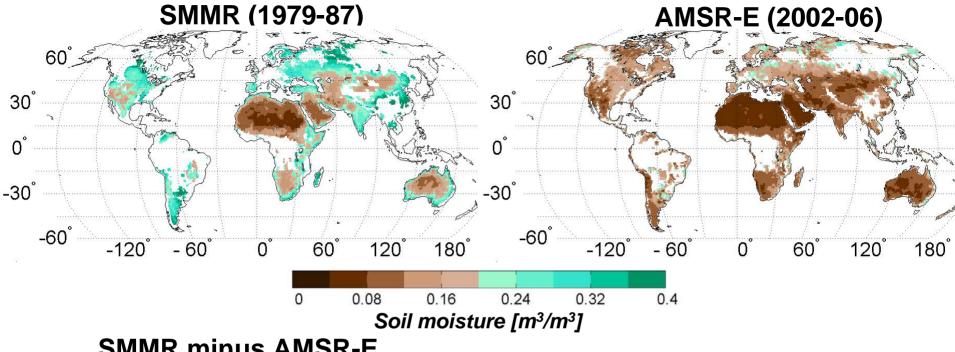
~2 deg

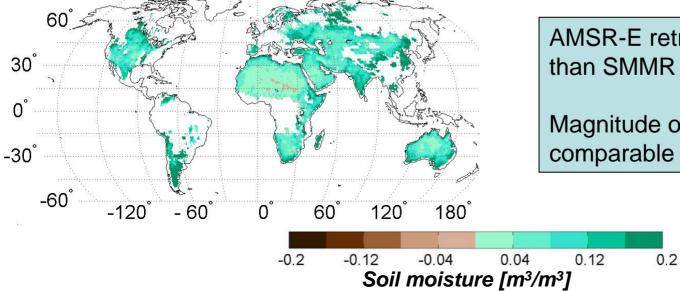
GSMDB

Horiz. resolution

In situ data

Satellite vs. satellite bias (time avg. soil moisture)

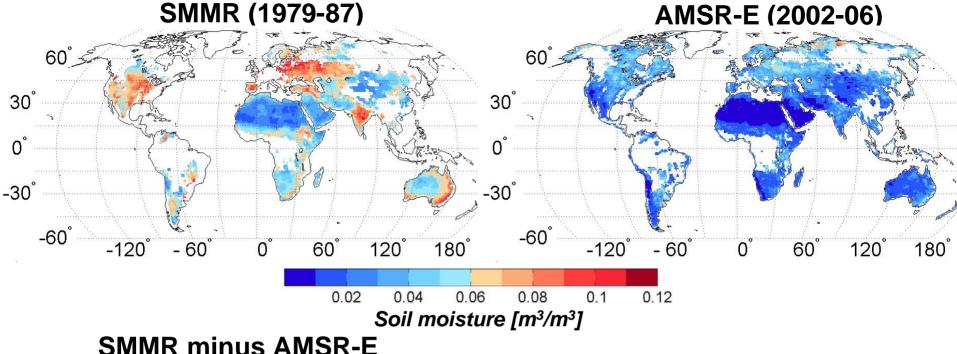




AMSR-E retrievals **much** drier than SMMR retrievals.

Magnitude of differences comparable to dynamic range.

Satellite vs. satellite bias (time avg. soil moisture)

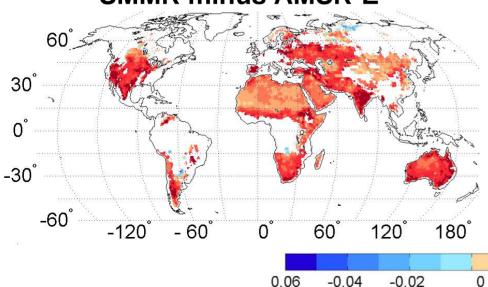


0.02

Soil moisture [m³/m³]

0.04

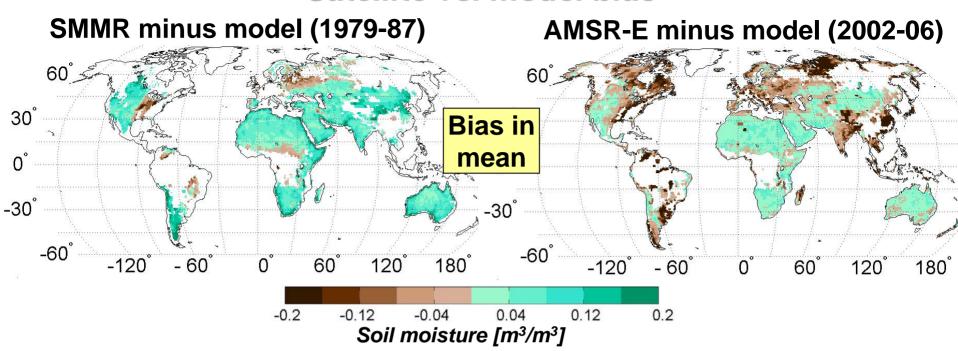
0.06



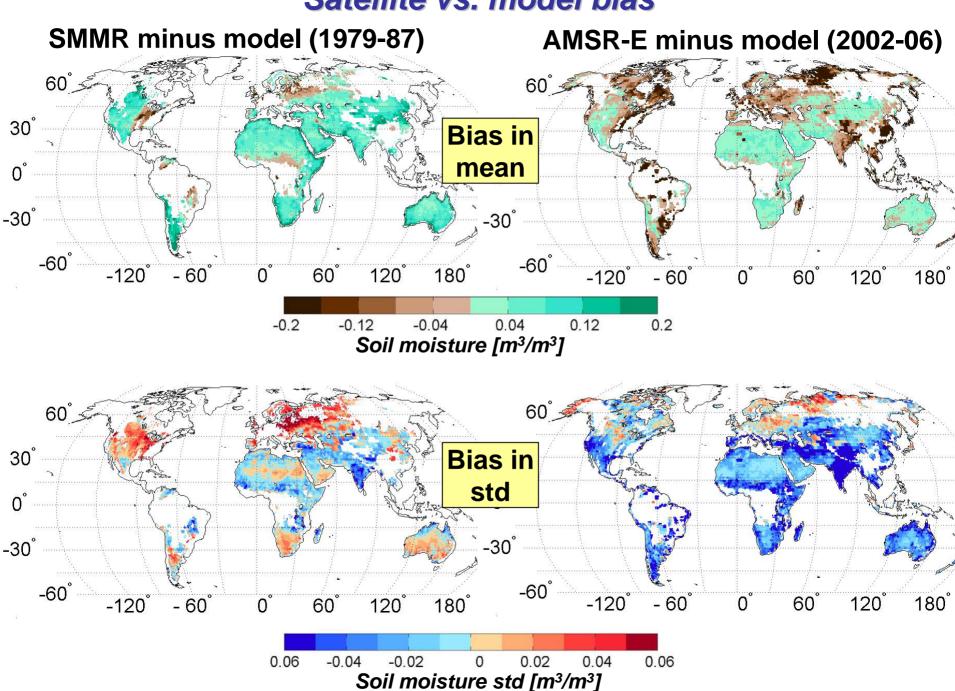
AMSR-E retrievals much less variable than SMMR retrievals.

We found strong biases between AMSR-E and SMMR. For assimilation, we are really interested in satellite vs. model biases.

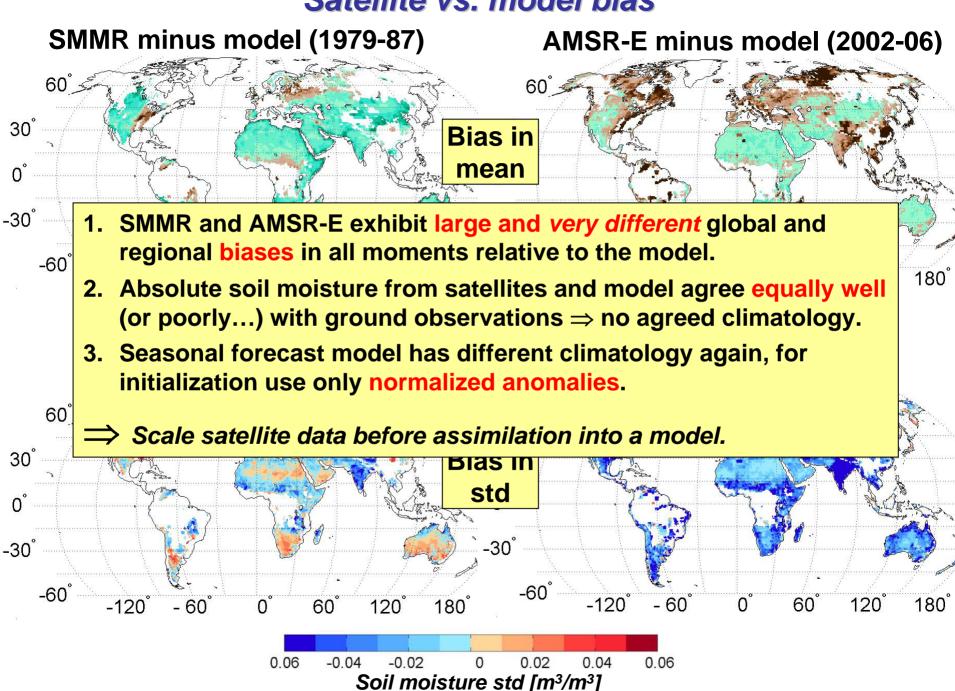
Satellite vs. model bias



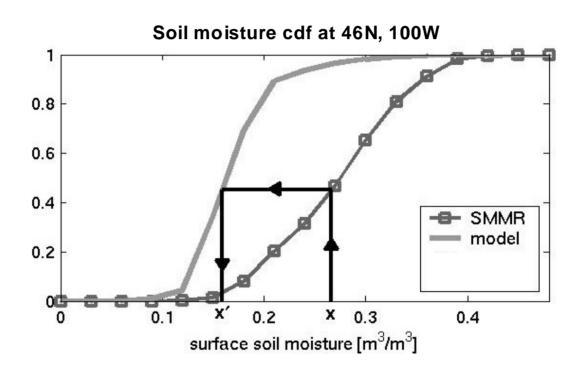
Satellite vs. model bias



Satellite vs. model bias

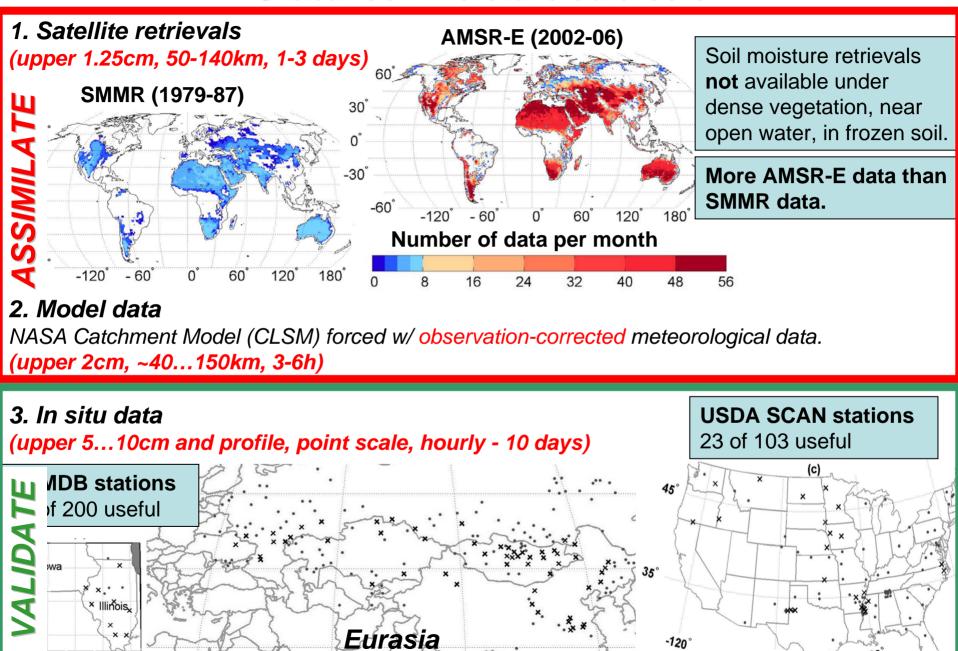


Soil moisture scaling for data assimilation

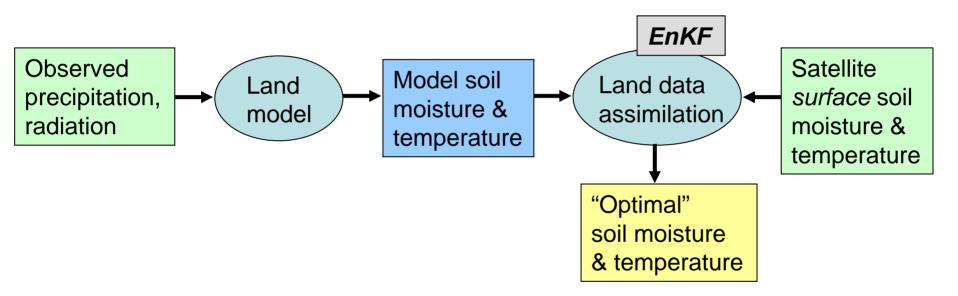


Assimilate percentiles.

Global soil moisture data sets



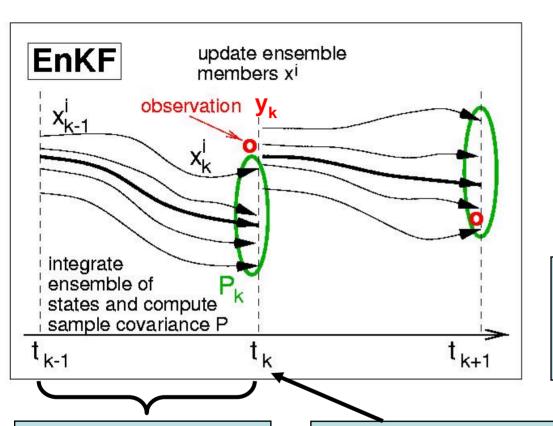
Land data assimilation



Data assimilation with the Ensemble Kalman filter (EnKF):

Consider relative uncertainties in modeled and observed soil moisture.

Soil moisture assimilation



X_k state vector (eg soil moisture)

P_k state error covariance

R_k observation error covariance

Propagation t_{k-1} to t_k :

$$x_k^{i-} = f(x_{k-1}^{i+}) + w_k^{i}$$

w = model error

Update at t_k:

$$x_k^{i+} = x_k^{i-} + K_k(y_k^{i-} - x_k^{i-})$$

for each ensemble member i=1...N

$$K_k = P_k (P_k + R_k)^{-1}$$

with P_k computed from ensemble spread

AMSR-E:	ster, GRL 2005 , in prep. 2006		Anomaly time series correlation coeff. with in situ data [-] (with 95% confidence interval)			Confidence levels: Improvement of assimilation over	
		Ν	Satellite	Model	Assim.	Satellite	Model
AMSR-E (<i>daily</i>)	Surface	23	.38±.02	.43±.02	.50±.02	>99.99%	>99.99%
	Root zone	22	n/a	.40±.02	.46±.02	n/a	>99.99%

AMSR-E:	ster, GRL 2005 , in prep. 2006		Anomaly time series correlation coeff. with in situ data [-] (with 95% confidence interval)			Confidence levels: Improvement of assimilation over	
		N	Satellite	Model	Assim.	Satellite	Model
AMSR-E (<i>daily</i>)	Surface	23	.38±.02	.43±.02	.50±.02	>99.99%	>99.99%
	Root zone	22	n/a	.40±.02	.46±.02	n/a	>99.99%
AMSR-E (monthly)	Surface	12	.41±.08	.50±.09	.57±.08	99.7%	91.1%
	Root zone	11	n/a	.42±.10	.54±.08	n/a	97.9%

SMMR:	Anomaly time series correlation	Confidence levels:		
Reichle & Koster, GRL 2005	coeff. with in situ data [-]	Improvement of		
AMSR-E:	(with 95% confidence interval)	assimilation over		

Satellite

 $.38 \pm .02$

n/a

.41±.08

n/a

 $.32 \pm .03$

n/a

Ν

23

22

12

11

66

33

Reichle et al., in prep. 2006

Surface

Root zone

Root zone

Surface

Root zone

Surface

AMSR-E

AMSR-E

(monthly)

SMMR

(monthly)

(daily)

Model

 $.43 \pm .02$

 $.40 \pm .02$

 $.50 \pm .09$

 $.42 \pm .10$

 $.36 \pm .03$

.32 + .05

Assimilation product agrees better with ground data than satellite or model alone.

Modest increase may be close to maximum possible with *imperfect* in situ data.

Assim.

 $.50 \pm .02$

.46±.02

 $.57 \pm .08$

 $.54 \pm .08$

.43 + .03

 $.35 \pm .05$

Satellite

>99.99%

n/a

99.7%

n/a

99.9%

n/a

Model

>99.99%

>99.99%

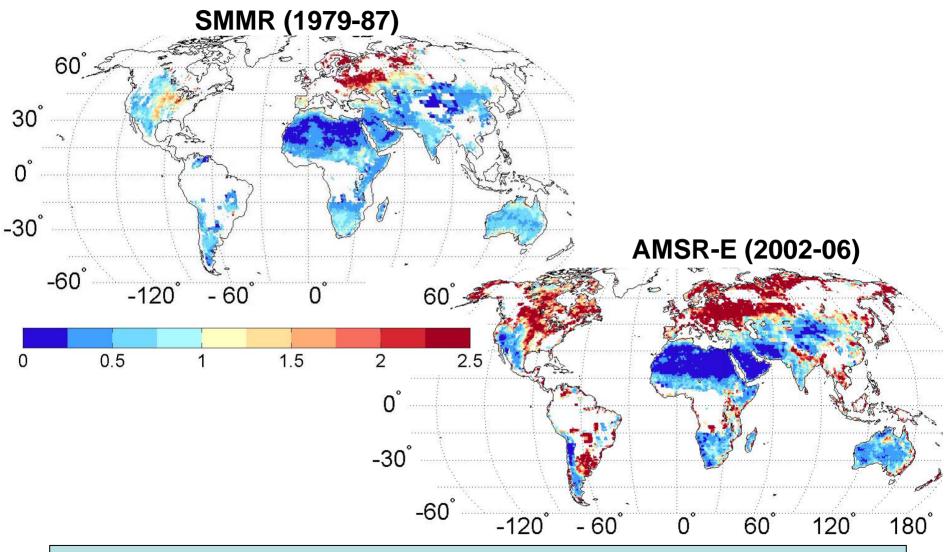
91.1%

97.9%

99.9%

80%

Variance of normalized innovations



Variance deficiency in dry climates, excess variance in wetter climates.

Potential for improvement by (adaptively) tuning model error parameters.

Conclusions

No agreed global climatology of (absolute) surface soil moisture.

Scaling needed for assimilation.

Assimilation of AMSR-E data improves soil moisture estimates.

Future tasks:

Improve data assimilation:

- Quality control.
- Spatially variable model and observation error parameters.
- Adaptive tuning of model and observation error parameters.

Operations and future directions:

- Implement operational land initialization for seasonal prediction (AMSR-E).
- Do improved land initial conditions lead to better seasonal forecasts?
- Multi-variate soil moisture, snow, and surface temperature assimilation.
- Land assimilation in coupled land-atmosphere system!!!

THE END.

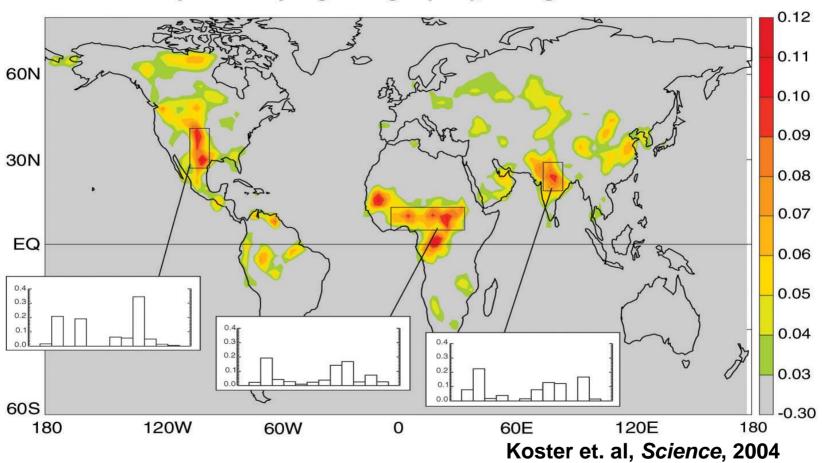
Extra slides

Outline

Method	Ensemble Kalman filter
Soil Moisture	Data, biases, and assimilation
Soil Temperature	Data, biases, and assimilation

Soil moisture memory and "hot spots"

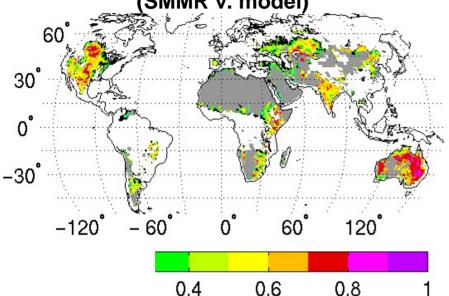
Land-atmosphere coupling strength (JJA), averaged across AGCMs



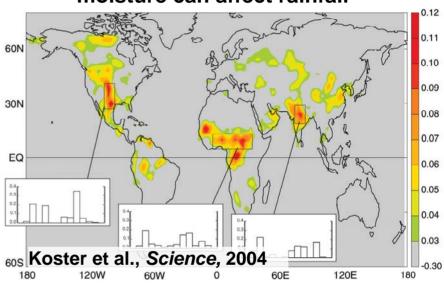
"Hot spots" where soil moisture changes can affect summer rainfall (multi-model consensus).

Land data assimilation may help with accurate seasonal forecast initialization.

Anomaly time series



"Hot spots" where soil moisture can affect rainfall



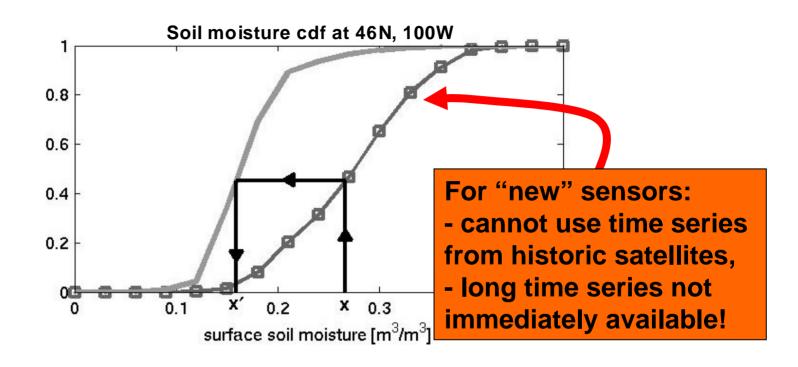
White: insufficient data Grey: variability < noise

Black: zero at 5% stat. significance

Reichle et al., JHM, 2004, also showed that...

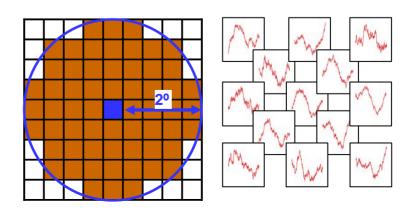
...satellite and model anomalies agree where soil moisture is important for seasonal forecasts!

Soil moisture scaling for data assimilation

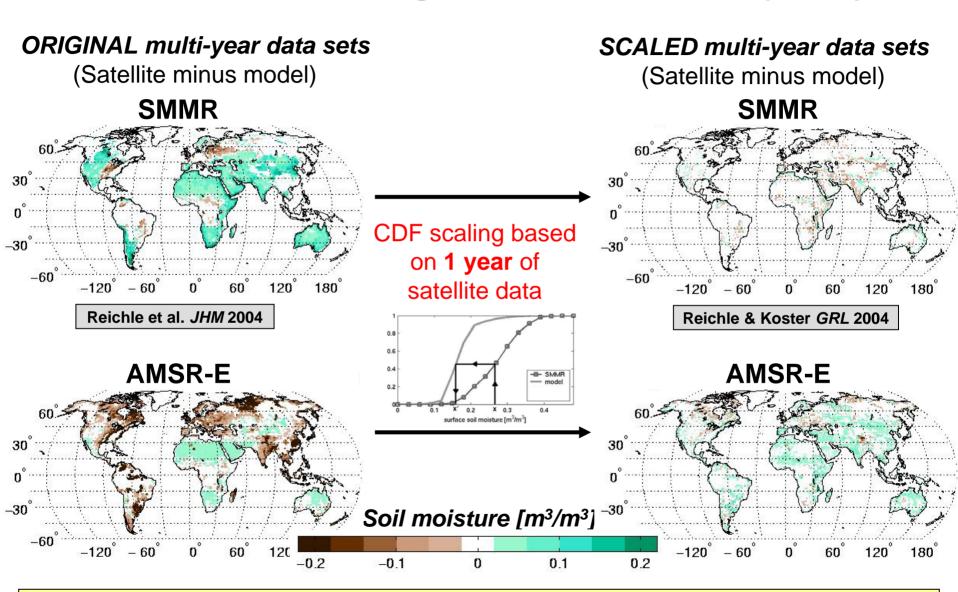


Solution:

Approximate CDF from many 1-year time series at grid points within some distance from point of interest.

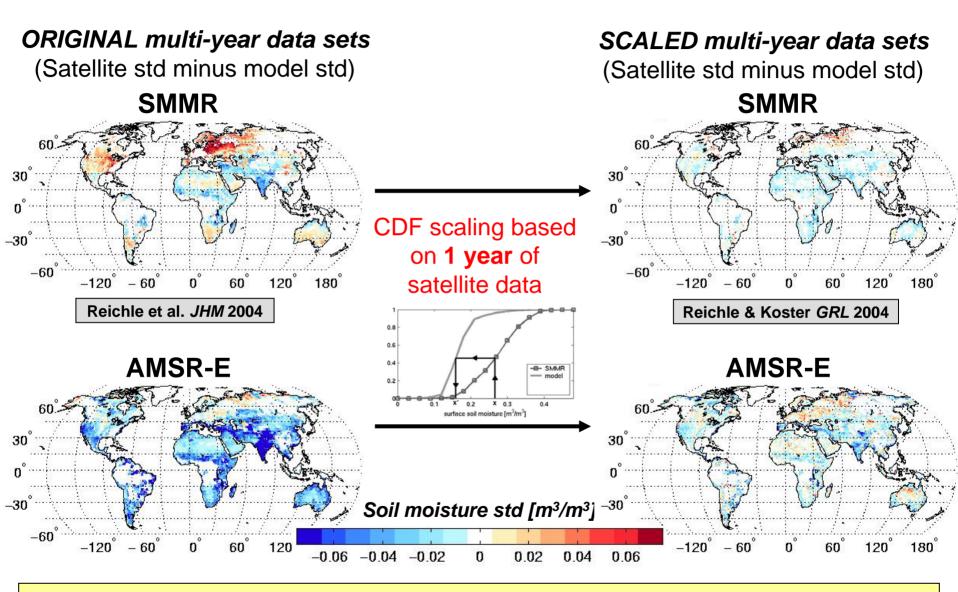


Soil moisture scaling for data assimilation (mean)



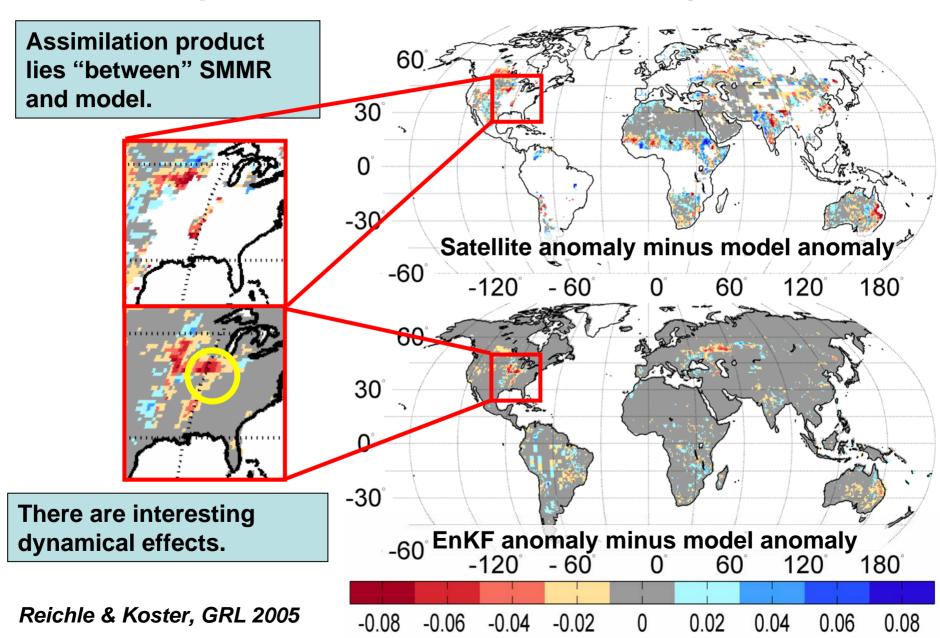
1 year of satellite data sufficient for considerable reduction in long-term bias.

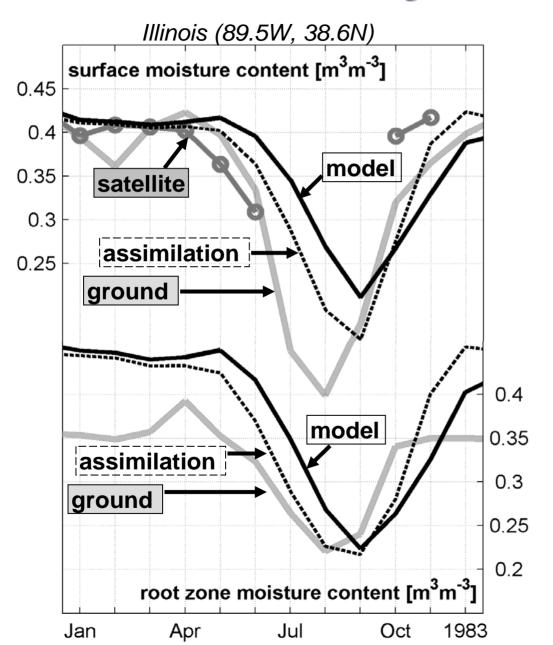
Soil moisture scaling for data assimilation (std)



1 year of satellite data sufficient for considerable reduction in long-term bias.

Impact of SMMR assimilation – July 1982





Assimilation product has improved phase of annual cycle.

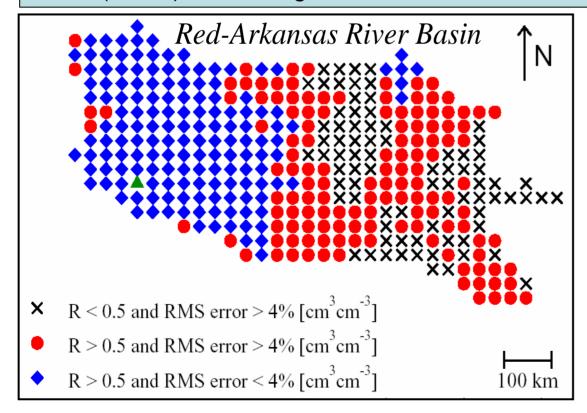
Soil moisture mission planning

Commonly, soil moisture mission planners require a measurement accuracy of ~0.04 m³/m³ ("4%") in absolute soil moisture.

Time-invariant errors contribute to RMSE but do not affect anomaly estimates.

Observing System Simulation Experiment (OSSE) result:

For a large part of the Red-Arkansas river basin, satellite retrievals might be useful (R>0.5) even though their absolute errors exceed 0.04 m³/m³.



For modeling and forecasting applications, satellite retrievals might be more useful than previously assumed.

Crow et al., GRL 2005