Update on Validation of Satellite Soil Moisture Algorithms Using Watershed Networks

T. J. Jackson, M. Cosh and X. Zhan
USDA ARS Hydrology and Remote Sensing Lab
Beltsville, MD

Validation Goal

• Provide a *close approximation* of soil moisture within the area and depth measured by low frequency passive microwave sensors that would result in a robust data set for validating retrieval algorithms as well as models

Close Approximation

- The satellite footprint size is ambiguous
- The center and orientation of the elliptical footprint changes with every pass
- Contributing depth varies with frequency and moisture condition (level and profile distribution)
- Soil moisture variability (spatial and temporal) and spatial extent of footprints impose logistic constraints on replication

Little Washita Vitel Network

AMSR-E U.S. Soil Moisture Validation Sites

Description and Status of Watershed Networks

Watershed	<u>Type</u>	# Sensors	Reporting
Walnut Gulch, AZ	Semi-Arid	21	20 min
Reynolds Creek, ID	Mountainous	16	1 hour
Little River, GA	Forest	19	30 min
Little Washita, OK	Grazingland	19	30 min

Period of Record ~ March 2002

^{*}All watersheds currently downloading daily.

Does the Vitel Network Provide a Good Estimate of the Watershed Average Volumetric Soil Moisture? Walnut Gulch, AZ SMEX04

SMEX04 comparison of the average of 19 automated *in situ* sensors (solid-line timeseries) and 69 sites sampled using a gravimetric method (red symbols). The example demonstrates that reliable area average soil moisture can be obtained using the automated sensors.

Does the Vitel Network Provide a Good Estimate of the Watershed Average Volumetric Soil Moisture? Little Washita, OK SMEX03

SMEX03 comparison of the average of 13 automated *in situ* sensors and 13 field sites sampled using a gravimetric method (not the same locations). The example demonstrates that reliable area average soil moisture can be obtained using the automated sensors.

Preliminary Validation/QC

- WG (2003) data provided to JAXA and PIs
- Algorithm package: programmed Koike,
 Jackson and extract Njoku from NSIDC
- Using NSIDC data
- Application to WG (A&D) and LW (A&D)
- June 2002-Dec. 2005
- Several alternative comparisons

AMSR-E Soil Moisture Algorithm Validation Exercise Using Data from Walnut Gulch, AZ (WG) and Little Washita, OK (LW) June 18, 2002-Dec. 31, 2005

AMSR-E Soil Moisture Algorithm Validation Exercise Using Data from Walnut Gulch, AZ (WG) and Little Washita, OK (LW) June 18, 2002-Dec. 31, 2005

WG

Site	A or D	Algorithm	N	SEE	Bias	SEE after bias removed	R
WG	A	Jackson	816	0.041	0.006	0.033	0.436
WG	A	Koike	840	0.036	-0.010	0.034	0.429
WG	A	Njoku	865	0.042	0.028	0.031	0.581
LW	A	Jackson	805	0.076	0.035	0.048	0.508
LW	A	Koike	817	0.065	0.013	0.053	0.316
LW	A	Njoku	852	0.052	0.007	0.051	0.415

Site	A or D	Algorithm	N	SEE	Bias	SEE after bias removed	R
WG	A	Jackson	816	0.041	0.006	0.033	0.436
WG	A	Koike	840	0.036	-0.010	0.034	0.429
WG	A	Njoku	865	0.042	0.028	0.031	0.581
LW	A	Jackson	805	0.076	0.035	0.048	0.508
LW	A	Koike	817	0.065	0.013	0.053	0.316
LW	A	Njoku	852	0.052	0.007	0.051	0.415

Site	A or D	Algorithm	N	SEE	Bias	SEE after bias removed	R
WG	A	Jackson	816	0.041	0.006	0.033	0.436
WG	A	Koike	840	0.036	-0.010	0.034	0.429
WG	A	Njoku	865	0.042	0.028	0.031	0.581
LW	A	Jackson	805	0.076	0.035	0.048	0.508
LW	A	Koike	817	0.065	0.013	0.053	0.316
LW	A	Njoku	852	0.052	0.007	0.051	0.415

Site	A or D	Algorithm	N	SEE	Bias	SEE after bias removed	R
WG	A	Jackson	816	0.041	0.006	0.033	0.436
WG	A	Koike	840	0.036	-0.010	0.034	0.429
WG	A	Njoku	865	0.042	0.028	0.031	0.581
LW	A	Jackson	805	0.076	0.035	0.048	0.508
LW	A	Koike	817	0.065	0.013	0.053	0.316
LW	A	Njoku	852	0.052	0.007	0.051	0.415

Plans for Data access and Archival

- Web page interface with monthly files available.
- Scheduled Beta-testing October 2005
- Full release TBD 2006

Web-Address:

http://hydrolab.arsusda.gov/ARS_Soil_Moisture

Description and Status of Watershed and Other Networks

Watershed	<u>Type</u>	# Sensors	Reporting
Walnut Gulch, AZ	Semi-Arid	21	20 min
Reynolds Creek, ID	Mountainous	16	1 hour
Little River, GA	Forest	19	30 min
Little Washita, OK	Grazingland	19	30 min
Walnut Creek, IA	Cropland	10	30 min
Salamanca, Spain	Cropland	23	60 min
Sonora. Mexico	Semi-Arid	12	60 min

Walnut Creek and Salamanca Design: Addresses the issue of sampling "ditches" to represent agricultural regions

Summary and Plans

- Maintain and quality control existing networks
- Complete analyses of Georgia and Idaho sites
- Through partnerships establish and calibrate new networks