There are several areas in the forms where the user is asked to identify the location on plans or

General

 specifications where a requirement is called out. For instance Line 4 asks the user to identify compliance details for daylighting requirements. The user should input which drawing number and detail shows the daylight controller, controlled fixtures, and photocell, and what section and subsection of specifications identifies the required control sequence. This is meant to enable the plan reviewer to easily verify compliance.
Should I use the Tenant Space Method (Form 5b) or the Space by Space Method (Form 5c)?

Both methods establish a lighting power budget for the building. The Tenant Space method is the simpler of the two methods, while the Space by Space Method may provide a higher lighting power budget for some buildings. The Space by Space method will require entering areas for each room in the project. It will also require determining what each room's Space Type Category is (from Table 3b). See discussion of Forms 5b and 5c for more detail about the two methods).

When utilizing the Retail Display Lighting Power allowance, the Space by Space Method must be used.

Excel Spreadsheet Users Note: Users of the Excel spreadsheet may wish to fill out all required information for Space by Space Method on Worksheet 5b. This will enable the user to check compliance using either method on Form 5a.

Line 1. Exceptions

No Interior Lighting. If your building plans do not call for new or altered interior lighting, check this box and go to Item 5, Exterior Building Lighting - General. If there is no exterior building lighting to be installed, these forms are not required.

Exceptions. Section 1313.1 allows a number of exceptions to the code requirements for interior lighting:

1. Lighting for the following areas:
1.1. Outdoor athletic facilities.
1.2. Dwelling units, lodging houses, one or two family dwellings and guest rooms.
1.3. Industrial plants—manufacturing spaces only.
1.4. Paint shops and painting spray booths.
1.5. High-risk security areas such as detention facilities, automatic teller machines (ATMs), and night drops.
1.6. Areas specifically designed for visually disabled people.
1.7 Tunnels.
2. Lighting equipment used for the following shall be exempt provided that it is in addition to
general lighting and is controlled by an independent control device:
2.1 Production lighting for theatrical, television, spectator sports and like performance areas.
2.2 Decorative, special effect and production lighting for those portions of entertainment facilities such as theme parks, night clubs, discos and casinos where lighting is an essential technical element for the function performed.
2.3 Lighting equipment that is for sale.
2.4 Task lighting for medical and dental purposes.
2.5 Bench lighting for research laboratories.
2.6 Lighting to be used solely for indoor plant growth during the hours of 10 p.m. to 6 a.m. 2.7 Emergency lighting that is automatically off during normal building operation.
2.8 Art accent lighting required for art exhibits or displays in galleries, museums and monuments.
2.9 Sign lighting.
2.10 Nonpermanent lighting.

If the project qualifies for one of these exceptions, enter section and exception number. For example, if you claim an exception for paint booth, under the appropriate exception category, enter Exception 1.4. Next, describe the area(s) of the building that qualify for the exception. Paint booth - Room 104.

Exception 2.1 is specifically for production lighting used for performance of productions, such as theatrical spotlights highlighting a stage. This exception would not apply to production lighting used in a non-production task such as theatrical spotlights used in a retail environment.

Exception 2.4 is specifically for medical and dental task lighting. An example would be a light used by a dentist that shines into the mouth or the light in an X-ray viewing panel.

Exception 2.9 is specifically for lighting used only for signage and is controlled by an independent control device. This does not include perimeter-wall lighting.

Exception 2.10 is for lighting that is not part of the permanent building lighting systems. This would include plugged-in under shelf lighting in modular office furniture or plugged-in under shelf lighting in modular retail shelving. Lighting in cases, such as in grocery store upright freezers and within display cases, such as for jewelry are considered nonpermanent lighting. Examples of plug-in lighting that would be considered part of the building lighting system for inclusion in Lighting Power Allowance include metal halide fixtures and clamp-on (and plugged-in) theatricaltype lighting used in spaces that are not for theatrical purposes.

Additions and alterations must comply with the code, but there are exceptions to that rule. Section 1313.6 covers the requirements and exceptions that apply to additions and alterations.

Alterations are exempt from the performance (power) requirements of the code if the alterations to existing lighting systems do not replace more than 50 percent of the luminaries in the permitted project and do not increase the existing total connected lighting power. This exception allows unlimited movement of existing luminaires and limited replacements or additions to the light fixtures. Also, new lighting controls must meet new code controls requirements.

If your building plans call for altered building lighting and you want to claim this exception, enter Section 1313.6, Exception. Next, describe the area(s) of the building that qualify for an exception.

Line 2. Local Shut-off Controls

Complies. The code requires that most spaces have some means for turning lights on and off. A wall toggle switch, an occupancy sensor or a dimmer can meet this requirement. The control must be within the room and available to the room occupants, and it cannot cover an area larger than 2,000 square feet. For example, a 3,000 square foot area must have at least two controls.

Exceptions. Section 1313.3.1.1 allows four exceptions to the code requirement for local shut-off controls.

1. Lighting for warehouses, parking garages or spaces using less than 0.5 Watts/ft ${ }^{2}$. 2. Lighting systems serving areas that must be continuously lit.
2. Public areas, such as concourses, with switches that are accessible only to authorized personnel.
3. Lighting for contiguous, single-tenant retail spaces.

If your project qualifies for one of these exceptions, enter the section and exception number. For example, if you claim an exception for lighting for a public restroom, enter Section 1313.3.1.1, Exception 3. Next, describe the area(s) of the building that qualify for the exception.

If your project is an existing building with existing local shutoff controls that meet these requirements, select complies. If your project is an existing building where lighting controls or distribution wiring is not being installed or replaced, leave these spaces blank.

Line 3. Automatic shutoff control

Not Applicable. If the permitted space is less than 5,000 square feet, and there are no office areas greater than 2,000 square feet of contiguous floor area, and there are no offices less than 300 square feet, and no meeting or conference rooms, and no school classrooms, check this box.

Complies. All buildings greater than 5,000 square feet and all offices over 2,000 square feet of contiguous floor area must be equipped with a separate automatic control to shut off the lighting. Automatic controls may include occupancy sensors (that comply with Section 1313.3.1.2.1), automatic time switches (that comply with 1313.3.1.2.2) or other devices capable of automatically shutting off the lighting during normally unoccupied periods.

Additionally, all offices less than 300 square feet, all meeting and conference rooms, and all school classrooms, are required to be equipped with occupancy sensors that comply with Section 1313.3.1.2.1. This requirement is regardless of building size.

If your project complies with these requirements, check complies and indicate where on the plans or specifications the automatic shutoff controls

Line 1 Exceptions cont.

Automatic Shutoff Control

Local Shutoff Controls

Automatic are called out. For example - Sheet E1.3 and Shutoff Control cont. Section 16510.4.3.C. If your project is an existing building where lighting controls or distribution wiring is not being installed or replaced, select not applicable.

Exceptions. Some lighting applications, because of safety or functional concerns, need not be automatically controlled. The code has seven exceptions to the requirement for automatic shut-off controls:

Daylight-

 ing Controls1. Emergency and pathway lights as required by code.
2. Where the system is serving an area that
must be continuously lit.
3. Display and accent lighting, including plugin, track and display case lighting, shall be separately controlled.
4. Switching for industrial or manufacturing process facilities as may be required for production.
5. Hospitals and laboratory spaces.
6. Areas in which medical or dental tasks are performed.
7. Mechanical and electrical equipment rooms

If your project qualifies for one of these exceptions, enter the Section and Exception number. For example, if you have an area that must be continuously lit, such as a hotel lobby, and you do not want automatic shut-off controls, enter Section 1313.3.1.1.2, Exception 2. Next, describe the area(s) of the building that qualify for the exception.

The Code defines occupancy sensors and automatic time switches as follows:

Occupancy Sensors. Occupancy sensors shall be capable of automatically turning off all the lights in an area, no more than 30 minutes after the area has been vacated. Lighting fixtures controlled by occupancy sensors shall have a wall-mounted, manual switch capable of turning on and off lights when the space is occupied.
Automatic Time Switches. Automatic time switches shall have a minimum 7-day clock and be capable of being set for 7 different day types per week and incorporate an automatic holiday "shut-off" feature, which turns off all loads for at least 24 hours and then resumes normally scheduled operations. Automatic time switches shall also have program back-up capabilities, which prevent the loss of program and time settings for at least 10 hours, if power is interrupted.

Automatic time switches shall incorporate an over-ride switching device which:

1. is readily accessible,
2. is located so that a person using the device can see the effects of the control,
3 . is manually operated,
3. allows the lighting to remain on for no more than 2 hours when an over-ride is initiated,
4. controls an area not exceeding $2,000 \mathrm{ft} 2$.

Line 4. Daylighting Controls

No Classrooms or atriums with skylights or window-to-wall ratio greater than $\mathbf{5 0 \%}$. If the building does not contain any classroom or atrium with either a window to exterior wall ratio of at least 50% or any amount of skylight, check this box.

Complies. All classrooms and atriums with a window-to-exterior wall ratio exceeding 50 percent or with any amount of skylights are required to install automatic daylight sensing controls meeting all the requirements listed in this section. If daylighting controls are included and meet these requirements, check complies, and identify the location in the plans and specific location within specifications where the daylighting controls are specified. For example Sheet E1.3 and Section 16510.4.3.C.
Classrooms/atriums with windows: Class-rooms and atriums with a window to exterior wall ratio of 50% or greater shall use automatic daylight sensing controls for all permanently installed luminaries 15 feet inward and 5 feet on each side of the windows. For the purpose of this section, window-to-wall ratio is measured on inside of room, on exterior walls.

Classrooms/atriums with skylights: In classrooms and atriums with skylights, monitors, or other fenestration at or above ceiling level, all permanent luminaries within an area equal to the footprint of the ceiling opening plus the floor to ceiling height in each direction of the opening, shall be controlled by automatic daylight sensing controls.

The Code requires that automatic daylight sensing controls:

1. Be capable of reducing the light output of the controlled luminaries by at least one half while maintaining a uniform level of illuminance,
2. Provide continuous dimming of the controlled luminaries,
3. Control only luminaires within the daylit area, and
4. Incorporate time-delay circuits to prevent cycling of light level changes of less than three minutes.

Exception: Atriums can utilize step switching or other non-continuous dimming devices provided they have adjustable separation (deadband) of on and off points to prevent short cycling.

Line 5. Exterior Building Lighting Power

Complies. If the building plans do not call for lighting the exterior of the building with incandescent or mercury vapor lights, check this box. This requirement promotes the more efficient lighting sources such as fluorescent and metal halide.

Exception. This exception allows the use of incandescent or mercury vapor lamps, but only for swimming pools, water features, and other locations subject to the requirements of Article 680 of the 2002 National Electrical Code.

Note. If the building has a parking garage or an exterior canopy, complete Worksheet 5c.

If your project does not contain any exterior building lighting, check the Complies box.

Line 6. Exterior and Canopy Lighting Controls

Complies. Section 1313.3 .2 states that exterior building lighting be automatically controlled by a timer or photocell or both, which is designed and programmed to extinguish lights when daylight is present.

Clock switches must be astronomic (seasonal correcting) type with separate programs for each day of the week and must store energy to maintain time keeping during power outages.

A motion sensor, if used, must employ a photoelectric switch to prevent operation during daytime.

If your project meets these requirements, check complies. If your project does not contain any exterior building or canopy lighting, leave these spaces blank.

Line 7. Connected Lighting Power

Complies. The building lighting power shall not exceed the interior power allowance established in either the Tenant Space Method or the Space-by-Space Method. Select either "Tenant Space Method" or "Space-by-Space Method," whichever is used to demonstrate compliance. Insert YES if project complies and NO if project does not comply with the appropriate method. If the building has illuminated exterior canopies or a parking garage, those must also comply and the resultant answer must be YES.

Where multiple, independently operating lighting systems serve the same space and are controlled to prevent simultaneous operation, connected lighting power shall be based only on system with highest connected lighting power.

Excel Spreadsheet Notes: By selecting either "Tenant Space Method" or "Space-bySpace Method," the appropriate Form will become available and a "Yes" or "No" will be automatically generated based on inputs provided.

Daylighting Controls cont.

Interior \& Exterior Lighting Power

Exterior \&

 Canopy Lighting Controls
The Tenant Space Method - Form 5b

Form 5b, based on the Tenant Space Method, is the simpler of two methods in the code for setting a building's interior lighting power budget. The other method is the Space-bySpace Method. The Space-by-Space Method is described later in these instructions.

The Tenant Space Method is a combined space method where the lighting power budget for an entire building or tenant space is the product of the Maximum Power Density (Watts per ft^{2}) and area of the occupancy $\left(\mathrm{ft}^{2}\right)$, expressed in Watts. The budget may be distributed throughout the building in any way a designer chooses (traded off), so long as total tenant space or building budget is not exceeded.

If a building or tenant space does not comply
with the assigned budget for the predominant occupancy, or there are many spaces that require a higher budget than the predominant use (such as offices adjoining warehouse, which is the predominant use), the Space-by-Space Method may provide a higher budget.

If the building contains any retail display lighting and that code provision is to be utilized, you must use the Space-by-Space Method.

Unused wattage inside a building cannot be used to increase the exterior building lighting power.

Example:
Budget (column (d)) = Max. Power Density (column (c)) x Floor Area (column (b))

Example	(a) Tenant or Building Type (Table-13G)		(b)	(c)	(d)
			Floor Area (sq ft)	Max Power Density (W/ft²)	Lighting Power Budget (W)
	Office		10,000	1.0	10,000
	1.	Total Interior Lighting Power Budget (Watts) for Building.			10,000

Tenant or Building Type (a). Enter the appropriate tenant or building type from Table 5a.Table 5a consists of Table 13-G from the Building Code and provides a list of tenant space or building types for use in Tenant Space Method. If a building or tenant space has multiple occupancies, the budget for building or tenant space is determined by the predominant occupancy.

Floor Area (b). Enter the floor area for entire building or tenant space. (Floor area is measured from the outside surface of exterior walls, and from center of interior partition walls.)

Maximum Power Density (c) From Table 5a enter the appropriate Lighting Power Density (Watts/ft ${ }^{2}$), for the tenant or building type. Excel spreadsheet automatically enters this value.

Lighting Power Budget. Budget (d) $=(\mathrm{b}) \times(\mathrm{c})$. Excel spreadsheet automatically calculates this value.

Line 1. Enter the value from column (d) above - results of formula. Excel spreadsheet calculates automatically.

INTERIOR LIGHTING POWER - TENANT SPACE METHOD

2.	Total length of track lighting (ft)	20
3.	Line 2 multiplied by 50 Watts/ft	1,000
4.	Total amperage of circuit breaker(s) serving track lighting (amps)	15
5.	Voltage of circuit breaker serving track lighting (volts)	120
6.	Maximum wattage of track lighting (multiply line 4 by line 5)	1,800
7.	VA rating of the inline current limiter or the low voltage transformers	800
8.	Track Lighting Power (the lesser value of line 3, 6 or 7)	800

Lines 2 through 8

The code requires that lighting power used for track lighting be calculated as either 50 Watts per linear foot or maximum circuit load of overcurrent protection device (circuit breaker) serving track lighting, or inline current limiter or low voltage transformers whichever is less. See section 1313.2.3.

Line 2. Sum and enter the total lineal footage of all track lighting from Worksheet 5b.

Line 3. Multiply Line 2 by 50 W/linear ft.
Line 4. Enter the total amperage of the circuit breakers serving the track lighting circuits.

Line 5. Enter the voltage circuit breakers serving the track lighting circuits.

Line 6. Enter the product of line 4 multiplied by line 5.

Line 7. If the track lighting system includes low voltage transformers or in-line current limiters you may enter the sum of the listed VA rating values for the inline current limiters or low voltage transformers in line 6 . Leave this cell blank if an inline current limiter or low voltage transformer is not used.

Line 8. Enter the lesser of the values from line 3 or line 6 or line 7 .

9.	Total Interior Lighting Power from Worksheet 5b-1 (Sum of Column (m))	+	8,990
10.	Total Adjusted Interior Lighting Power	(line 8+line 9)	$=$
11.	Does Interior Lighting Design Meet Budget?	Line 10 must be no greater than line 1.	$\mathbf{9 , 7 9 0}$

Example

Line 9. Enter the value from Worksheet 5b-1 (Sum of Column (m)).

Excel Spreadsheet Notes: Lines 8 \& 9 will be calculated automatically. Line 9 will not include fixtures identified as track lighting or fixtures identified as exempt.

Line 10. Enter the total interior lighting power from line 8 and line 9 .

Excel Spreadsheet Notes: Lines 2, 3, 6, $10, \& 11$ will be calculated automatically.

Line 11. If line 10 is equal to or less than line 1 , insert "YES" or "NO" if line 10 is greater than line 1.

Excel Spreadsheet Note: The value for Line 11 will be automatically propagated.

12.	Do Exterior Canopies Meet Budget (Worksheets 5c)?	YES
13.	Does Parking Garage Meet Budget (Worksheets 5c)?	YES

Line 12. Whenever there are lighted exterior canopies, complete Worksheet 5 c . If total of Worksheet 5 c , column (k) is equal to or less than total of column (e), insert "YES" or "NO" if total of column (k) is greater than total of column (e) in line 12.

Line 13. Whenever there are lighted parking garages, complete Worksheet 5 c . If total of Worksheet 5 c , column (k) is equal to or less than total of column (e), insert "YES" or "NO" if total of column (k) is greater than total of column (e) in line 13.

Excel Spreadsheet Notes: Lines 12, \& 13 will be automatically propagated.

The Space-by-Space Method - Form 5c

While the Tenant Space Method is a more simple way to comply with code, Space-bySpace Method may provide a higher budget for certain projects. The Space-by-Space method is different from Tenant Space Method in the following ways:

The space-by-space method assigns a budget to each space in the project. The sum of those individual space budgets becomes the budget for the entire tenant space or building. Although a budget is established for each space type,
total may be distributed throughout the building in any way a designer chooses (traded off), so long as the total tenant space or building budget is not exceeded.

When utilizing the Retail Display Lighting Power Allowance, complete Worksheet 4d. This allowance can only be used within the retail sales floor area. Any unused wattage cannot be applied to the remainder of space types.

Excel Spreadsheet Notes: Worksheet 5d will automatically appear when the Space-bySpace radio button is checked on bottom of Form 5a.

Example

| $1 . \quad$ Total Interior Lighting Power Budget from Worksheet 5b-1 (Sum of Column (I)) | $\mathbf{9 , 5 0 0}$ |
| :--- | :--- | :--- |

2.	Total length of track lighting (ft)	20
3.	Line 2 multiplied by 50 Watts/ft	1,000
4.	Total amperage of circuit breaker(s) serving track lighting (amps)	15
5.	Voltage of circuit breaker serving track lighting (volts)	120
6.	Maximum wattage of track lighting (multiply line 4 by line 5$)$	1,800
7.	VA rating of the inline current limiter or the low voltage transformers	800
8.	Track Lighting Power (the lesser value of line 3,6 or 7$)$	800

Line 1. Enter the lighting power budget from Worksheet 5b-1 (sum of column (I)).

Excel Spreadsheet Note: The value for Line I will be automatically calculated from total of all Worksheets 5b completed.

Lines 2 through 8

The code requires that lighting power used for track lighting be calculated as either 50 Watts per linear foot or the maximum circuit load of the over-current protection device (circuit breaker) serving track lighting (when track lighting is served by separate breakers), or inline current limiter or low voltage transformers whichever is less. See section 1313.2.3.

Line 2. Sum and enter the total lineal footage of all track lighting from Worksheet 5b.

Line 3. Multiply Line 2 by 50 W/If.

Line 4. Enter the total amperage of the circuit breakers serving the track lighting circuits.

Line 5. Enter the voltage circuit breakers serving the track lighting circuits.

Line 6. Enter the product of line 4 multiplied by line 5.

Line 7. If the track lighting system includes low voltage transformers or in-line current limiters you may enter the sum of the listed VA rating values for the inline current limiters or low voltage transformers in line 6. Leave this cell blank if an inline current limiter or low voltage transformer is not used.

Line 8. Enter the lesser of the values from line 3 or line 6 or line 7 .

Excel Spreadsheet Notes: Lines 2, 3, 6, and 8 will be calculated automatically.

INTERIOR LIGHTING POWER - SPACE-BY- SPACE METHOD

9.	Total Interior Lighting Power from Worksheet 5b-1 (Sum of Column (m))	+
10.	Total Adjusted Lighting Power (line 8 + line 9)	$=\mathbf{9}, 311$
11.	Does Interior Lighting Design Meet Budget? \quad Line 10 must be no greater than line 1.	$\mathbf{1 0 , 5 0 0}$

Line 9. Enter the total interior lighting power (excluding exempt fixtures and track lighting) from Worksheet 5b-1 (Sum of Column (m)).

Excel Spreadsheet Notes: Line 9 will be calculated automatically, and will not include fixtures identified as track lighting or fixtures identified as exempt.

Line 10. Total Adjusted Lighting Power. Enter the sum of line 8 plus line 9. Total Adjusted Lighting Power must be less than the building's budget as calculated in line 1 in order for your building to be in compliance.

Line 11. If line 10 is equal to or less than line 1 , insert "YES" or "NO" if line 10 is greater than line 1.

Excel Spreadsheet Notes: The value for Line 10 will be automatically propagated.

12.	Do Exterior Canopies Meet Budget (Worksheets 5c)?	YES
13.	Does Parking Garage Meet Budget (Worksheets 5c)?	YES

Line 12. Whenever there are lighted exterior canopies, complete Worksheet 5 c . If total of Worksheet 5 c , column (k) is equal to or less than total of column (e), insert "YES" or "NO" if total of column (k) is greater than total of column (e) in line 12.

Line 13. Whenever there are lighted parking garages, complete Worksheet 5 c . If total of Worksheet 5 c , column (k) is equal to or less than total of column (e), insert "YES" or "NO" if total of column (k) is greater than total of column (e) in line 13.

Excel Spreadsheet Notes: Lines 12, \& 13 will be automatically propagated.

Worksheet 5a

Worksheet 5 a provides the plans examiner and inspector with a list of luminaires in the project and their power consumption. Fixture schedules usually describe luminaires in detail. They may include such items as types of luminaires, manufacturer model numbers, number of lamps,
and their voltage and wattage. However, they seldom indicate the power used by the luminaire.

It is essential to know the number of luminaires and their wattages in order to find the total installed or connected lighting load.

(a)	(b)				(c)		(d)		(e)	(f)
$\begin{gathered} \text { Lum } \\ \text { ID } \end{gathered}$	Luminaire				Lamp		Ballasts		Luminaire Power (watts)	Is Luminaire From Table 5c
	Type		Description		No.	Description	No.	Description		
A	Fluorescent T8-4 foot	-	2-F32T8-ELECT NO-62W	-	2	F32T8	1	Electronic Normal Output. RS	62	YES
B	Fluorescent T8-4 foot	-	3-F32T8-ELECT NO-93W	\checkmark	3	F32T8	1.5	Electronic Normal Output. RS	93	YES
C	Compact Fluorescent Twin	-	2-CFT5W/G23-MAG STD-18W	\checkmark	2	CFT5W/G23	2	Magnetic Standard	18	YES
D	User Defined	\checkmark	8-lamp CFL High Bay	\checkmark	8	CFT5W/E23	4	Magnetic Standard	72	NO
E	Track Lighting	\checkmark	Track Lighting	\checkmark	--	--	--	--	37.5	YES
		-		\checkmark						

Example

Column (a) - Luminaire Identification. Use the letter or symbol that identifies each fixture type from the electrical plan or the lighting schedule.

Column (b)-Luminaire Type and Description.

Describe the type of fixture. Luminaire types and descriptions are provided on Table 5c.

When fluorescent luminaires are used, be sure to include length of fixture in feet. When using fixture configurations not listed on Table 5c include the manufacturer's catalog cut-sheet, showing fixture wattage

Excel Spreadsheet Notes: Luminaire type and description are available from pull down lists, representing all the fixtures in Table 5c. If the project contains a fixture not included in Table 5c, select "User Defined" for type and manually enter the fixture description.

Column (c) - Lamp Number and Description
Enter the number and type of lamps in luminaire. Wattage of lamps is especially important information to provide. Use descriptions provided on Table 5c or lamp manufacturer's ordering codes (see Figure 5b for examples). They are fairly standard and usually contain all the required information. For fluorescent and high intensity discharge lamps, see Figure 5b for typical codes. Lamp descriptions are also provided on Table 5c. If track lighting is selected, do not enter any lamp number or description in column (c).

Excel Spreadsheet Note: Column (c) will be automatically propagated based on user selection, unless a "User Defined" fixture is selected, in which case the number of lamps and description should be manually entered.

Column (d) - Ballast Number and
Description. Enter the number and description or the abbreviations for the type of ballast. For fluorescent and high intensity discharge lamps, typical abbreviations are provided on Table 5c, examples include:

- MAG STD - standard magnetic
- MAG EE - energy efficient magnetic
- ELECT - electronic
- Elec NO - Electronic Normal Output
- Elec RO - Electronic Reduced Output
- Elec HO - Electronic High Output
- Elec Dim - Electronic Dimming

Fluorescent fixtures generally have one or more ballasts per fixture. Most HID luminaires have a single lamp per ballast. Most low voltage halogen luminaires have a single lamp per transformer. For fixtures without ballasts (such as incandescent), enter "none" in the description. When wiring for HID luminaires are plugged-in and mounted for ambient lighting, fixtures shall be considered permanently installed.

Excel Spreadsheet Note: Column (d) will be automatically propagated based on user selection, unless a "User Defined" fixture is selected, in which case the number of ballasts and description should be manually entered.

Column (e) - Luminaire Power. For fluorescent and HID luminaires, enter the ballast input wattage for the lamp and ballast combination used in the luminaire. Table 5c provides default values for various lamp and ballast combinations.

When a particular lamp and ballast wiring combination is not in Table 5c, provide manufacturer's catalog cut-sheet showing tested values. See "How to Figure Luminaire Power From Catalog Cuts" in the Technical Notes section of this chapter, page 5-32.

For incandescent luminaires without transformers, multiply lamp wattage by number of lamps.

Excel Spreadsheet Note: The value for column (e) will be automatically propagated based on user selection, unless a "User Defined" fixture is selected, in which case the luminaire power should be manually entered.

Column (f) - Data from Table 5b? If your entry in column (e) is taken from Table 5b, enter "YES". If information in column (e) is from manufacturer's catalog cut-sheet enter "NO" in column (f). If NO is entered, be sure and attach manufacturer's catalog cut-sheet for each different fixture described.

Excel Spreadsheet Note: The result for column (f) will be automatically propagated.

Worksheet 5b

Worksheet $5 b$ is used for both the Tenant Space Method and Space-by-Space Method.
Worksheet 5b is where you list all the luminaries in your project by room. This is used to calculate the total connected lighting power in your project. If using the Space-by-Space Method, this worksheet determines a lighting power
budget for the project. Additional copies of Worksheet 5a may be used if necessary.

Excel Spreadsheet Note: To automatically generate additional copies of Worksheet 5b, select the required number of additional worksheets from the pulldown box toward the bottom of the sheet.

	Space-by-Space Method Only Skip to column (f) if using the Tenant Space Method				(f) Lum ID from Worksheet 5a Column (a)	(g) Quantity of Luminaires (or lineal ft. for track lighting)	(h) Luminaire Power (Watts)	(i) Exempt Fixtures
(a) Room ID (do not leave any blanks)	(b) Area (ft ${ }^{2}$)	(c) Space Type (Table 13-H) (enter space type only once per room)	(d) Space Type LPD	(e) Lighting Power Budget (b) $\times(\mathrm{d})$				
100	250	Office-enclosed	1.1	275	A	4	62	\square
100			--	--	B \quad -	2	93	\square
102	200	Office-enclosed	1.1	220	A $\quad-$	4	62	\square
104	500	Museum - General Exhibition	1	500	A	10	62	\square
104			--	--	$\mathrm{C} \quad-$	5	18	\square
104			--	--	$\mathrm{E} \quad-$	100	38	\square
105	75	Restrooms	0.9	68	C	2	18	\square
			--	--	-		-	\square

Column (a) - Room ID. Enter a short description for each room in column (a). In most instances, this will usually be a room number or other room ID. Do not leave any lines blank. If more than one luminaire type is in a room, that room will need multiple lines, so the same Room ID may be entered on several lines. If additional worksheets 5b are required, do not split individual rooms onto two separate worksheets.

Columns (b), (c), (d), and (e). These columns only need to be filled out if the compliance method is the Space-By-Space method. Projects using the Tenant or Building Method may also fill in these columns, however it is not required. If you are unsure which method you wish to use, you may fill these columns in and calculate compliance using either method.

Column (b) - Area. Enter the area of the room in square feet. (Floor area is measured from the outside surface of exterior walls, and from the center of interior partition walls.) Enter the square footage only once per room. At the bottom of the Column (b) enter the sum of all the areas for this worksheet.

Column (c) - Space Type. Enter the space type category for the room from Table 5a. (also Table 13H from the Building Code). Enter the space type only once per room. If a specific
description is not listed, use the most similar description. Example: Truck - Service/Repair is not listed but Automotive - Service/Repair would be used as it is the most similar description for that space.

Excel Spreadsheet Note: Space type for column (c) can be chosen from a pull-down list (but only after room ID or area is entered).

Column (d) - Space Type LPD. Enter the space type lighting power density for the room from Table 5a. Enter Space Type LPD only once per room.

Excel Spreadsheet Note: Space type LPD will be automatically propagated.

Column (e) - Lighting Power Budget. Multiply columns (b) $\times(\mathrm{d})$ to generate the room lighting power budget. Enter the budget only once per room. At the bottom of Column (e) enter the sum of all budgets for this worksheet. Note that as discussed previously, the budget does not need to be met on a room-by-room basis. Rather, the sum of the room budgets creates a tenant space or building budget.

Excel Spreadsheet Note: Budget will be automaticallv calculated.

INTERIOR LIGHTING POWER

Column (f) - Luminaire ID. Enter the Luminaire ID from Worksheet 5a column (a).

Column (g) - Quantity of Luminaires. Enter the number of luminaires in the room. For track lighting, enter the lineal feet of track and do not include fixtures mounted on the track.

Excel Spreadsheet Note: Select the luminaire ID for column (f) from the pulldown menu.

Excel Spreadsheet Note: The value for column (h) will be automatically propagated based on the fixture selected in column (f).

Column (h) - Luminaire Power. Enter the luminaire power from Worksheet 5a column (e).

Column (i) - Exempt Fixtures. Check the box in column (e) if the luminaire is exempt from the budget.

Exempt lighting fixtures include the following provided that they are in addition to general lighting and controlled by an independent control device: (from Section 1313.1).
2.1 Production lighting for theatrical, television, spectator sports and like performance areas.
2.2 Decorative, special effect and production lighting for those portions of entertainment facilities such as theme parks, night clubs, discos and casinos where lighting is an essential technical element for the function performed.
2.3 Lighting equipment that is for sale.
2.4 Task lighting for medical and dental purposes.
2.5 Bench lighting for research laboratories.
2.6 Lighting to be used solely for indoor plant growth during the hours of 10 p.m. to 6 a.m.
2.7 Emergency lighting that is automatically
off during normal building operation.
2.8 Art accent lighting required for art exhibits or displays in galleries, museums and monuments.
2.9 Sign lighting.
2.10 Nonpermanent lighting.

Exception 2.1 is specifically for production lighting used for the performance of productions,
such as theatrical spotlights highlighting a stage. This exception would not apply for production lighting used in a non-production task such as theatrical spotlights used in a retail environment.

Exception 2.4 is specifically for medical and dental task lighting. An example would be a light used by a dentist that shines into the mouth or the light in an X-ray viewing panel.

Exception 2.9 is specifically for lighting used only for signage and is controlled by an independent control device. This does not include perimeter-wall lighting.

Exception 2.10 is for lighting that is not part of the permanent building lighting systems. This would include plugged-in under shelf lighting in modular office furniture or plugged-in under shelf lighting in modular retail shelving. Lighting in cases, such as in grocery store upright freezers and within display cases, such as for jewelry are considered nonpermanent lighting. Examples of plug-in lighting that would be considered part of the building lighting system for inclusion in Lighting Power Allowance include metal halide fixtures and clamp-on (and plugged-in) theatrical-type lighting used in spaces that are not for theatrical purposes.

Column (j) - Lighting Power. Enter the product of column (g) and column (h). Include exempt fixtures and track lighting.

Excel Spreadsheet Note: The value for column (j) will be automatically calculated from column (g) and (h).

Column (k) -Room Total Lighting Power.

Enter sum of lighting power for each luminaire within a specific room - sum of column (j) for that Room ID. Include exempt fixtures and track lighting. At the bottom of the Column (k) enter the total lighting power sums for all rooms on this worksheet. Do not include exempt fixtures and track lighting in this total.

Excel Spreadsheet Note: The value for column (k) will be automatically calculated from sum of column (j) for that Room ID. The total at the bottom of column (k) will not include exempt fixtures or track lighting.

Total Number of Additional Worksheet 5b	$0 \quad-$			
Worksheet Number		(I) Lighting Power Budget: Space-by-Space only (Total of column (e))	(m) Proposed Buiding Lighting Power (Total of column (k), excluding exempt'track)	(n) Area Sqft, (not required for Tenant Method)
	5b-1	1,063	1,338	1,025
	5b-2			
	5b-3			
Sum of additional 5b worksheets				
Total Budget (of all worksheets)		1,063	1,338	1,025

Column (I) - Lighting Power Budget Space-By-Space. If using the Space-By-Space method, enter lighting power budget for all rooms for each worksheet from bottom of column (e). If more than 3 Worksheets 5 b are needed, enter sum for all additional worksheets on the row "Sum of additional 5b Worksheets." Sum the total of all worksheets in the last row of Column (j).

Excel Spreadsheet Note: The values for column (I) will be automatically inserted in Column (I).

Column (m) - Building Total Lighting Power.

 Enter the sum from the bottom of Column (k) from each Worksheet 5b in the appropriate row. If more than 3 Worksheets 5b are needed, enter the sum for all additional worksheets on the row "Sum of additional 5b Worksheets." Sum the total of all worksheets in the last row of Column (j).Enter this value in Line 9 of Form 5b (Tenant Space Method) or Line 8 of Form 5c (Space-bySpace Method).

Excel Spreadsheet Note: The values for column (m) will be automatically propagated and inserted on in Line 9 of Form 5b (Tenant Space Method) or Line 8 of Form 5c (Space-by-Space Method).

Column (n) - Area Square Footage. (for Space-By-Space Method only). Enter the sum from bottom of Column (b) from each Worksheet 5 b in the appropriate row. If more than 3 Worksheets 5 b are needed, enter the sum for all additional worksheets on the row "Sum of additional 5b Worksheets." Sum the total of all worksheets in the last row of Column (j).

Excel Spreadsheet Note: The values for column (n) will be automaticallv calculated.

INTERIOR LIGHTING POWER

Worksheet 5c - Exterior Canopy and Parking Garage Lighting

Worksheet 5 c is used for both the Tenant Space Method and Space-by-Space Method. Worksheet whenever an exterior canopy contains lighting fixtures or the building includes a parking garage.

Complete all of the information on Worksheet 5c and insert the appropriate result (Yes or No) on line 12 of Form 5b or 5c.

Exterior Canopy Lighting

Column (a) - Room ID. Enter a short description for each illuminated canopy in column (a). In most instances, this will usually be a canopy description or other ID as specified on the plans. Do not leave any lines blank. If more than one luminaire type is in a canopy, that canopy will need multiple lines, so the same Room ID may be entered on several lines.

Column (b) - Area. Enter the area of canopy in square feet. (Canopy area is measured from the outside surface of canopy, and to the exterior surface of exterior walls.) Enter the square footage only once per canopy. At the bottom of the Column (b) enter the sum of all the areas for this worksheet.

Column (c) - Canopy. Enter the canopy type category from Table 5b. (also Table 13H from the Building Code). Enter the canopy type only once per room. Provide either "Canopies Under 15 feel in height" or "Canopies 15 feet and over in height."

Excel Spreadsheet Note: Space type for column (c) can be chosen from a pull-down list (but only after room ID or area is entered).

Column (d) - Space Type LPD. Enter the space type lighting power density of 1.5 for Canopies Under 15 feel in height or 2.0 for Canopies 15 feet and over in height.

Excel Spreadsheet Note: Space type LPD will be automatically propagated.

Column (e) - Lighting Power Budget. Multiply columns (b) x (d) to generate the canopy lighting power budget. Enter the budget only once per room. At the bottom of Column (e) enter the sum of all budgets for this worksheet. Note that the budget does not need to be met on a canopy-bycanopy basis. Rather, the sum of the canopy budgets creates a canopy budget.

Excel Spreadsheet Note: Budget will be automatically calculated.

Column (f) - Luminaire ID. Enter the Luminaire ID from Worksheet 5a column (a).

Excel Spreadsheet Note: Select the luminaire ID for column (f) from the pulldown menu.

Column (g) - Quantity of Luminaires. Enter the number of luminaires in the room. For track lighting, enter the lineal feet of track and do not include fixtures mounted on the track.

Column (h) - Luminaire Power. Enter the luminaire power from Worksheet 5a column (e).

Excel Spreadsheet Note: The value for column (h) will be automatically propagated based on the fixture selected in column (f).

Column (i) - Exempt Fixtures. Check the box in column (e) if the luminaire is exempt from the budget.

Exempt lighting fixtures include the following provided that they are in addition to general lighting and controlled by an independent control device: (from Section 1313.1).
2.1 Production lighting for theatrical, television, spectator sports and like performance areas.
2.2 Decorative, special effect and production lighting for those portions of entertainment facilities such as theme parks, night clubs, discos and casinos where lighting is an essential technical element for the function performed.
2.3 Lighting equipment that is for sale.
2.4 Task lighting for medical and dental purposes.
2.5 Bench lighting for research laboratories.
2.6 Lighting to be used solely for indoor plant
growth during the hours of 10 p.m. to 6 a.m.
2.7 Emergency lighting that is automatically off during normal building operation.
2.8 Art accent lighting required for art exhibits or displays in galleries, museums and monuments.
2.9 Sign lighting.
2.10 Nonpermanent lighting.

Exception 2.1 is specifically for production lighting used for the performance of productions, such as theatrical spotlights highlighting a stage. This exception would not apply for production lighting used in a non-production task such as theatrical spotlights used in a retail environment.

Exception 2.4 is specifically for medical and dental task lighting. An example would be a light used by a dentist that shines into the mouth or the light in an X-ray viewing panel.

Exception 2.9 is specifically for lighting used only for signage and is controlled by an independent control device. This does not include perimeter-wall lighting.

Exception 2.10 is for lighting that is not part of the permanent building lighting systems. This would include plugged-in under shelf lighting in modular office furniture or plugged-in under shelf lighting in modular retail shelving. Lighting in cases, such as in grocery store upright freezers and within display cases, such as for jewelry are considered nonpermanent lighting. Examples of plug-in lighting that would be considered part of the building lighting system for inclusion in Lighting Power Allowance include metal halide fixtures and clamp-on (and plugged-in) theatrical-type lighting used in spaces that are not for theatrical purposes.

Column (j) - Lighting Power. Enter the product of column (g) and column (h). Include exempt fixtures and track lighting.

Excel Spreadsheet Note: The value for column (j) will be automatically calculated from column (g) and (h).

Column (k) -Room Total Lighting Power.

 Enter sum of lighting power for each luminaire within a specific canopy - sum of column (j) for that Room ID. Include exempt fixtures and track lighting. At the bottom of the Column (k) enter the total lighting power sums for all rooms on this worksheet. Do not include exempt fixtures and track lighting in this total.Excel Spreadsheet Note: The value for column (k) will be automatically calculated from sum of column (j) for that Room ID. The total at the bottom of column (k) will not include exempt fixtures or track lighting.

If the sum of column (k) is equal to or less than sum of column (e), insert "YES" or "NO" if sum of column (k) is greater than sum of column (e).

Excel Spreadsheet Notes: The values for sum of columns (e) and (k) will be automatically propagated.

INTERIOR LIGHTING POWER

Parking Garage Lighting

(a) Room ID (do not leave any blanks)	(b) Area (ft ${ }^{2}$)	(c) Parking Garage	(d) Space Type LPD	(e) Lighting Power Budget (b) $\times(d)$	(f) Lum ID from Worksheet 5a Column (a)	(g) Quantity of Luminaires (or lineal ft. for track lighting)	(h) Luminaire Power (Watts)	(i) Exempt Fixtures	(j) Lighting Power (g) $\times(\mathrm{h})$	(k) Room Total Ltg. Power
Garage	2500	Parking Garage - Garage Area	0.2	500	2a	8	62	\square	496	496
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
								\square		
	2,500	Total Par	ge Budget	500	Total	arking Garage Lig	ing Power (ex	luding ex	pt fixtures)	496

Column (a) - Room ID. Enter a short description for each parking garage in column (a). In most instances, this will usually be a parking garage description or other ID as specified on the plans. Do not leave any lines blank. If more than one luminaire type is in a parking garage, that parking garage will need multiple lines, so the same Room ID may be entered on several lines.

Column (b) - Area. Enter the area of parking garage in square feet. Enter the square footage only once per parking garage. At the bottom of the Column (b) enter the sum of all the areas for this worksheet.

Column (c) - Space Type. Enter "Parking

 Garage" in this cell.Excel Spreadsheet Note: Space type for column (c) can be chosen from a pull-down list (but only after room ID or area is entered).

Column (d) - Space Type LPD. Enter the space type lighting power density of 0.2 for Parking Garage - Garage Area.

Excel Spreadsheet Note: Space type LPD will be automatically propagated.

Column (e) - Lighting Power Budget. Multiply columns (b) \times (d) to generate the parking garage lighting power budget. Enter the budget only once per room/area. At the bottom of Column (e)
enter the sum of all budgets for this worksheet. Note that the budget does not need to be met on a garage-by-garage basis. Rather, the sum of the parking garage budgets creates a parking garage budget.

Excel Spreadsheet Note: Budget will be automatically calculated.

Column (f) - Luminaire ID. Enter the Luminaire ID from Worksheet 5a column (a).

Excel Spreadsheet Note: Select the luminaire ID for column (f) from the pulldown menu.

Column (g) - Quantity of Luminaires. Enter the number of luminaires in the room/area. For track lighting, enter the lineal feet of track and do not include fixtures mounted on the track.

Column (h) - Luminaire Power. Enter the luminaire power from Worksheet 5a column (e).

Column (i) - Exempt Fixtures. Check the box in column (e) if the luminaire is exempt from the budget.

Exempt lighting fixtures include the following provided that they are in addition to general lighting and controlled by an independent control device: (from Section 1313.1).
2.1 Production lighting for theatrical, television, spectator sports and like performance areas.
2.2 Decorative, special effect and production lighting for those portions of entertainment facilities such as theme parks, night clubs, discos and casinos where lighting is an essential technical element for the function performed.
2.3 Lighting equipment that is for sale.
2.4 Task lighting for medical and dental purposes.
2.5 Bench lighting for research laboratories.
2.6 Lighting to be used solely for indoor plant
growth during the hours of $10 \mathrm{p} . \mathrm{m}$. to $6 \mathrm{a} . \mathrm{m}$.
2.7 Emergency lighting that is automatically off during normal building operation.
2.8 Art accent lighting required for art exhibits or displays in galleries, museums and monuments.
2.9 Sign lighting.
2.10 Nonpermanent lighting.

Exception 2.1 is specifically for production lighting used for the performance of productions, such as theatrical spotlights highlighting a stage. This exception would not apply for production lighting used in a non-production task such as theatrical spotlights used in a retail environment.

Exception 2.4 is specifically for medical and dental task lighting. An example would be a light used by a dentist that shines into the mouth or the light in an X-ray viewing panel.

Exception 2.9 is specifically for lighting used only for signage and is controlled by an independent control device. This does not include perimeter-wall lighting.

Exception 2.10 is for lighting that is not part of the permanent building lighting systems. This would include plugged-in under shelf lighting in modular office furniture or plugged-in under shelf lighting in modular retail shelving. Lighting in cases, such as in grocery store upright freezers and within display cases, such as for jewerry are considered nonpermanent lighting. Examples of plug-in lighting that would be considered part of the building lighting system for inclusion in Lighting Power Allowance include metal halide fixtures and clamp-on (and plugged-in) theatrical-type lighting used in spaces that are not for theatrical purposes.

Column (j) - Lighting Power. Enter the product of column (g) and column (h). Include exempt fixtures and track lighting.

Excel Spreadsheet Note: The value for column (j) will be automatically calculated from column (g) and (h).

Column (k) -Room Total Lighting Power. Enter sum of lighting power for each luminaire within a specific parking garage - sum of column (j) for that Room ID. Include exempt fixtures and track lighting. At the bottom of the Column (k) enter the total lighting power sums for all rooms/areas on this worksheet. Do not include exempt fixtures and track lighting in this total.

Excel Spreadsheet Note: The value for column (k) will be automatically calculated from sum of column (j) for that Room ID. The total at the bottom of column (k) will not include exempt fixtures or track lighting.

Does Parking Garage Lighting Power Comply?

If the sum of column (k) is equal to or less than sum of column (e), insert "YES" or "NO" if sum of column (k) is greater than sum of column (e).

Excel Spreadsheet Notes: The values for sum of columns(e) and (k) will be automatically propagated.

INTERIOR LIGHTING POWER

Worksheet 5d - Retail Display Lighting

Worksheet 5d can only be used with the Space-by-Space Method. Worksheet 5d is used to identify all the luminaries that are specifically for retail display lighting. Retail display lighting used in this allowance must highlight retail merchantdise and be switched (controlled) separately from the general retail sales lighting.

The area for this allowance is calculated on the footprint, floor area of the sales room where the display lighting is located. Do not use or include wall area or display area such as shelves, racks or vertical display areas. This display lighting
allowance is calculated for each retail space separately and cannot be traded with other retail spaces or utilized in other parts of the building. Each retail space or room must use a separate Worksheet 5d.

Excel Spreadsheet Note: Worksheet 5d will automatically propagate when "Space-by-Space Method" is selected on Line 7 of Form 5a

To automatically generate additional copies of Worksheet 5a, select the required number of additional worksheets from the pulldown box toward the bottom of the sheet.

1. Room \# or Space ID	Retail Sales Floor
2. Room Area $\left(\mathrm{ft}^{2}\right)$	1500
3. Retail Space Type	Other Merchandise Sales Area

Line 1 - Room \# or Space ID. Enter room number or a short description for each retail sales area where the retail display lighting is located within Line 1. In most instances, this will usually be the same description or other ID as specified on the plans

Line 2 - Room Area (ft^{2}). Enter the square footage of the sales floor area's footprint. Do not include vertical surface areas or shelving area.

Line 3 - Retail Space Type. Enter one of the four specific Retail Space Types specified from Table 5b.

Excel Spreadsheet Note: Select the

 luminaire ID for Line 3 from the pulldown menu.$\left.$| (a)
 Lum ID
 from
 Worksheet
 5 c Column
 (a) | (b)
 Quantity of
 Luminaires (or
 lineal ft. for track
 lighting) | (c) | Luminaire
 Power
 (Watts) |
| :---: | :---: | :---: | :---: | | (d) |
| :---: |
| Lighting |
| Power |
| (b) \times (c) | \right\rvert\,

Column (a) - Luminaire ID. Enter the Luminaire ID from Worksheet 5a column (a).

Excel Spreadsheet Note: Select the

 luminaire ID for column (f) from the pulldown menu.Column (b) - Quantity of Luminaires. Enter the number of luminaires in the room/area. For track lighting, enter the lineal feet of track and do not include fixtures mounted on the track.

Column (c) - Luminaire Power. Enter the luminaire power from Worksheet 5a column (e).

Column (d) - Lighting Power. Enter the product of column (b) and column (c). Include exempt fixtures and track lighting.

Excel Spreadsheet Note: The value for column (d) will be automatically calculated from column (b) and (c).

1.	Space Display Lighting Power (total d column excluding track fixtures)	270
2.	Total length of track lighting (ft)	40
3.	Line 2 multiplied by 50 Watts/ft	2000
4.	Total amperage of circuit breaker(s) serving track lighting (amps)	20
5.	Voltage of circuit breaker serving track lighting (volts)	120
6.	Maximum wattage of track lighting (multiply line 4 by line 5)	2400
7.	VA rating of the inline current limiter or the low voltage transformers	
8.	Track Lighting Power (the lesser value of line 3, 6 or 7)	2000

Lines 1 through 8

The code requires that lighting power used for track lighting be calculated as either 50 Watts per linear foot or the maximum circuit load of the over-current protection device (circuit breaker) serving track lighting (when track lighting is served by separate breakers), or inline current limiter or low voltage transformers whichever is less. See section 1313.2.3.

Line 1 - Space Display Lighting Power. Enter the total of column (d) above and do not include

Excel Spreadsheet Note: Track lighting that was entered in column (b) will automatically propagate.
any track lighting that was entered on this table.
Line 2 - Total length of track. Enter the total length of track lighting, in linear feet, from total that is track of column (b) above.
Line 3. Enter the product of line 2 multiplied by 50.

Line 4. Enter the total amperage of the circuit breakers serving the track lighting circuits.

Line 5. Enter the voltage circuit breakers serving the track lighting circuits.

Line 6. Enter the product of line 4 multiplied by line 5.

Line 7. If the track lighting system includes low voltage transformers or in-line current limiters, you may enter the sum of the listed VA rating values for the inline current limiters or low voltage transformers in line 6 . Leave this cell blank if an inline current limiter or low voltage transformer is not used.

Line 8. Enter the lesser of the values from line 3 or line 6 or line 7 .

Excel Spreadsheet Notes: Lines 2, 3, 6, and 8 will be calculated automatically.

INTERIOR LIGHTING POWER

8.	Track Lighting Power (the lesser value of line 3, 6 or 7)	2000
9.	Total Space Display Lighting Power (Watts) (line 1 + line 8)	2270
10.	Total Space Display Lighting Power Budget (Watts) (room area x 1.75 to max of 17,500)	2625
11.	Does Space Retail Display Meet Space Budget (Line 9 less than line 10 and less than 17,500 W)?	YES

Line 9. Enter the sum of line 1 and line 8.

Line 10. Enter the product of line 1 multiplied by 1.75 and do not enter a value that exceeds 17,500 . If the product is greater than 17,500 , enter 17,500.

Line 11. If line 9 is equal to or less than line 10, insert "YES" or "NO" if line 9 is greater than line 10.

Excel Spreadsheet Notes: Lines 9, 10, and 11 will be calculated automatically.

Excel Spreadsheet Notes: If more than one Worksheet 5d is necessary, select the total number of sheets with the pulldown box at bottom of worksheet where provided for "Total Number of Additional Worksheet 5d".

TABLE 5a(13-G)
TENANT SPACE METHOD
MAXIMUM ALLOWABLE LIGHTING POWER DENSITY (LPD) ${ }^{\mathbf{1}}$

Tenant or Building Type ${ }^{1}$	Lighting Power Density $\left(\mathbf{W} / \mathrm{ft}^{2}\right.$)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.5
Exercise Center	1.0
Fire Station	0.8
Gymnasium	1.1
Healthcare - Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility, Non-process Areas ${ }^{3}$	1.3
Motel	1.0
Motion Picture Theatre	1.2
Multi-Family ${ }^{2}$	0.7
Museum	1.1
Office	1.0
Parking Garage	0.3
Performing Arts Theater	1.6
Police Station	1.0
Post Office	1.1
Religious Building	1.3
Retail	1.5
School/University	1.1
Service station canopies, including all types of vehicle fueling and	2.0
service (except enclosed garages)	1.1
Sports Arena	1.0
Town Hall	1.0
Transportation	0.8
Warehouse	1.4
Workshop	
Fr 1 for	1.0

For SI: 1 foot $=304.8 \mathrm{~mm}, 1$ square foot $=0.929 \mathrm{~m}^{2}$.
1 Attached canopies shall be included in the total building or tenant power allowance.
2 Dwelling units and guestrooms are exempt from interior lighting power allowance requirements.
${ }^{3}$ Spaces used specifically for manufacturing process are exempt and shall not be included in the lighting power allowance calculations.

MAXIMUM POWER DENSITY

TABLE 5b (13-H)—SPACE-BY-SPACE METHOD MAXIMUM ALLOWABLELIGHTING POWER DENSITY (LPD)

Common Space Types	$\begin{gathered} \text { LPD } \\ \left(\mathrm{W} / \mathrm{ft}^{2}\right) \end{gathered}$	Building Specific Space Types (continued)	$\begin{aligned} & \text { LPD } \\ & \left(\mathrm{W} / \mathrm{ft}^{2}\right) \end{aligned}$
Office-enclosed	1.1	Gymnasium/Exercise Center	
Office-open plan	1.1	Playing Area	1.4
Conference/Meeting/Multipurpose	1.3	Exercise Area	0.9
Classroom/Lecture/Training	1.4	Fire Stations	
Lobby	1.3	Fire Station Engine Room	0.8
For Hotel	1.1	Sleeping Quarters	0.3
For Performing Arts Theater	3.3	Post Office-Sorting Area	1.2
For Motion Picture Theater	1.1	Convention Center - Exhibit Space	1.3
Audience/Seating Area	0.9	Library	
For Gymnasium	0.4	Card File \& Cataloging	1.1
For Exercise Center	0.3	Stacks	1.7
For Convention Center	0.7	Reading Area	1.2
For Religious Buildings	1.7	Hospital	
For Sports Arenas	0.4	Emergency	2.7
For Performing Arts Theater	2.6	Recovery	0.8
For Motion Picture Theater	1.2	Nurse Station	1.0
For Transportation	0.5	Exam/Treatment	1.5
Atrium-first three floors	0.6	Pharmacy	1.2
Atrium-each additional floors	0.2	Patient Room	0.7
Lounge/Recreation	1.2	Operating Room	2.2
For Hospital	0.8	Nursery	0.6
Dining Area		Medical Supply	1.4
For Hotel/Motel	1.3	Physical Therapy	0.9
For Bar Lounge/Leisure Dining	1.4	Radiology	0.4
For Family Dining	2.1	Laundry-Washing	0.6
Food Preparation	1.2	Automotive - Service/Repair	0.7
Laboratory	1.4	Museum	
Restrooms	0.9	General Exhibition	1.0
Dressing/Locker/Fitting Room	0.6	Restoration	1.7
Corridor/Transition	0.5	Bank/Office - Banking Activity Area	1.5
For Hospital	1.0	Religious Buildings	
For Manufacturing Facility	0.5	Worship-pulpit, choir	2.4
Stairs-active	0.6	Fellowship Hall	0.9
Active Storage	0.8	Retail	
For Hospitals	0.9	Grocery Sales Area	2.0
Inactive Storage	0.3	Jewelry \& Art Sales Area	3.5
For Museum	0.8	Other Merchandise Sales Area	2.0
Electrical/Mechanical	1.5	Mall Concourse	1.5
Workshop ${ }^{1}$	1.9	Sports Arena	
		Ring Sports Area	2.7
		Court Sports Area	2.3
Building Specific Space Types		Indoor Plying Field Area	1.4
Canopies		Warehouse	
Under 15 feel in height	1.5	Fine Material Storage	1.4
15 feet and over in height	2.0	Medium/Bulky Material Storage	0.9
		Parking Garage - Garage Area	0.2
Courthouse/Police Station		Transportation	
Courtroom	1.9	Airport - Concourse	0.6
Judges Chambers	1.3	Air/Train/Bus - Baggage Area	1.0
		Terminal - Ticket Counter	1.5

For SI: 1 foot $=304.8 \mathrm{~mm}, 1$ square foot $=0.929 \mathrm{~m}^{2}$.
${ }^{1}$ Spaces used specifically for manufacturing are exempt.

Lamp		Ballast			Watts/ Luminaire	Comments	Compact
No.	Designation	No.	Abbreviation	Description			
Compact Fluorescent Twin (9 W, 2G7 Four Pin Base - F9TT Lamp) (Cont.)							
1	CFT9W/2G7	1	ELECT	Electronic	10	6.5" MOL	Fluorescent
2	CFT9W/2G7	2	ELECT	Electronic	20		
Compact Fluorescent Twin (13 W, GX23 Two Pin Base - F13TT)							win (Cont.)
1	CFT13W/GX23	1	MAG STD	Magnetic Standard	17	7.5" MOL	
2	CFT13W/GX23	2	MAG STD	Magnetic Standard	34		
Compact Fluorescent Twin (13 W, 2GX7 Four Pin Base - F13TT)							
1	CFT13W/2GX7	1	ELECT	Electronic	17	7.5" MOL	
Compact Fluorescent Quad (9 W, G23-2 Two Pin Base - F9DTT Lamp)							
							Compact
1	CFQ9W/G23-2	1	MAG STD 120	120 V Magnetic Standard	13	4.4" MOL	Fluorescent
2	CFQ9W/G23-2	2	MAG STD 120	120 V Magnetic Standard	26		Quad
Compact Fluorescent Quad (13 W, G24d-1 Two Pin Base - F13DTT Lamp)							
1	CFQ13W/G24d-1	1	MAG STD 120	120 V Magnetic Standard	18	6.0" MOL	
2	CFQ13W/G24d-1	2	MAG STD 120	120 V Magnetic Standard	36		
1	CFQ13W/G24d-1	1	MAG STD 277	277 V Magnetic Standard	16		
2	CFQ13W/G24d-1	2	MAG STD 277	227 V Magnetic Standard	32		
Compact Fluorescent Quad (13 W, GX23-2 Two Pin Base)							
1	CFQ13W/GX23-2	1	MAG STD	Magnetic Standard	17	4.8" MOL	
2	CFQ13W/GX23-2	2	MAG STD	Magnetic Standard	34		
Compact Fluorescent Quad (16W GX32d-1 Two Pin Base)							
1	CFQ16W/GX32d-1	1	MAG STD	Magnetic Standard	20	5.5" MOL	
2	CFQ16W/GX32d-1	2	MAG STD	Magnetic Standard	40		
Compact Fluorescent Quad (18 W, G24d-2 Two Pin Base - F18DTT Lamp)							
1	CFQ18W/G24d-2	1	MAG STD 120	120 V Magnetic Standard	25	6.8" MOL	
2	CFQ18W/G24d-2	2	MAG STD 120	120 V Magnetic Standard	50		
1	CFQ18W/G24d-2	1	MAG STD 277	227 V Magnetic Standard	22		
2	CFQ18W/G24d-2	2	MAG STD 277	227 V Magnetic Standard	44		
Compact Fluorescent Quad (22W, GX32d Two Pin Base)							
1	CFQ22W/GX32d-2	1	MAG STD	Magnetic Standard	27	6.0" MOL	
2	CFQ22W/GX32d-2	2	MAG STD	Magnetic Standard	54		
Compact Fluorescent Quad (26 W, G24d-3 Two Pin Base - F26DTT Lamp)							
1	CFQ26W/G24d-3	1	MAG STD 120	120 V Magnetic Standard	37	7.6" MOL	
2	CFQ26W/G24d-3	2	MAG STD 120	120 V Magnetic Standard	74		
1	CFQ26W/G24d-3	1	MAG STD 277	227 V Magnetic Standard	33		
2	CFQ26W/G24d-3	2	MAG STD 277	227 V Magnetic Standard	66		
1	CFQ26W/G24d-3	1	ELECT 277V	277 V Electronic	27		
2	CFQ26W/G24d-3	2	ELECT 277V	277 V Electronic	54		
Compact Fluorescent Quad (26W, G24q-3 Four Pin Base)							
1	CFQ26W/G24q-3	1	ELECT	Electronic	26	7.6" MOL	
2	CFQ26W/G24q-3	2	ELECT	Electronic	52		
Compact Fluorescent Quad (28W GX32d Two Pin Base)							
1	CFQ28W/GX32d-3	1	MAG STD	Magnetic Standard	34	6.8" MOL	
2	CFQ28W/GX32d-3	2	MAG STD	Magnetic Standard	68		
Compact Fluorescent Quad (10 W, G24q-1 Four Pin Base)							
1	CFQ10W/G24q-1	1	MAG STD 120	120 V Magnetic Standard	16	4.6" MOL	
2	CFQ10W/G24q-1	2	MAG STD 120	120 V Magnetic Standard	32		
1	CFQ10W/G24q-1	1	MAG STD 277	227 V Magnetic Standard	13		
2	CFQ10W/G24q-1	2	MAG STD 277	227 V Magnetic Standard	26		
Compact Fluorescent Quad (13 W, G24q-1 Four Pin Base)							
1	CFQ13W/G24q-1	1	MAG STD 120	120 V Magnetic Standard	18	6.0" MOL	
2	CFQ13W/G24q-1	2	MAG STD 120	120 V Magnetic Standard	36		
1	CFQ13W/G24q-1	1	MAG STD 277	227 V Magnetic Standard	16		

	Lamp	Ballast			Watts/	
	No. Designation	No.	Abbreviation	Description	Luminaire	Comments
Compact	Compact Fluorescent Quad (13 W, G24q-1 Four Pin Base) (Cont.)					
Fluorescent Quad (Cont.)	2 CFQ13W/G24q-1	2	MAG STD 277	227 V Magnetic Standard	32	
	1 CFQ13W/G24q-1	1	ELECT	Electronic	14	
	2 CFQ13W/G24q-1	2	ELECT	Electronic	25	
	Compact Fluorescent Quad (13 W, GX7 Four Pin Base)					
	1 CFQ13W/GX7	1	MAG STD	Magnetic Standard	17	4.8" MOL
	2 CFQ13W/GX7	2	MAG STD	Magnetic Standard	34	
	Compact Fluorescent Quad	(18 W, G24q-2 Four Pin Base)				
	1 CFQ18W/G24q-2	1	MAG STD 120	120 V Magnetic Standard	25	6.8" MOL
	2 CFQ18W/G24q-2	2	MAG STD 120	120 V Magnetic Standard	50	
	1 CFQ18W/G24q-2	1	MAG STD 277	227 V Magnetic Standard	22	
	2 CFQ18W/G24q-2	2	MAG STD 277	227 V Magnetic Standard	44	
	1 CFQ18W/G24q-2	1	ELECT	Electronic	21	
	2 CFQ18W/G24q-2	2	ELECT	Electronic	38	
	3 CFQ18W/G24q-2	1	ELECT	Electronic	50	
Compact Fluorescent Triple	Compact Fluorescent Triple ($13 \mathrm{~W}, \mathrm{GX24q-1}$ Four Pin Base)					
	1 CFM 13W/GX24q-1		MAG STD	Magnetic Standard	18	4.2" MOL
	2 CFM 13W/GX24q-1	2	MAG STD	Magnetic Standard	36	
	Compact Fluorescent Triple	(13 W, GX24q-1 Four Pin Base)				
	1 CFM 13W/GX24q-1	1	ELECT	Electronic	14	
	2 CFM 13W/GX24q-1	2	ELECT	Electronic	25	
	Compact Fluorescent Triple (18W, GX24q-2 Four Pin Base)					
	1 CFM 18W/GX24q-2	1	MAG STD	Magnetic Standard	25	5.0" MOL
	2 CFM 18W/GX24q-2	2	MAG STD	Magnetic Standard	50	
	1 CFM 18W/GX24q-2	1	ELECT	Electronic	21	
	2 CFM 18W/GX24q-2		ELECT	Electronic	38	
	Compact Fluorescent Triple (26W, GX24q-3 Four Pin Base)					
	1 CFTR26W/GX24q-3	1	MAG STD	Magnetic Standard	37	$4.9 \text { to } 5.4^{\prime \prime}$
	2 CFTR26W/GX24q-3	2	MAG STD	Magnetic Standard	74	
	1 CFTR26W/GX24q-3	1	ELECT	Electronic	28	
	2 CFTR26W/GX24q-3	1	ELECT	Electronic	55	
	1 CFTR26W/GX24q-3	1	ELECT DIM	Electronic Dimming	29	
	2 CFTR26W/GX24q-3	1	ELECT DIM	Electronic Dimming	57	
	Compact Fluorescent Triple ($32 \mathrm{~W}, \mathrm{GX} 24 \mathrm{q}-3$ Four Pin Base)					
	1 CFTR32WGX24q-3	1	ELECT	Electronic	35	
	2 CFTR32WGX24q-3	1	ELECT	Electronic	69	
	1 CFTR32WGX24q-3	1	ELECT DIM	Electronic Dimming	38	BF~1.05
	2 CFTR32WGX24q-3	1	ELECT DIM	Electronic Dimming	76	BF~1.05
	Compact Fluorescent Triple or Quad (42W, Gx24q-4 Four Pin Base)					
	1 CFTR42WGX24q-4	1	ELECT	Electronic	46	
	2 CFTR42WGX24q-4	1	ELECT	Electronic	94	
	1 CFTR42WGX24q-4	1	ELECT DIM	Electronic Dimming	49	BF~1.05
	2 CFTR42WGX24q-4	1	ELECT DIM	Electronic Dimming	98	BF~1.05
	Compact Fluorescent Triple or Quad (57W, GX24q-5 Four Pin Base)					
	1 CFTR57WGX24q-5	1	ELECT	Electronic	62	
	1 CFTR57WGX24q-5		ELECT DIM	Electronic Dimming	66	BF~1.05
	Compact Fluorescent Triple or Quad (70W, Gx24q-6 Four Pin Base)					
	1 CFTR70WGX24q-6	1	ELECT	Electronic	75	
	1 CFTR70WGX24q-6	1	ELECT DIM	Electronic Dimming	80	BF~1.00
	1 CFTR70WGX24q-6	1	ELECT	Electronic	75	
	1 CFTR70WGX24q-6	1	ELECT DIM	Electronic Dimming	80	BF~1.00

Lamp		Ballast			Watts/		Fluorescent Twin
No.	Designation	No.	Abbreviation	Description	Luminaire	Comments	
Fluorescent T5 Twin (18W - F18TT Lamp)							
1	FT18W/2G11	1	MAGNETIC	Magnetic Energy Efficient	23	BF~1.0	
2	FT18W/2G11	1	MAGNETIC	Magnetic Energy Efficient	46	BF~1.0	
3	FT18W/2G11	1	MAGNETIC	Magnetic Energy Efficient	69		
3	FT18W/2G11	2	MAGNETIC	Magnetic Energy Efficient	69		
4	FT18W/2G11	2	MAGNETIC	Magnetic Energy Efficient	92	2-lamp ballasts	
1	FT18W/2G11	1	ELECT	Electronic	24		
2	FT18W/2G11	1	ELECT	Electronic	35		
3	FT18W/2G11	1	ELECT	Electronic	52		
3	FT18W/2G11	2	ELECT	Electronic	52		
4	FT18W/2G11	2	ELECT	Electronic	70	2-lamp ballasts	
Fluorescent T5 Twin (24-27W- F24TT or F27TT Lamp)							
1	FT24W/2G11	1	MAGNETIC	Magnetic Energy Efficient	32		
2	FT24W/2G11	1	MAGNETIC	Magnetic Energy Efficient	66		
3	FT24W/2G11	1.5	MAGNETIC	Magnetic Energy Efficient	99	Tandem Wired	
3	FT24W/2G11	2	MAGNETIC	Magnetic Energy Efficient	98		
4	FT24W/2G11	2	MAGNETIC	Magnetic Energy Efficient	132	2-lamp Ballasts	
1	FT24W/2G11	1	ELECT	Electronic	27	BF~1.0	
2	FT24W/2G11	1	ELECT	Electronic	52	BF~1.0	
3	FT24W/2G11	1.5	ELECT	Electronic	64	Tandem Wired	
3	FT24W/2G11	2	ELECT	Electronic	64		
4	FT24W/2G11	2	ELECT	Electronic	88	2-lamp ballasts	
Fluorescent T5 Twin (36-39W - F36TT or F39TT Lamp)							
1	FT36W/2G11	1	MAG EE	Magnetic Energy Efficient	51		
2	FT36W/2G11	1	MAG EE	Magnetic Energy Efficient	66		
3	FT36W/2G11	2	MAG EE	Magnetic Energy Efficient	117		
4	FT36W/2G11	2	MAG EE	Magnetic Energy Efficient	132		
1	FT36W/2G11	1	ELECT	Electronic	37		
2	FT36W/2G11	1	ELECT	Electronic	70		
3	FT36W/2G11	1.5	ELECT	Electronic	105		
Fluorescent T5 Twin (36-39W - F36TT or F39TT Lamp) (Cont.)							
3	FT36W/2G11	2	ELECT	Electronic	107		
4	FT36W/2G11	2	ELECT	Electronic	140		
1	FT36W/2G11	1	ELEC THO	Electronic High Output	46	BF~1.22	
2	FT36W/2G11	1	ELEC THO	Electronic High Output	86	BF~1.20	
Fluorescent T5 Twin (40 W - F40TT Lamp)							
1	FT40W/2G11	1	MAG EE	Magnetic Energy Efficient	43		
2	FT40W/2G11	1	MAG EE	Magnetic Energy Efficient	86		
3	FT40W/2G11	1.5	MAG EE	Magnetic Energy Efficient	129		
3	FT40W/2G11	2	MAG EE	Magnetic Energy Efficient	130		
4	FT40W/2G11	2	MAG EE	Magnetic Energy Efficient	172		
1	FT40W/2G11	1	ELECT NO*	Electronic	41	BF~. 90	
2	FT40W/2G11	1	ELECT NO*	Electronic	78	BF~. 97	
3	FT40W/2G11	1	ELECT NO*	Electronic	103	BF~. 86	
1	FT40W/2G11	1	ELECT HO*	Electronic High Output	50	BF~1.1	
1	FT40W/2G11	1	ELECT DIM	Electronic Dimming	41	BF~1.0	
2	FT40W/2G11	1	ELECT DIM	Electronic Dimming	80	BF~1.0	
3	FT40W/2G11	2	ELECT	Electronic	107		
4	FT40W/2G11	2	ELECT	Electronic	142		

[^0]

[^1]| Lamp | | Ballast | | | Watts/ Luminaire | | Fluorescent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Designation | No. | Abbreviation | Description | | Comments | |
| 2 ft . Fluorescent U-Tube T-12 ("Standard" 40W) (Cont.) | | | | | | | |
| 2 | FB40T12 | 1 | MAGNETIC | Magnetic Energy Efficient | 86 | | U-Tube |
| 3 | FB40T12 | 1 | MAGNETIC | Magnetic Energy Efficient | 127 | | (Cont.) |
| 3 | FB40T12 | 1.5 | MAGNETIC | Magnetic Energy Efficient | 129 | Tandem wired | |
| 3 | FB40T12 | 2 | MAGNETIC | Magnetic Energy Efficient | 134 | | |
| 1 | FB40T12 | 0.5 | ELECT | Electronic | 35 | Tandem wired | |
| 1 | FB40T12 | 1 | ELECT | Electronic | 36 | | |
| 2 | FB40T12 | 1 | ELECT | Electronic | 67 | | |
| 3 | FB40T12 | 1 | ELECT | Electronic | 100 | | |
| 3 | FB40T12 | 1.5 | ELECT | Electronic | 101 | Tandem wired | |
| 3 | FB40T12 | 2 | ELECT | Electronic | 103 | | |
| Fluorescent Preheat T5 (4W) 103 | | | | | | | Fluorescent |
| 1 | F4T5 | 1 | MAG STD | Magnetic Standard | 8 | 6" MOL | Linear |
| Fluo | cent Preheat | 6W) | | | | | Lamps - |
| 1 | F6T5 | 1 | MAG STD | Magnetic Standard | 10 | 9" MOL | Preheat |
| Fluorescent Preheat T5 (8W) | | | | | | | |
| 1 | F8T5 | 1 | MAG STD | Magnetic Standard | 12 | 12" MOL | |
| Fluorescent Preheat T8 (15W) | | | | | | | |
| 1 | F15T8 | 1 | MAG STD | Magnetic Standard | 19 | 18" MOL | |
| Fluorescent Preheat T12 (15W) | | | | | | | |
| 1 | F15T12 | 1 | MAG STD | Magnetic Standard | 19 | 18" MOL | |
| Fluorescent Preheat T12 (20W) | | | | | | | |
| 1 | F20T12 | 1 | MAG STD | Magnetic Standard | 25 | 24" MOL | |
| 2 | F20T12 | 1 | MAG STD | Magnetic Standard | 50 | 24" MOL | |
| Fluorescent Preheat T8 (30W) | | | | | | | |
| 1 | F30T8 | 1 | MAG STD | Magnetic Standard | 46 | 30" MOL | |
| 2 | F30T8 | 1 | MAG STD | Magnetic Standard | 79 | 30" MOL | |
| Fluorescent Preheat T12 (30W) | | | | | | | |
| 1 | F30T12 | 1 | MAG STD | Magnetic Standard | 46 | 30" MOL | |
| 2 | F30T12 | 1 | MAG STD | Magnetic Standard | 79 | 30" MOL | |
| 2 | F30T12 | 1 | MAGNETIC | Magnetic Energy Efficient | 74 | 30" MOL | |
| 1 | F30T12 | 1 | ELECT | Electronic | 31 | 30" MOL | |
| 2 | F30T12 | 2 | ELECT | Electronic | 63 | 30" MOL | Fluorescent |
| -23" Fluorescent Program Start T5 (14W) | | | | | | | Fluorescent |
| 1 | F14T5 | 1 | ELECT | Elect. Program Start | 18 | BF~1.0 | Linear |
| 2 | F14T5 | 1 | ELECT | Elect. Program Start | 34 | BF~1.0 | Lamps - T5 |
| -34.5" Fluorescent Program Start T5 (21W) | | | | | | | |
| 1 | F21T5 | 1 | ELECT | Elect. Program Start | 27 | BF~1.0 | |
| | F21T5 | 1 | ELECT | Elect. Program Start | 50 | BF~1.0 | |
| ~46" Fluorescent Program Start T5 (28W) | | | | | | | |
| 1 | F28T5 | 1 | ELECT | Elect. Program Start | 30 | BF~1.0 | |
| 2 | F28T5 | 1 | ELECT | Elect. Program Start | 60 | BF~1.0 | |
| -58.5" Fluorescent Program Start T5 (35W) | | | | | | | |
| 1 | F35T5 | 1 | ELECT | Elect. Program Start | 40 | BF~1.0 | |
| 2 | F35T5 | 1 | ELECT | Elect. Program Start | 78 | BF~1.0 | |
| ~23" Fluorescent Program Start T5 High Output (24W) | | | | | | | |
| 1 | F24T5HO | 1 | ELECT | Elect. Program Start | 27 | BF~1.0 | |
| 2 | F24T5HO | 1 | ELECT | Elect. Program Start | 52 | BF~1.0 | |
| -34.5" Fluorescent Program Start T5 High Output(39W) | | | | | | | |
| 1 | F39T5 | 1 | ELECT | Elect. Program Start | 43 | BF~1.0 | |
| 2 | F39T5 | 1 | ELECT | Elect. Program Start | 85 | BF~1.0 | |

[^2]| Lamp | | Ballast | | | Watts/ | | Fluorescent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Designation | No. | Abbreviation | Description | Luminaire | Comments | |
| 4 foot Fluorescent Instant Start T8 ("Energy Saving" 30W) (Cont.) | | | | | | | |
| 3 | F32T8/30ES | 1 | ELECT NO* | Electronic Normal Output | 79 | | Instant |
| 4 | F32T8/30ES | 1 | ELECT NO* | Electronic Normal Output | 104 | | Start T8 |
| 1 | F32T8/30ES | 1 | ELECT RO* | Electronic Reduced Output | 27 | BF~. 75 | (Cont.) |
| 2 | F32T8/30ES | 1 | ELECT RO* | Electronic Reduced Output | 48 | BF~. 75 | |
| 3 | F32T8/30ES | 1 | ELECT RO* | Electronic Reduced Output | 70 | BF~. 75 | |
| 4 | F32T8/30ES | 1 | ELECT RO* | Electronic Reduced Output | 91 | BF~. 75 | |
| 1 | F32T8/30ES | 1 | ELECT NO* EE | EE Normal Output | 33 | | |
| 2 | F32T8/30ES | 1 | ELECT NO* EE | EE Normal Output | 52 | | |
| 4 foot Fluorescent Instant Start T8 ("Energy Saving" 30W) (Cont.) | | | | | | | |
| 3 | F32T8/30ES | 1 | ELECT NO* EE | EE Normal Output | 77 | | |
| 4 | F32T8/30ES | 1 | ELECT NO* EE | EE Normal Output | 101 | | |
| 1 | F32T8/30ES | 1 | ELECT RO* EE | EE Reduced Output | 28 | BF~. 78 | |
| 2 | F32T8/30ES | 1 | ELECT RO* EE | EE Reduced Output | 45 | BF~. 78 | |
| 3 | F32T8/30ES | 1 | ELECT RO* EE | EE Reduced Output | 66 | BF~. 78 | |
| 4 | F32T8/30ES | 1 | ELECT RO* EE | EE Reduced Output | 88 | BF~. 78 | |
| 4 foot Fluorescent Rapid Start T8 (32W) | | | | | | | |
| 1 | F32T8 | 0.5 | MAGNETIC | Magnetic Energy Efficient | 35 | Tandem wired | |
| 1 | F32T8 | 1 | MAGNETIC | Magnetic Energy Efficient | 39 | | |
| 2 | F32T8 | 1 | MAGNETIC | Magnetic Energy Efficient | 70 | | |
| 3 | F32T8 | 1.5 | MAGNETIC | Magnetic Energy Efficient | 105 | Tandem wired | |
| 3 | F32T8 | 2 | MAGNETIC | Magnetic Energy Efficient | 109 | | |
| 4 | F32T8 | 2 | MAGNETIC | Magnetic Energy Efficient | 140 | (2) two-lamp | |
| 4 foot Fluorescent Rapid Start T8 (32W) | | | | | | | |
| 1 | F32T8 | 0.5 | ELECT NO* | Electronic Normal Output | 31 | | |
| 1 | F32T8 | 1 | ELECT NO* | Electronic Normal Output | 32 | | |
| 2 | F32T8 | 1 | ELECT NO* | Electronic Normal Output | 62 | | |
| 3 | F32T8 | 1 | ELECT NO* | Electronic Normal Output | 93 | | |
| 3 | F32T8 | 1.5 | ELECT NO* | Electronic Normal Output | 93 | Tandem wired | |
| 4 | F32T8 | 1 | ELECT NO* | Electronic Normal Output | 114 | | |
| 1 | F32T8 | 1 | EE NO* | EE Normal Output | 35 | | |
| 2 | F32T8 | 1 | EE NO* | EE Normal Output | 55 | | |
| 3 | F32T8 | 1 | EE NO* | EE Normal Output | 82 | | |
| 4 | F32T8 | 1 | EE NO* | EE Normal Output | 107 | | |
| 1 | F32T8 | 1 | ELECT RO* | Electronic Reduced Output | 29 | BF~. 75 | |
| 2 | F32T8 | 1 | ELECT RO* | Electronic Reduced Output | 51 | BF~. 75 | |
| 3 | F32T8 | 1 | ELECT RO* | Electronic Reduced Output | 76 | BF-. 75 | |
| 4 | F32T8 | 1 | ELECT RO* | Electronic Reduced Output | 100 | BF~. 75 | |
| 2 | F32T8 | 1 | ELECT HO* | Electronic High Output | 77 | BF~1.13 | |
| 3 | F32T8 | 1 | ELECT HO* | Electronic High Output | 112 | BF~1.18 | |
| 1 | F32T8 | 1 | EE RO* | EE Reduced Output | 30 | BF~. 74 | |
| 2 | F32T8 | 1 | EE RO* | EE Reduced Output | 48 | BF~. 74 | |

[^3]| Fluorescent | | Lamp | Ballast | | | Wuminaire | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | No. | Designation | No. | Abbreviation | Description | | re Comments |
| | 4 foot Fluorescent Rapid Start T8 (32W) (Cont.) | | | | | | |
| Rapid | 3 | F32T8 | 1 | EE RO* | EE Reduced Output | 73 | BF~. 74 |
| Start T8
 (Cont.) | 4 | F32T8 | 1 | EE RO* | EE Reduced Output | 96 | BF~. 74 |
| | 2 | F32T8 | 1 | ELECT TL | Electronic Two Level (50 \& 100\%) |) 65 | |
| | 3 | F32T8 | 1.5 | ELECT TL | Electronic Two Level (50 \& 100\%) |) 98 | Tandem wired |
| | 4 | F32T8 | 2 | ELECT TL | Electronic Two Level (50 \& 100\%) | 1302 | 2-lamp ballasts |
| | 1 | F32T8 | 1 | ELECT DIM | Electronic Dimming | 35 | BF~1.0 |
| | 2 | F32T8 | 1 | ELECT DIM | Electronic Dimming | 68 | BF~1.0 |
| | 3 | F32T8 | 1 | ELECT DIM | Electronic Dimming | 102 | BF~1.0 |
| | 4 | F32T8 | 1 | ELECT DIM | Electronic Dimming | 116 | BF~. 88 |
| | 1 | F40T8 | 1 | MAGNETIC | Magnetic Energy Efficient | 50 | |
| | 2 | F40T8 | 1 | MAGNETIC | Magnetic Energy Efficient | 92 | |
| | 1 | F40T8 | 1 | ELECT | Electronic | 46 | |
| | 2 | F40T8 | 1 | ELECT | Electronic | 79 | |
| | 3 | F40T8 | 1 | ELECT | Electronic | 112 | |
| Fluorescent Rapid Start T12 | 3 foot Fluorescent Rapid Start T12 ("Energy-Saving" 25W) | | | | | | |
| | 1 | F30T12/ES | 1 | MAG STD | Magnetic Standard | 42 | |
| | 2 | F30T12/ES | 1 | MAG STD | Magnetic Standard | 74 | |
| | 3 | F30T12/ES | 1.5 | MAG STD | Magnetic Standard | 111 | Tandem wired |
| | 3 | F30T12/ES | 2 | MAG STD | Magnetic Standard | 116 | |
| | 2 | F30T12/ES | 1 | MAGNETIC | Magnetic Energy Efficient | 66 | |
| | 1 | F30T12/ES | 1 | ELECT | Electronic | 26 | |
| | 2 | F30T12/ES | 1 | ELECT | Electronic | 53 | |
| | 3 foot Fluorescent Rapid Start T12 ("Standard" 30W) | | | | | | |
| | 1 | F30T12 | 1 | MAG STD | Magnetic Standard | 46 | |
| | 2 | F30T12 | 1 | MAG STD | Magnetic Standard | 79 | |
| | 3 | F30T12 | 1.5 | MAG STD | Magnetic Standard | 118 | Tandem wired |
| | 3 | F30T12 | 2 | MAG STD | Magnetic Standard | 125 | |
| | 2 | F30T12 | 1 | MAGNETIC | Magnetic Energy Efficient | 73 | |
| | 1 | F30T12 | 1 | ELECT | Electronic | 30 | |
| | 2 | F30T12 | 1 | ELECT | Electronic | 60 | |
| | 4 foot Fluorescent Rapid Start T12 ("Energy-Saving Plus"32W) | | | | | | |
| | 1 | F40T12/ES Plus | 0.5 | MAGNETIC | Magnetic Energy Efficient | 34 | Tandem wired |
| | 1 | F40T12/ES Plus | 1 | MAGNETIC | Magnetic Energy Efficient | 41 | |
| | 2 | F40T12/ES Plus | 1 | MAGNETIC | Magnetic Energy Efficient | 68 | |
| | 3 | F40T12/ES Plus | 1 | MAGNETIC | Magnetic Energy Efficient | 99 | |
| | 3 | F40T12/ES Plus | 1.5 | MAGNETIC | Magnetic Energy Efficient | 102 | Tandem wired |
| | 3 | F40T12/ES Plus | 2 | MAGNETIC | Magnetic Energy Efficient | 109 | |
| | 4 | F40T12/ES Plus | 2 | MAGNETIC | Magnetic Energy Efficient | 136 | 2-lamp ballasts |
| | 1 | F40T12/ES | 0.5 | MAG STD | Magnetic Standard | 42 | Tandem wired |
| | 1 | F40T12/ES | 1 | MAG STD | Magnetic Standard | 48 | |
| | 2 | F40T12/ES | 1 | MAG STD | Magnetic Standard | 82 | |
| | 3 | F40T12/ES | 1.5 | MAG STD | Magnetic Standard | 122 T | Tandem wired |
| | 3 | F40T12/ES | 2 | MAG STD | Magnetic Standard | 130 | |
| | 4 | F40T12/ES | 2 | MAG STD | Magnetic Standard | 164 | 2-lamp ballasts |
| | 1 | F40T12/ES | 0.5 | MAGNETIC | Magnetic Energy Efficient | 36 | Tandem wired |
| | 1 | F40T12/ES | 1 | MAGNETIC | Magnetic Energy Efficient | 43 | |
| | 2 | F40T12/ES | 1 | MAGNETIC | Magnetic Energy Efficient | 72 | |
| | 3 | F40T12/ES | 1 | MAGNETIC | Magnetic Energy Efficient | 105 | |
| | 3 | F40T12/ES | 1.5 | MAGNETIC | Magnetic Energy Efficient | 108 T | Tandem wired |
| | 3 | F40T12/ES | 2 | MAGNETIC | Magnetic Energy Efficient | 112 | |

[^4]| Lamp | | Ballast | | | Watts/ Luminaire | | Fluorescent Rapid Start T12 (Cont.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Designation | No. | Abbreviation | Description L | | Comments | |
| 4 foot Fluorescent Rapid Start T12 ("Energy-Saving"34W) (Cont.) | | | | | | | |
| 4 | F40T12/ES | 2 | MAGNETIC | Magnetic Energy Efficient | 144 | 2-lamp ballasts | |
| 2 | F40T12/ES | 1 | MAG HC | Magnetic Heater Cutout | 58 | | |
| 3 | F40T12/ES | 1.5 | MAG HC | Magnetic Heater Cutout | 87 | Tandem wired | |
| 4 | F40T12/ES | 2 | MAG HC | Magnetic Heater Cutout | 116 | 2-lamp ballasts | |
| 2 | F40T12/ES | 1 | MAG HC FO | Mag. Heater Cutout Full Light | 66 | | |
| 3 | F40T12/ES | 1.5 | MAG HC FO | Mag. Heater Cutout Full Light | 99 | Tandem wired | |
| 4 | F40T12/ES | 2 | MAG HC FO | Mag. Heater Cutout Full Light | 132 | 2-lamp ballasts | |
| 1 | F40T12/ES | 0.5 | ELECT | Electronic | 30 | Tandem wired | |
| 1 | F40T12/ES | 1 | ELECT | Electronic | 31 | | |
| 2 | F40T12/ES | 1 | ELECT | Electronic | 62 | | |
| 3 | F40T12/ES | 1 | ELECT | Electronic | 90 | | |
| 3 | F40T12/ES | 1.5 | ELECT | Electronic | 93 | Tandem wired | |
| 3 | F40T12/ES | 2 | ELECT | Electronic | 93 | | |
| 4 | F40T12/ES | 1 | ELECT | Electronic | 121 | | |
| 4 | F40T12/ES | 2 | ELECT | Electronic | 124 | 2-lamp ballasts | |
| 2 | F40T12/ES | 1 | ELECT AO | Elec. Adjustable Output (to 15\%) |) 60 | | |
| 3 | F40T12/ES | 1.5 | ELECT AO | Elec. Adjustable Output (to 15\%) |) 90 | Tandem wired | |
| 4 | F40T12/ES | 2 | ELECT AO | Elec. Adjustable Output (to 15\%) |) 120 | 2-lamp ballasts | |
| 4 foot Fluorescent Rapid Start Standard (40W) | | | | | | | |
| 1 | F40T12 | 0.5 | MAG STD | Magnetic Standard | 26 | Tandem wired | |
| 1 | F40T12 | 1 | MAG STD | Magnetic Standard | 52 | | |
| 2 | F40T12 | 1 | MAG STD | Magnetic Standard | 96 | | |
| 3 | F40T12 | 1.5 | MAG STD | Magnetic Standard | 144 | Tandem wired | |
| 3 | F40T12 | 2 | MAG STD | Magnetic Standard | 148 | | |
| 4 | F40T12 | 2 | MAG STD | Magnetic Standard | 192 | 2-lamp ballasts | |
| 1 | F40T12 | 0.5 | MAGNETIC | Magnetic Energy Efficient | 44 | Tandem wired | |
| 1 | F40T12 | 1 | MAGNETIC | Magnetic Energy Efficient | 46 | | |
| 2 | F40T12 | 1 | MAGNETIC | Magnetic Energy Efficient | 88 | | |
| 3 | F40T12 | 1 | MAGNETIC | Magnetic Energy Efficient | 127 | | |
| 3 | F40T12 | 1.5 | MAGNETIC | Magnetic Energy Efficient | 132 | Tandem wired | |
| 3 | F40T12 | 2 | MAGNETIC | Magnetic Energy Efficient | 134 | | |
| 4 | F40T12 | 2 | MAGNETIC | Magnetic Energy Efficient | 176 | 2-lamp ballasts | |
| 2 | F40T12 | 1 | MAG HC | Magnetic Heater Cutout | 71 | | |
| 3 | F40T12 | 1.5 | MAG HC | Magnetic Heater Cutout | 107 | Tandem wired | |
| 4 | F40T12 | 2 | MAG HC | Magnetic Heater Cutout | 142 | 2-lamp ballasts | |
| 2 | F40T12 | 1 | MAG HC FO | Magnetic Heater Cutout Full Light | ht 80 | | |
| 3 | F40T12 | 1.5 | MAG HC FO | Magnetic Heater Cutout Full Light | 120 | Tandem wired | |
| 4 | F40T12 | 2 | MAG HC FO | Magnetic Heater Cutout Full Light | 160 | 2-lamp ballasts | |
| 1 | F40T12 | 0.5 | ELECT | Electronic | 36 | Tandem wired | |
| 1 | F40T12 | 1 | ELECT | Electronic | 37 | | |
| 2 | F40T12 | 1 | ELECT | Electronic | 72 | | |
| 3 | F40T12 | 1 | ELECT | Electronic | 107 | | |
| 3 | F40T12 | 1.5 | ELECT | Electronic | 108 | Tandem wired | |
| 3 | F40T12 | 2 | ELECT | Electronic | 109 | | |
| 4 | F40T12 | 1 | ELECT | Electronic | 135 | | |
| 4 | F40T12 | 2 | ELECT | Electronic | 144 | 2-lamp ballasts | |
| 2 | F40T12 | 1 | ELECT RO | Electronic Reduce Output (75\%) |) 61 | | |
| 3 | F40T12 | 1 | ELECT RO | Electronic Reduce Output (75\%) |) 90 | | |
| 3 | F40T12 | 1.5 | ELECT RO | Electronic Reduce Output (75\%) |) 92 | Tandem wired | |
| 4 | F40T12 | 2 | ELECT RO | Electronic Reduce Output (75\%) |) 122 | 2-lamp ballasts | |

	Lamp		Ballast			Watts/	
	No.	Designation	No.	Abbreviation	Description	Luminaire	Comments
Fluorescent	4 foot Fluorescent Rapid Start Standard (40W) (Cont.)						
Rapid Start T12 (Cont.)	2	F40T12	1	ELECT TL	Elec. Two Level (50 \& 100\%)	69	
	3	F40T12	1.5	ELECT TL	Elec. Two Level (50 \& 100\%)	104	Tandem wired
	4	F40T12	2	ELECT TL	Elec. Two Level (50 \& 100\%)	138	2-lamp ballasts
	2	F40T12	1	ELECTAO	Elec. Adjustable Output (to 15\%)) 73	
	3	F40T12	1.5	ELECT AO	Elec. Adjustable Output (to 15\%)) 110	Tandem wired
	4	F40T12	2	ELECT AO	Elec. Adjustable Output (to 15\%)) 146	2-lamp ballasts
	2	F40T12	1	ELECT DIM	Electronic Dimming (to 1\%)	83	
	3	F40T12	1.5	ELECT DIM	Electronic Dimming (to 1\%)	125	Tandem wired
	4	F40T12	2	ELECT DIM	Electronic Dimming (to 1\%)	166	2-lamp ballasts
Fluorescent Rapid Start T10	4 foot Fluorescent Rapid Start T10 Extended Output (42W)						
	2	F40T10/EO	1	MAGNETIC	Magnetic Energy Efficient	92	
	3	F40T10/EO	1.5	MAGNETIC	Magnetic Energy Efficient	138	Tandem wired
	4	F40T10/EO	2	MAGNETIC	Magnetic Energy Efficient	184	2-lamp ballasts
	2	F40T10/EO	1	MAG HC	Magnetic Heater Cutout	74	
	3	F40T10/EO	1.5	MAG HC	Magnetic Heater Cutout	111	Tandem wired
	4	F40T10/EO	2	MAG HC	Magnetic Heater Cutout	148	2-lamp ballasts
	2	F40T10/EO	1	ELECT	Electronic	74	
	3	F40T10/EO	1.5	ELECT	Electronic	111	Tandem wired
	4	F40T10/EO	2	ELECT	Electronic	148	2-lamp ballasts
	2	F40T10/EO	1	ELECT RO	Electronic Reduce Output (75\%)) 63	
	3	F40T10/EO	1.5	ELECT RO	Electronic Reduce Output (75\%)) 95	Tandem wired
	4	F40T10/EO	2	ELECT RO	Electronic Reduce Output (75\%)) 126	2-lamp ballasts
	2	F40T10/EO	1	ELECT TL	Elec. Two Level (50 \& 100\%)	72	
	3	F40T10/EO	1.5	ELECT TL	Elec. Two Level (50 \& 100\%)	108	Tandem wired
	4	F40T10/EO	2	ELECT TL	Elec. Two Level (50 \& 100\%)	144	2-lamp ballasts
	2	F40T10/EO	1	ELECT AO	Elec. Adjustable Output (to 15\%)	73	
	3	F40T10/EO	1.5	ELECT AO	Elec. Adjustable Output (to 15\%)	110	Tandem wired
	4	F40T10/EO	2	ELECT AO	Elec. Adjustable Output (to 15\%)	146	2-lamp ballasts
	2	F40T10/EO	1	ELECT DIM	Electronic Dimming (to 1\%)	85	
	3	F40T10/EO	1.5	ELECT DIM	Electronic Dimming (to 1\%)	128	Tandem wired
	4	F40T10/EO	2	ELECT DIM	Electronic Dimming (to 1\%)	170	2-lamp ballasts

Fluorescent
Rapid Start High Output

8 foot Fluorescent Rapid Start T8 High Output (86W)					
1	F96T8/HO	1	ELECT	Electronic	88
2	F96T8/HO	1	ELECT	Electronic	160
8 foot Fluorescent Rapid Start T12 High Output ("Energy-Saving" 95W)					
1	F96T12/HO/ES	1	MAG STD	Magnetic Standard	125
2	F96T12/HO/ES	1	MAG STD	Magnetic Standard	227
2	F96T12/HO/ES	1	MAGNETIC	Magnetic Energy Efficient	208
2	F96T12/HO/ES	1	ELECT	Electronic	170
8 foot Fluorescent Rapid Start T12 High Output ("Standard" 110W)					
1	F96T12/HO	1	MAG STD	Magnetic Standard	140
2	F96T12/HO	1	MAG STD	Magnetic Standard	252
2	F96T12/HO	1	MAGNETIC	Magnetic Energy Efficient	237
1	F96T12/HO	1	ELECT	Electronic	119
2	F96T12/HO	1	ELECT	Electronic	205
8 foot Fluorescent Rapid Start T12 Very High Output ("Energy-Saving" 195W)					
1	F96T12/VHO/ES	1	MAG STD	Magnetic Standard	200
2	F96T12/VHO/ES	1	MAG STD	Magnetic Standard	325
8 foot Fluorescent Rapid Start T12 Very High Output ("Standard" 215W)					
1	F96T12/VHO	1	MAG STD	Magnetic Standard	230
2	F96T12/VHO	1	MAG STD	Magnetic Standard	440

Lamp		Ballast			Watts/		Fluorescent Instant Start
No.	Designation	No.	Abbreviation	Description	Luminaire	Comments	
4 foot Fluorescent Slimline Energy-Saving T12 (32W)							
1	F48T12/ES	1	MAG STD	Magnetic Standard	51		
2	F48T12/ES	1	MAG STD	Magnetic Standard	82		
4 foot Fluorescent Slimline Standard T12 (39W)							
1	F48T12	1	MAG STD	Magnetic Standard	59		
2	F48T12	1	MAG STD	Magnetic Standard	98		
8 foot Fluorescent T8 Slimline (59W)							
1	F96T8	1	MAGNETIC	Magnetic Standard	58		
2	F96T8	1	MAGNETIC	Magnetic Standard	120		
2	F96T8	1	ELECT NO*	Electronic Normal Output	110		
1	F96T8	1	ELECT HO*	Electronic High Output	72	BF~1.10	
2	F96T8	1	ELECT HO*	Electronic High Output	151	BF~1.20	
8 foot Fluorescent T12 Slimline ("Energy-Saving" 60W)							
1	F96T12/ES	1	MAG STD	Magnetic Standard	74		
2	F96T12/ES	1	MAG STD	Magnetic Standard	131		
2	F96T12/ES	1	MAGNETIC	Magnetic Energy Efficient	112		
1	F96T12/ES	1	ELECT	Electronic	70		
2	F96T12/ES	1	ELECT	Electronic	107		
8 foot Fluorescent T12 Slimline ("Standard" 75W)							
1	F96T12	1	MAG STD	Magnetic Standard	92		
2	F96T12	1	MAG STD	Magnetic Standard	158		
2	F96T12	1	MAGNETIC	Magnetic Energy Efficient	144		
1	F96T12	1	ELECT	Electronic	85		
2	F96T12	1	ELECT	Electronic	132		
Mercury Vapor							High
1	H40	1	MAG STD	Magnetic Standard	51		Intensity
1	H50	1	MAG STD	Magnetic Standard	63		Discharge
1	H75	1	MAG STD	Magnetic Standard	88		
1	H100	1	MAG STD	Magnetic Standard	119		
1	H175	1	MAG STD	Magnetic Standard	197		
1	H250	1	MAG STD	Magnetic Standard	285		
1	H400	1	MAG STD	Magnetic Standard	450		
1	H1000	1	MAG STD	Magnetic Standard	1080		
Metal Halide							
1	M32	1	MAG STD	Magnetic Standard	42		
1	M35/39	1	MAG STD	Magnetic Standard	48		
1	M35/39	1	ELECT	Electronic	44		
1	M50	1	MAG STD	Magnetic Standard	68		
1	M50	1	ELECT	Electronic	58		
1	M70	1	MAG STD	Magnetic Standard	92		
1	M70	1	ELECT	Electronic	86		
1	M100	1	MAG STD	Magnetic Standard	122		
1	M100	1	ELECT	Electronic	110		
1	M125	1	MAG STD	Magnetic Standard	150		
1	M150	1	MAG STD	Magnetic Standard	186		
1	M150	1	ELECT	Electronic	168		
1	M175	1	MAG STD	Magnetic Standard	205		
1	M200	1	MAG STD	Magnetic Standard	232		
1	M225	1	MAG STD	Magnetic Standard	258		
1	M250	1	MAG STD	Magnetic Standard	295		
1	M320	1	MAG STD	Magnetic Standard	365		

[^5]| High Intensity Discharge (Cont.) | | Lamp | Ballast | | | Watts/ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | No. | Designation | No. | Abbreviation | Description | Luminaire | Comments |
| | Metal Halide (Cont.) | | | | | | |
| | 1 | M320 | 1 | MAG LR | 277v Linear Reactor Electronic | 345 | Dimming to 50\% |
| | 1 | M320 | 1 | ELECT | | 345 | |
| | 2 | M320 | 1 | ELECT | Electronic Dimming | 679 | |
| | 1 | M350 | 1 | ELECT | Electronic | 375 | |
| | 2 | M350 | 1 | ELECT | Electronic Dimming | 740 | Dimming to 50\% |
| | 1 | M360 | 1 | MAG STD | Magnetic Standard | 422 | |
| | 1 | M360 | 1 | MAG LR | 277v Linear Reactor | 388 | |
| | 1 | M400 | 1 | MAG STD | Magnetic Standard | 461 | |
| | 1 | M400 | 1 | MAG LR | 277v Linear Reactor | 426 | |
| | 1 | M400 | 1 | ELECT | Electronic | 430 | |
| | 2 | M400 | 1 | ELECT | Electronic Dimming | 843 | Dimming to 50\% |
| | 1 | M450 | 1 | MAG STD | Magnetic Standard | 502 | |
| | 1 | M450 | 1 | MAG LR | 277 v Linear Reactor | 478 | |
| | 1 | M750 | 1 | MAG STD | Magnetic Standard | 820 | |
| | 1 | M900 | 1 | MAG STD | Magnetic Standard | 990 | |
| | 1 | M1000 | 1 | MAG STD | Magnetic Standard | 1080 | |
| | 2 | M1000 | 1 | ELECT | Electronic | 2100 | 277 Volt |
| | 1 | M1500 | 1 | MAG STD | Magnetic Standard | 1650 | |
| | 1 | M1650 | 1 | MAG STD | Magnetic Standard | 1810 | |
| | High Pressure Sodium | | | MAG STD | | | |
| | 1 | S35 | 1 | | Magnetic Standard | 44 | |
| | 1 | S50 | 1 | MAG STD | Magnetic Standard | 61 | |
| | 1 | S70 | 1 | MAG STD | Magnetic Standard | 93 | |
| | 1 | S70 | 1 | ELECT | Electronic Dimming | 81 | |
| | 1 | S100 | 1 | MAG STD | Magnetic Standard | 116 | |
| | 1 | S100 | 1 | ELECT | Electronic Dimming | 114 | |
| | 1 | S150 | 1 | MAG STD | Magnetic Standard | 173 | |
| | 1 | S150 | 1 | ELECT | Electronic Dimming | 166 | |
| | 1 | S200 | 1 | MAG STD | Magnetic Standard | 240 | |
| | 1 | S250 | 1 | MAG STD | Magnetic Standard | 302 | |
| | 1 | S250 | 1 | ELECT | Electronic Dimming | 285 | |
| | 1 | S400 | 1 | MAG STD | Magnetic Standard | 469 | |
| | 1 | S400 | 1 | ELECT
 MAG STD | Electronic Dimming | 435 | |
| | 1 | S1000 | 1 | | Magnetic Standard | 1090 | |
| | Low Pressure Sodium | | | | | | |
| | 1 | LPS18 | 1 | MAG STD | Magnetic Standard | 30 | |
| | 1 | LPS35 | 1 | MAG STD | Magnetic Standard | 60 | |
| | 1 | LPS55 | 1 | MAG STD | Magnetic Standard | 80 | |
| | 1 | LPS90 | 1 | MAG STD | Magnetic Standard | 125 | |
| | 1 | LPS135 | 1 | MAG STD | Magnetic Standard | 178 | |
| | 1 | LPS180 | 1 | MAG STD | Magnetic Standard | 220 | |
| Tungsten Halogen | 12 Volt Tungsten Halogen Lamps | | | | | | |
| | Including MR16, Bi-pin, AR70, AR111, PAR36 | | | | | | |
| | 1 | 20 watt lamp | 1 | EPS | Electronic Power Supply | 23 | |
| | 1 | 25 watt lamp | 1 | EPS | Electronic Power Supply | 28 | |
| | 1 | 35 watt lamp | 1 | EPS | Electronic Power Supply | 38 | |
| | 1 | 37 watt lamp | 1 | EPS | Electronic Power Supply | 41 | |
| | 1 | 42 watt lamp | 1 | EPS | Electronic Power Supply | 45 | |
| | 1 | 50 watt lamp | 1 | EPS | Electronic Power Supply | 54 | |
| | 1 | 65 watt lamp | 1 | EPS | Electronic Power Supply | 69 | |
| | 1 | 71 watt lamp | 1 | EPS | Electronic Power Supply | 75 | |
| | 1 | 75 watt lamp | 1 | EPS | Electronic Power Supply | 80 | |

Lamp		Ballast			Watts/		Tungsten Halogen (Cont.)
No.	Designation	No.	Abbreviation	Description	Luminaire	Comments	
12 Volt Tungsten Halogen Lamps Including MR16, Bi-pin, AR70, AR111, PAR36							
1	100 watt lamp	1	EPS	Electronic Power Supply	106		
1	20 watt lamp	1	MT	Magnetic Transformer	24		
1	25 watt lamp	1	MT	Magnetic Transformer	29		
1	35 watt lamp	1	MT	Magnetic Transformer	39		
1	37 watt lamp	1	MT	Magnetic Transformer	42		
1	42 watt lamp	1	MT	Magnetic Transformer	46		
1	50 watt lamp	1	MT	Magnetic Transformer	55		
1	65 watt lamp	1	MT	Magnetic Transformer	70		
1	71 watt lamp	1	MT	Magnetic Transformer	76		
1	75 watt lamp	1	MT	Magnetic Transformer	81		
1	100 watt lamp	1	MT	Magnetic Transformer	108		

TYPES OF LIGHT FIXTURES

Area Post Tops

Lamp Code		Lamp Description			Incandescent Lamps
75A19		75........Lamp wattage A..........Bulb shape $19 \ldots . .$. Bulb diameter in eighths of an inch			
Lamp Code		Lamp Description			Fluorescent Lamps Lamp Color: $W W=$ Warm White $C W=C o o l$
F32T8 RE830		4 ft Energy-efficient, rapid start F.........Fluorescent 32.......Lamp wattage T8.......Tube diameter in eighths of an inch RE830..Lamp color			
F40T12 WW		4 ft Common, rapid start F. \qquad .Fluorescent 40. \qquad Nominal lamp wattage T12.....Tube diameter in eighths of an inch WW. \qquad Lamp color			White $N=$ Natural D = Daylight $41=4,100 \mathrm{~K}$ $35=3,500 \mathrm{~K}$ $30=3,000 \mathrm{~K}$
F40T12 CW/RS/ES		4 ft Energy saving, rapid start F. \qquad .Fluorescent 40.......Nominal lamp wattage CW......Lamp color RS.......Rapid start ES.......Energy saving			Earth, CRI over 80, 3,500K Energy saving: SS = Sylvania "Super-saver" $W M=G E$
F96T12 CW/ES		Slimline, normally 8 ft . F. \qquad Fluorescent 96.. \qquad Lamp length in inches T12.....Tube diameter in eighths of an inch CW......Lamp color ES.......Energy saving			EW = Philips "Econ-o-watt"
F96T12 CW/HO/ES		High output, normally 8 ft . F.........Fluorescent 96.......Lamp length in inches T12.....Tube diameter in eighths of an inch CW......Lamp color HO........High output VHO.....Very high output ES.........Energy saving			
Lamp Code		Lamp Description LU.......Type of HID lamp code, see table below 150......Lamp wattage XXX.....Non-standard proprietary code			HID Lamps
Lamp Type	Philips		Sylvania	GE	
Mercury Vapor Metal Halide High Pressure Sodium	$\begin{gathered} \mathrm{H} \\ \mathrm{MH} \\ \mathrm{C} \end{gathered}$		H MS LU	$\begin{aligned} & \text { HR } \\ & \text { MV } \\ & \text { LU } \end{aligned}$	

RAPID START BALLASTS for 34 and 40 Watt Rapid Start Lamp										
Lamp Number and Type	Nom. Watts	Input Circuit (Ballast Description*	Catalog Number	Cert.	Min. Temp	Input Watts	Sound Rating	Fig. No.	Circuit Type
ONE LAMP, HIGH POWER FACTOR										
(1)F40T12/RS ENERGY SAVING	34	120 277 120 677	Maxi-Miser II Maxi-Miser II Optimiser Optimiser	8G1078W $8 G 1088 \mathrm{~W}$ M28-120-1F $7428-277-1 \mathrm{~F}$	$\begin{aligned} & \text { ETL } \\ & \text { ETL } \end{aligned}$	60	$\begin{aligned} & 45 \\ & 47 \\ & 37 \\ & 38 \\ & \hline \end{aligned}$	A	42	LEAD
(4) (1)F40T12/RS	(5) 40	$\begin{aligned} & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \end{aligned}$	Watt-Miser Maxi-Miser II Low Temp. Dimming Optimiser	$\begin{gathered} \text { 8G1074W } \\ \text { 8G1078W } \\ \text { 8G3688W } \\ 8 G 500 A W F \\ \text { M28-120-1F } \end{gathered}$	CBM - - -	$\begin{gathered} 50 \\ 50 \\ 0 \\ 50 \\ 50 \end{gathered}$	$\begin{aligned} & 48 \\ & 52 \\ & 54 \\ & 50 \\ & 45 \end{aligned}$	A	$\begin{aligned} & 42 \\ & 42 \\ & 42 \\ & 22 \\ & 15 \\ & 42 \end{aligned}$	LEAD LEAD LEAD LEAD LAG LEAD
TWO LAMP, HIGH POWER FACTOR										
(2)F40T12/RS ENERGY SAVING	34	277 120 277	Maxi-Miser II Optimiser Optimiser	$\begin{aligned} & \text { 8G1038W } \\ & \text { M28-120 } \\ & \text { M28-277 } \end{aligned}$	ETL	60	$\begin{aligned} & 77 \\ & 59 \\ & 60 \end{aligned}$	A	14	SERIES L.
(2)F40T12/RS	40	$\begin{aligned} & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 240 \\ & 277 \\ & \hline \end{aligned}$	Quick Change kit Watt-Miser Low Temp Dimming Optimiser Performance Standard Standard	$\begin{gathered} \text { 8G1022W10 } \\ \text { 8G1024W } \\ \text { 8G3905W } \\ \text { 8G5007W } \\ \text { M28-120 } \\ \text { E40-120-2 } \\ \text { 8G3917W } \\ \text { 8G1032W } \end{gathered}$	CBM CBM $-$ CBM	$\begin{gathered} 50 \\ 50 \\ 0 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \end{gathered}$	$\begin{gathered} 96 \\ 86 \\ 90 \\ 103 \\ 71 \\ 70 \\ 92 \\ 96 \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 29 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	SERIES L SERIES L SERIES L SERIES L LAG SERIES L SERIES L SERIES L SERIES L
THREE LAMP, HIGH POWER FACTOR										
(3)F40T12/RS Energy Saving	34	277	Watt-Miser	8G1334W	-	O0	106	A	28	SERIES L.
(3)F40T12/RS	40	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	Performance	$\begin{aligned} & \mathrm{E} 40-120-3 \\ & \mathrm{E} 40-277-3 \end{aligned}$	-	50	$\begin{aligned} & 109 \\ & 109 \end{aligned}$	A	28	SERIES L.

This procedure determines the luminaire power using catalog cuts. Use this procedure if a particular lamp/ballast combination is not in Table 5a or you wish to claim a lower value. Attach the catalog cuts with your compliance forms.

To determine the luminaire power using catalog cuts, follow the steps below:

Step 1. Find the number and type of ballasts in each luminaire.

Fluorescent ballasts usually serve one or two lamps. Some serve three or four lamps. Luminaires may be wired in tandem. That means ballasts may serve lamps in two or more luminaires.

Example: A three-tube fluorescent luminaire may have the following combinations:
-(1) one-lamp ballast and (1) two-lamp ballast

- (1) three-lamp ballast, or
- (1) two-lamp ballast and (1) two-lamp tandem wired ballast, equivalent to (1.5) two-lamp ballast for each luminaire.

For HID lamps, each lamp usually has its own ballast.
Step 2. Find the input wattage for each ballast type.
Ballast catalogs provide tested input wattages for ballast and lamp combinations. In most catalogs, seven items are required to determine input wattages:
1.Circuit type, such as "rapid start."
2. Number of lamps per ballast.
3. Ballast power factor - for example, "low" or "high" power factor.

TECHNICAL NOTES

4. Number and type of lamp, such as "(2)F40T12/RS Energy Saving."
5. Nominal lamp watts.
6. Input circuit voltage.
7. Ballast type, such as "standard," "electronic," "low temperature," "dimming," or a manufacturer's ordering code.

Ballast catalogs may list more than one input wattage for a lamp/ballast combination. Use the tested or the American National Standard Institute (ANSI) value.

HID input wattage may be found in a luminaire catalog or a ballast catalog.

Step 3. Calculate luminaire power.

Total the input wattage of each ballast type in the luminaire. If a ballast is tandem wired for two luminaires, use half the total ballast input.

Example 1

Three-tube fluorescent luminaire with:

- F40T12, 40 W lamps
- (1) one-lamp standard 120 V magnetic ballast
- (1) two-lamp standard 120 V magnetic ballast.

Using the figure above, ballast input wattages equal 52 and 96 , respectively.
Luminaire Power $=52+96=148 \mathrm{~W}$

Example 2

Three-tube fluorescent luminaire with:

- F40T12 energy-saving 34W lamps
- (1) Three-lamp energy-efficient (WattMiser*) 120V magnetic ballast

Using the figure above, ballast input wattages equal 105.

Luminaire power = 105 W

Example 3

Three-tube fluorescent luminaire with:

- F40T12 energy-saving 34W lamps
- (1) Two-lamp and (1) two-lamp tandem wired 120 V energy efficient (Maxi-Miser) magnetic ballasts.
Number of ballasts = three ballasts / two luminaires $=1.5$ ballast per luminaire

Using the example catalog cut-sheet, the ballast input wattage equals 76 Watts.
Luminaire power $=1.5 \times 76=114 \mathrm{~W}$

[^0]: * Key for ballast factor (BF). RO=Reduced Output - BF=. 70 to . 85 NO=Normal Output - BF=. 85 to 1.0 $\mathrm{HO}=$ High Output $-\mathrm{BF}=>1.0$

[^1]: * Key for ballast factor (BF). RO=Reduced Output - BF=. 70 to $.85 \mathrm{NO}=$ Normal Output $-\mathrm{BF}=.85$ to 1.0 $\mathrm{HO}=$ High Output $-\mathrm{BF}=>1.0$

[^2]: * Key for ballast factor (BF). RO=Reduced Output - BF=. 70 to $.85 \mathrm{NO}=$ Normal Output $-\mathrm{BF}=.85$ to 1.0 $\mathrm{HO}=$ High Output $-\mathrm{BF}=>1.0$

[^3]: * Key for ballast factor (BF). RO=Reduced Output - BF=. 70 to .85 NO=Normal Output - BF=. 85 to 1.0 $\mathrm{HO}=$ High Output $-\mathrm{BF}=>1.0$

[^4]: * Key for ballast factor (BF). RO=Reduced Output - BF=. 70 to $.85 \mathrm{NO}=$ Normal Output $-\mathrm{BF}=.85$ to 1.0 $\mathrm{HO}=$ High Output $-\mathrm{BF}=>1.0$

[^5]: * Key for ballast factor (BF). RO=Reduced Output - BF=. 70 to .85 NO=Normal Output - BF=. 85 to 1.0 $\mathrm{HO}=$ High Output $-\mathrm{BF}=>1.0$

