NOAA Technical Memorandum ERL PMEL-99

METHOD FOR EXTRACTING TIDAL AND INERTIAL MOTION

FROM ARGOS ICE BUOYS APPLIED TO THE BARENTS SEA
DURING CEAREX

P. Turet

C. H. Pease

R. S. Pritchard
J. E. Overland

Pacific Marine Environmental Laboratory
Seattle, Washington
April 1993

n NATIONAL OCEANIC AND Environmental Research
ATMOSPHERIC ADMINISTRATION Laboratories o )







R KT MOSp,Y%/

O, @

)
NOi1vy LS\“\“

&
&
o
3
<
=
Q
z
Z
2

%
O
&

e &
AR ThgNT OF O

6‘5

T

NOAA Technical Memorandum ERL PMEL-99

METHOD FOR EXTRACTING TIDAL AND INERTIAL MOTION
FROM ARGOS ICE BUOYS APPLIED TO THE BARENTS SEA
DURING CEAREX

P. Turet

Joint Institute for the Study of Atmosphere and Ocean
University of Washington
Seattle, Washington

C. H. Pease
Pacific Marine Environmental Laboratory

R. S. Pritchard
IceCasting, Inc.
Seattle, Washington

J. E. Overland
Pacific Marine Environmental Laboratory

Pacific Marine Environmental Laboratory
Seattle, Washington

April 1993
UNITED STATES NATIONAL OCEANIC AND Environmental Research
DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Laboratories



NOTICE

Mention of a commercial company or product does not constitute an endorsement
by NOAA/ERL. Use of information from this publication concerning proprietary
products or the tests of such products for publicity or advertising purposes is not
authorized.

Contribution No. 1437 from NOAA/Pacific Marine Environmental Laboratory

For sale by the National Technical Information Service, 5285 Port Royal Road
Springfield, VA 22161

ii



NNk

CONTENTS

PAGE
INTRODUCTION ...ttt ettt et annas 1
EQUIPMENT . .. i i i i ittt 10
ANALYTICAL METHODS ... ... i it e et i 10
31 Quality Control . .......c.cviiiiiiiinniineninreentnannnnnns 11
3.2 Displacement Harmonics ...........cottiitiiinrennnrennsens 11
3.3 Current Ellipses - Rotary Components ...............ccooienen.. 29
3.4 Interpolation and Hourly Gridding ............ ... .. i, 29
RESULTS ittt et i i e 29
CONCLUSIONS ittt ittt et e i e enns 56
ACKNOWLEDGMENTS . . ... ittt ittt it i i et 56
REFERENCES ... ittt ittt ittt ees 56
APPENDIX 1: Inertial Frequencies vs. M, and S, in CEAREX ............ 59
APPENDIX 2: Rotary Current Components . ..........couvuivverununne.. 62

iii







Method for Extracting Tidal and Inertial Motion from ARGOS
Ice Buoys Applied to the Barents Sea during CEAREX

P. Turet!, C.H. Pease?, R.S. Pritchard®, and J.E. Overland?

Abstract. A harmonic analysis of tidal and inertial motion was applied to observations of position of
ARGOS buoys deployed on drifting multiyear sea ice in the Eastern Arctic-Barents Sea during
CEAREX (1988-89). We developed an ARGOS positioning-data screening protocol and constructed
a constrained least squares algorithm for separate estimation of tidal and inertial currents. This
analysis provided estimates of individual tidal components at 15-day intervals along the sea ice buoy
drift tracks. This technique shows a reasonable qualitative distinction in current components at nearby
semi-diurnal frequencies. Estimates of errors due to sampling and collinearity are derived directly
from model statistics. Estimates of velocity produced from the unequally time-based data are then
used for interpolation to a regular time grid for spectral analysis. Computed velocities (up to
70 cm s~ for M, tidal motion over Spitsbergen Bank southeast of Svalbard) are in close agreement
with the regional tidal model of Gjevik, et al. (1990, 1993).

1. INTRODUCTION

The Coordinated Eastern Arctic Experiment (CEAREX; Figure 1) was a broadly
interdisciplinary research program, sponsored by the U.S. Office of Naval Research Arctic
Sciences Program, and conducted from autumn 1988 through spring 1989. Two ships, the
Norwegian vessel Polarbjgrn and the U.S. Coast Guard icebreaker Northwind, entered the
residual pack ice and proceeded to approximately 82°4Q0'N, 32°30'E, northeast of Svalbard
(Figure 1) where the Polarbjgrn was intentionally frozen in on 16 September 1988 (day 260;
CEAREX Dirift Group, 1990). A large variety of geophysical and biological measurements were
made either from the ship or from the ice near the ship and a good overview of the range of
experiments .is presented by the CEAREX Drift Group (CDG, 1990). After escorting the
Polarbjgrn into the ice, the Northwind maneuvered to support the helicopter deployment of six
ARGOS buoys on ice floes in a 60-km radius around the Polarbjgrn (Table 1). Those buoys are
the basis for this study.

CEAREX participants expected that the Polarbjgrn with the satellite buoys would drift
westward along the north side of Svalbard toward Fram Strait (CDG, 1990) and exit the Arctic
Ocean with the East Greenland Current. However, sustained northerly winds pushed the ice with
the instruments toward the south. The Polarbjgrn based experiment ended on 20 November
(CDG, 1990) as the ship approached Kvitgya (Figure 1). One of the buoys (7100; Figure 2a) was
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Fig. 1. Eastern Arctic-Barents Sea region of CEAREX Drift Experiment with the Svalbard Archipelago.
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Fig. 2a. ARGOS buoy tracks for buoy 7100 deployed during the Drift Experiment. All buoys were deployed within
2 days of each other (around day 261). Buoy 7100 ceased operating about day 325, soon after entering
Barents Sea shelf waters. Tics (boxes) are placed on buoy track lines at 10-day intervals. Depth contours
are shown at 200-m, 500-m, and 1000-m levels.
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Fig. 2b. ARGOS buoy tracks for buoy 7101 deployed during the Drift Experiment. All buoys were deployed within
2 days of each other (around day 261). Tics (boxes) are placed on buoy track lines at 10-day intervals. Depth

contours are shown at 200-m, 500-m, and 1000-m levels.
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Fig. 2c. ARGOS buoy tracks for buoy 7102 deployed during the Drift Experiment. All buoys were deployed within
2 days of each other (around day 261). Tics (boxes) are placed on buoy track lines at 10-day intervals. Depth

‘contours are shown at 200-m, 500-m, and 1000-m levels,
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Fig. 2d. ARGOS buoy tracks for buoy 7103 deployed during the Drift Experiment. All buoys were deployed within

2 days of each other (around day 261). Tics (boxes) are placed on buoy track lines at 10-day intervals. Depth

contours are shown at 200-m, 500-m, and 1000-m levels.
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2 days of each other (around day 261). Tics (boxes) are placed on buoy track lines at 10-day intervals. Depth

Fig. 2e. ARGOS buoy tracks for buoy 7104 deployed during the Drift Experiment. All buoys were deployed within
contours are shown at 200-m, 500-m, and 1000-m levels.
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Fig. 2f. ARGOS buoy tracks for buoy 7105 deployed during the Drift Experiment. All buoys were deployed within
2 days of each other (around day 261). Tics (boxes) are placed on buoy track lines at 10-day intervals, Depth

contours are shown at 200-m, 500-m, and 1000-m levels.



TABLE 1. ARGOS buoy deployment information. Note that the buoy spacing averages 60-km initially around the
Polarbjgrn. The tidal analyses begin with the latest buoy deployment time.

Buoy Latitude (N) Longitude (E) Date (Day) Time

7100 82° 56.4° 28° 16.2° 16 Sept 1988 (260) 16:19.2
7101 82° 58.8° 36° 21.6° 17 Sept 1988 (261) 14:09.6
7102 83°16.8’ 31°57.0° 16 Sept 1988 (260) 18:00.0
7103 82° 27.6’ 28° 31.2° 17 Sept 1988 (261) 12:28.8
7104 82°07.2° 32° 58.8’° 17 Sept 1988 (261) 09:21.6
7105 82° 21.0° 36° 34.8’ 17 Sept 1988 (261) 15:50.4

lost at this time and presumably crushed during deformation related to the pack ice compression
against the Svalbard Archipelago.

None of the other buoys was lost until they apparently melted out when the floes entered
the relatively warm Norwegian Sea or during the Spring melt season (Figure 2). The general
trajectory was southward along the east side of Svalbard Archipelago along the Barents Sea shelf.
Most of the buoys crossed Spitsbergen Bank which is a shoal region with high tidal currents
(Kowalik and Untersteiner,. 1978; Kowalik, 1979; Gjevik and Straume, 1989; Gjevik, et al., 1990,
1993) -

The six ARGOS buoys were deployed to obtain ice motion data for use in estimating large-
scale ice deformation and its relationship to small-scale deformation, including large- versus
small-scale constitutive laws, as well as tidal and inertial components of ice drift. The ARGOS
buoys were deployed by the Northwind helicopter in a 60-km radius ring around the Polarbjgrn.
The region within the ring subsequently became heavily deformed as the ice passed by both sides
of Kvitgya.

Sea ice motion is often observed by deploying ARGOS buoys on the ice and estimating
changes in position between satellite fixes. At CEAREX latitudes (75°N to 83°N) during this
period, coverage by ARGOS satellites provided about 10 high quality fixes per day for each
buoy, adequate for estimating daily average motion, as well as tidal and inertial oscillations.
Because of variations in satellite data quality, fixes were often clustered, with gaps of 8 hours
and more being common. Although 95% of times between fixes were less than 5 hours in length,
longer gaps (8 hours or longer) occurred on an average of once every 5 days.

Large tidal/inertial loops began about day 300 (October 26), when the Polarbjgrn drifted
onto the continental shelf. Our desire to understand the cause of these oscillations led to the
present study of tidal and inertial motion in the sea ice and deformation of the ring of buoys.
This paper describes a method that is designed to estimate periodic ice motion comprised of
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oscillations at frequencies up to 2 cycles per day. A least squares algorithm with equality
constraints (Lawson and Hanson, 1974) gave estimates of amplitude and phase for 6 tidal
frequencies and a varying inertial frequency. This method is comparable to the complex
demodulation scheme of McPhee (1986).

Stationary and long period drift components were separately estimated from drift
observations in the time domain. Positions from the data base of satellite fixes, unequally spaced
in time, were filtered using a linear low-pass smoothing filter. Tidal and inertial current
components were estimated from the residuals of the smoothed drift estimates.

2. EQUIPMENT

The six ARGOS buoys were manufactured by Coastal Climate Company of Seattle, WA.
The batteries and electronics were housed in 20-cm diameter by 1.5 m-long vc tubes with a
ventilated housing for the air temperature probe and the antenna attached to the top of the tube.
The air pressure, air temperature, and position accuracies were checked for a period of 3 weeks
before deployment. All six buoys had position errors for type-2 (based on 2 satellites) in the 325
to 375-m range indicating good oscillator stability of the transmitters.

Each buoy transmitted independently at 401.650 MHz * 3.2 kHz at 90-s intervals. The
NOAA polar-orbitting satellites receive these transmissions when in view of the buoys, record
the transmissions, and then retransmit them to one of three ground stations as they pass over at
irregular time intervals. Service ARGOS in Toulouse, France then processes these transmissions
for the Doppler shift to calculate buoy positions, and the user receives fortnightly tapes and
realtime access to the data via a Service ARGOS computer. The fortnightly magnetic tapes were
read and verified as the experiment proceeded, but then batch processed at the end of the
experiment. Service ARGOS made minor but annoyingly frequent changes in the tape format
which caused problems in the initial reading and sorting of the data.

3. ANALYTICAL METHODS

Estimates of ice motion in the tidal and inertial frequency range were made from
consecutive ensembles of buoy locations recorded at short time intervals. Buoy positions
recorded by the ARGOS satellite, after being judged adequate, with no more than typical
positional error, were used directly in the estimation of tidal and inertial frequency components.
Estimates of harmonic motion in tidal and inertial ranges were made on deviations from mean
drift, not on imputed velocities or other quantities derived from the data. The regression
equations and fitted parameters had units of distance from a locally computed mean drift line,
in meters.

Velocities, for plotting tidal ellipses, were calculated from the derivative of the estimated
drift values. The rationale was to minimize any potential sources of error, or to at least isolate
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the effects of differencing or of derivation of quantities from the original data to the greatest
extent possible.

The sections below outline the steps used in this analysis: quality control of ARGOS data,
estimation of harmonic motion, which includes the procedure used to separately estimate long-
and short-period drift, the estimation procedure itself, diagnostics, decomposition into rotary
components for deriving tidal and inertial current ellipses, and finally, a procedure for combining
drift estimates derived in this way with observations in order to place the series on a regular time
base grid.

3.1 Quality Control

Least squares regression estimates are highly sensitive to bad data or outliers so a number
of quality control steps were taken to assure that the data were of high quality. Diagnostics
produced in the process of computing the harmonic regression analysis of drifter data provided
a further check on the adequacy of the length of sampling intervals used, the validity of the
choice of model, and the adequacy of the smoothing procedure.

After time ordering raw ARGOS buoy data and deleting gross recording or coding errors,
the data were assessed for quality (Table 2). Service Argos assigns locations to one of four
“quality classes”, numbered zero to three. Classes are assigned according to minimum conditions
for a location in terms of satellite pass duration, number of messages received, and oscillator
stability (Service Argos, 1988). We find that 68% of actual positions are reported to be within
one standard deviation (s) of the stated position. For location class three (highest quality) s =
150 m. For location class two, s = 350 m.

Class one data are unreliable for analysis of buoy positions on the spatial scale needed.
About 25% of the data received, originally of classes one through three, were eliminated at this
stage (Table 2). Positions that were closely spaced in time were likely to result in extreme
calculated velocities, even with reasonably high quality data. Data were thinned out in time by
selecting data of higher location class or by averaging data of equal quality when positions were
closer than 30 minutes apart. Positional outliers and data that contributed to large velocity spikes
were eliminated subjectively by manual editing. With few exceptions, only data of location class
two were eliminated at this step.

3.2 Displacement Harmonics

Sea ice motion in the Greenland and Barents Seas is comprised of several potentially
separable components: mean drift, tidally and inertially forced motion, and meteorologically
forced drift. Motion on diurnal, semi-diurnal, and quarter-diurnal time scales was estimated in
order to evaluate the relative strengths of tidal and inertial oscillations in the Eastern Arctic and
Barents Sea shelf, and to provide an interpolation function for use during time periods of missing

11



TABLE 2. Argos buoy data quality summarized from the six buoys deployed in the CEAREX Drift Experiment
(numbered 7100 to 7105). Numbers of points remaining in the data set at each stage of the editing process are
shown. Rows are labeled: ORIG (original data consisting of location classes 1-3), NO1 (class 1 points
removed), SEL (closely time-spaced points removed), and OUT (final stage after manual editing).

Number Percent Percent
Buoy Data Total  Class1 Class2 Class 3 Deleted Reduced of ORIG

7100 ORIG 1234 182 796 256 .- -e- 100.

8
NO1 1052 0 79 256 182 147 853
SEL 847 0 611 236 205 195 686
ouT 77 0 548 229 70 83 630
7101  ORIG 4001 1119 2396 486 100,
NO1 2882 0 2396 48 1119 280 720
SEL 2400 0 1931 469 482 167 600
OUT 2260 0 1795 465 140 58 565
7102  ORIG 3095 688 1988 419 100
NO1 2407 0 1988 419 688 222 718
SEL 2014 0 1614 400 393 163  65.1
OUT 1899 0 1503 396 115 57 614
7103  ORIG 3323 449 2423 451 e 100
NOl 2874 0 2423 451 449 135 865
SEL 2342 0 1907 435 532 185 705
OUT 2121 0 1691 430 221 9.4 638
7104  ORIG 2765 669 1747 349 - - 100.
NO1 2096 0 1747 349 669 242 758
SEL 1750 0 1411 339 346 165 633
OUT 1662 0 1323 339 88 50 601
7105  ORIG 3059 734 2082 243 100,
NO1 2325 0 2082 243 734 240 760
SEL 1983 0 1746 237 342 147 648
OUT 1808 0 1571 237 175 88  59.1
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or erratic data coverage. Accurate estimation of tidal and inertial oscillation is especially
important if interpolation is needed for gaps longer than a few hours.

3.2.1 Separately Estimating Long- and Short-period Drift :

Least squares harmonic regression is able to fit a stationary linear function to drifting buoy
positions. Approximate stationarity was achieved by passing the data through a symmetric linear
kernel smoother. We used the filter kernel of Bloomfield (1974), setting the width of the
smoothing kernel before performing the analysis to span a constant time interval, symmetrically,
independent of data density or other considerations. Further, the degree of smoothing depends
solely on the time spacing of the data in the region of the estimate, and is linear in the set of
observations used. For harmonic analysis we used the residual series after smoothing.

The frequency response of the smoothing kernel was set to adequately separate tidal and
inertial wavelength motions from long-period drift. We used a 35-hour cutoff frequency with
a steep ramp (long kernel length), to obtain approximately a 6-hour transition band from cutoff
to stop frequency. The —20 dB cutoff point of the smoother is 29 hours.

The data is unequally spaced in time so the following modification of the usual convolution
smoothing procedure was used. We estimated a smoothed series, x[¢,, ], from an input series
x [t,], where ¢, is an observation time on an irregular time domain. Let S be the set of indices
for observations within k/2 hours of ¢,,, where k is the length of the smoothing kernel in hours.
Let

X [t,] =Y w/'x[t] ¢))

ieS

Weights, w,’ were computed at each data point using an approximation to an ideal linear filter
with convergence factors (Bloomfield, 1976), defined by w,' = w; /Zwi, where

_sin 2a)t-t,|-f, S0 [—k
t.—t
Jtl; ml [znlti_t"J]

zniti—tml]

O<|t;-t,|sk2

k
wi=fc |ti—tm|=0

The cutoff frequency, f. , was set to 1/35 cycles per hour. A 240 hour filter kernel (k = 241)
provided a sharp cutoff between diurnal and longer wavelength motion. If the data were equally
spaced in time this procedure would be precisely simple convolution kernel smoothing.
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Additional caution must be used for this procedure using unequally time-spaced data. If
the data are very sparse, particularly in the range of the main lobe of the kernel (within 18 hours
of the central point), or if the data in the smoothing window (observations within 120 hours of
the central point) are aliased with the period of the smoothing kernel ripples (35 hours), then the
sum of the weights can be very small, and the smoothing procedure is unstable. We considered
the estimate to be unstable if Y w; < 0.05, in which case we linearly interpolated neighboring
values. Unstable points account for about 0.1% of the data.

3.2.2 Constrained Least Squares Harmonic Analysis

Tidal and inertial motion was estimated by least-squares (Pugh, 1983; Godin, 1972). The
location data was fit to a linear function of time, a sum of constant, linear term, six tidal
frequency components, and the (varying) inertial frequency component. Let |

6 ‘
Y, = C+Dt;+ kX; A, cosw,t, + B, sinw,t, + Ecosft, + Fsinft, (2a)
be the equation for motion in the north/south direction (positive north), and
2 - - 6 . - - -
Y = C+Dt;+Y A,coswyt, +B,sinw,t, + Ecosft, + Fsinft, (2b)
k=1

be the equation for motion in the east/west direction (positive east), where

Y I? Estimated positions, deviations from mean drift, meters.
C, C: Constant term in regression, meters.
D, D: Coefficient of linear term, meters.
L Time, days. Estimates in each time window start at ¢, = 0, i.e., phases are
estimated independently in each time window.
A;s Xk: Cosine coefficient of tidal component &, meters.
B,, B—k: Sine coefficient of tidal component k, meters.

w,:  Tidal frequency, cycles per day.
wy are frequencies for O,, K;, N,, M,, S,, or M, tidal components.
E,E Cosine coefficient of inertial component, meters.
F, F: Sine coefficient of inertial component, meters.
f

Inertial frequency, cycles per day, a function of latitude.
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Y, and 17, in (2) are fit to Y; and f,, observed residual deviations in meters on the
north/south or east/west axes, by least-squares. Tidal currents are unconstrained, corresponding
to independent, distinct, (usually) non-zero rotary components. Inertial waves however consist
of only a clockwise component, which forces a relationship between v, the northward, and u,
eastward coefficient.

The shallow-water wave equations (Gill, 1982), for inertial components E, F, E,and F in
u and v components are

O f) =0
T
and :

av
—+fw) =0
= @
In the notation of (2), inertial motion was parameterized as u = E cos It +F sin ft and
v = Ecosft + Fsinft. Expanding du/dt and dv/ot:
%—fv = E(-f) sinft + F(f) cosft—f[E cosft + Fsinft] = 0
and
% +fu = E(f) sinft + F(f) cosft + f[E cosft + Fsinft] = 0
Equate sine and cosine terms to zero to get the relationship between inertial components
F-E=0and F + E = 0.

The general form of the linear modelis Y = Z B + ¢, where B is the vector of parameters
to be estimated and Z is a 2n by 32 matrix of the form

.. itz 0 o
o oz zy?

The sub-matrices Z,, and Z,, in (3) are

15



1 ¢, coswt, sinwt, - coswgt, sinwg |

. .

1 t, coswt, sinwt, - coswgt, sinu)st”‘

and .

cosft, sinft, ]

Lcosftn sinftn.

The 2n x 1 solution vector, B , is
B = [CDAB,---ABEF:CDAB,- - - AB,EF|

and € is a 2n x 1 vector of residuals. Note that by (3) we estimated east-going and north-going
drift components independently. The relationship between the inertial components was achieved
by placing equality constraints on those parameters. v

The constrained least squares model, called “Problem LSE - Least Squares with Equality
Constraints” (Lawson and Hanson, 1974), was fit to the data using algorithm LSEI (Hanson and
Haskell, 1981). It was verified that LSEI provides a true least squares fit to the set of parameters
in the model in the sense that residual variation, or variation not explained by the model, is
minimized, subject to equality constraints on inertial parameters, ‘

The increase in residual variation was symmetric about the fitted values for all
unconstrained (tidal) parameters but asymmetric in constrained (inertial) parameters, evidence of
non-linearity in those parameters.  The increase in residual variation for a given change in
coefficients was proportional to the degree of colinearity between model parameters. In regions
where the inertial frequency is close to a tidal frequency, perturbation of either inertial or co-
linear tidal coefficients resulted in a large increase in residual variation.

Amplitude and phase for each harmonic constituent, parameterized as amplitudes of sine
and cosine components, at each frequency, were estimated. Constant and linear terms were
included in the model although these were always close to zero.

Overlapping windows of 15 days in length were used for the estimates. This window length
was chosen in order to give enough observations in a window to enable discrimination of closely
spaced frequencies, especially at CEAREX latitudes where inertial frequencies are very close to
M, or S, frequencies. In addition the window period was short enough to minimize the
likelihood that buoys would move between areas with different tidal regimes during the
estimation period. "
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Separate analyses were done for groups of observations at 3 day intervals throughout the
Drift Experiment. This means that for a given datum there might be as many as 5 separate
(though not independent) analyses as the 15-day window moved over the data. For each point
with more than one fit available, the average was taken, providing a more robust estimate.

3.2.3 Diagnostics

Goodness of fit to the observed high-passed buoy position data was assessed by simple
correlations of fitted and observed data (Figures 3 and 4). A usual summary statistic for
assessing goodness of fit, r?, the proportion of variance explained by regression, was not an
appropriate statistic for this case where there was non-random sampling of observations
(Weisberg, 1985). Sampling was ordered in time, although irregular, with the consequence that
observations at either end of the sampling window were more influential (contributing more to
r%) than central points.

Sampling frequency was a mixture of a deterministic process (satellite p frequency) and a
random pattern of missing or inadequate data acquisition. Sampling varied considerably from
period to period and had a great effect on estimation of motion at a set of discrete tidal
frequencies. There was a potential for signal aliasing or missing of the tidal regime completely
by patterns of observations.

The stability of the estimates, or the degree to which the variance of a regression parameter
is inflated due to colinearity, was diagnosed here using the minimum eigenvalue of the sample
covariance matrix (Chatterjee and Price, 1977). Colinearity in this data set was seen when a
record was too short to enable closely spaced harmonic components to be distinguished, or
equivalently, when attempting to fit harmonic components that were too closely spaced in
frequency for a given time-length series.

Minimum eigenvalues for data in the 15-day estimation windows were quite variable
(Table 3) and depended heavily on the number of parameters in the model. Of the “best” 85%
(least co-linear) estimation periods a full model (2) was far less estimable than a reduced model,
especially those models that excluded the inertial frequency.

TABLE 3. Minimum eigenvalue (e;,) of best 85%
of time periods for different models.

Model €min
Full Model 0.35
Inertial Excluded 10.0
M, Excluded 4.0
S, Excluded 1.5
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Early in CEAREX the buoys were in regions where co-linearity between inertial motion
and S, were seen. Co-linearity between inertial motion and M, tidal motion became a problem
late in the experiment, and then only for a few buoys had survived to that point.

Variations during a 15-day period, including effects due to Lagrangian movement, lack of
stationarity, or ice physics, in additions to data recording errors, reduce the variance described
by a pure harmonic function. In this ahalysis fitted oscillations are usually smaller than actual
oscillations, while variances of fits are generally 1/4 to 1/2 of those of the observed series.
Variance of fits are large relative to the variance of observed values during periods when tidal
amplitudes are large relative to the amplitude of non-tidal noise.

Rayleigh’s criterion for ability to separately estimate closely spaced harmonic components
(Pugh, 1987; Godin, 1972), can be used, particularly in the case of a regularly sampled series,
to provide the minimum Iength of a time series that would be needed to overcome problems of
colinearity. In the case of irregularly sampled series however, a measure, more directly related
to the variance inflation and bias due to colinearity, the sample correlation between predictors
corresponding to nearby frequencies, was more suitable. Of primary interest here is the
relationship between M, and S, tidal frequencies and the inertial frequency.

In the case of a regularly sampled time series, a set of regressors separated in frequency
corresponding to exactly half of Rayleigh’s criterion are uncorrelated. This means that if there
is a discrete sample from a pair of waves that are close in frequency and 180° out of phase at
the end of a sampling period they are uncorrelated.

Correlations between inertial and S, tidal motion predictors are generally less than 0.2
(corresponding to a 25% increase in variance over uncorrelated predictors) for buoys south of
79°N. Correlations between inertial and M, tidal motion predictors are generally less than 0.2
for buoys north of 77.5°N. Constituents M, and S, are separately estimable in almost all of the
15-day windows during CEAREX. This result is a considerable relaxation of the more stringent
Rayleigh’s criterion which suggests that S, and inertial motion can only be separately estimated
in a 15 day time window south of 76°N, while M, and inertial motion can only be separately
estimated north of 82°N. A measure based on correlations is more appropriate than one based
on lengths of tidal records where there is no model for the frequency or spacing of observations.

The bias associated with colinearity is proportional to the correlation between the co-linear
predictors and the magnitude of the co-linear parameters (Weisberg, 1985). The decision to use
a full, potentially co-linear, model versus a reduced model depends on the observed degree of
co-linearity, as well as the estimated magnitude of the co-linear regression coefficients. When
co-linearity is observed in the data, a more precise estimate of a regression coefficient can
generally be obtained from a reduced model unless the coefficient for the deleted variable is large
relative to the overall error variance. Since these values are not known a priori, estimates must
be used.
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3.3 Current Ellipses - Rotary Components

Estimates were reparameterized in terms of rotary current components, scaled to give
estimates of maximum tidal currents (Pugh, 1987). Current ellipses, shown for each buoy, and
for all tidal and inertial components shown in Figure 5, are centered at the central buoy location
in each 15-day window. Ell'ipses, corresponding to separate fits, are produced at roughly 3-day
intervals throughout CEAREX. Comparisons with results from Gjevik et al. (1990) are given
in Figures 6 and 7.

Average tidal currents for each tidal component were calculated from the amplitudes of
displacement waves by differentiating the waveform

Y = A cos wt + B cos wt,

and scaled by a factor of 271/86400 to convert from units of angular velocity per day to ms™,

3.4 Interpolation and Hourly Gridding

Regular time intervals are needed for velocity and velocity gradient (strain) calculations.
‘Relative buoy motion can only be conveniently seen when data from several buoys is interpolated
to a uniform time domain. Standard spectral analyses also require equally time spaced series.
Harmonic analysis as given in this paper can be used to provide an interpolator for data with
gaps longer than one tidal or inertial cycle.

Spline functions, commonly used to interpolate regions of missing data, were used in data
dense regions, particularly where data gaps are shorter than an appreciable part of a tidal cycle.
A harmonic fit, which incorporates data from a broader time interval, provided a better estimate
of missing data for intervals spanning longer gaps.

A weighted combination of a spline and harmonic fits was used to take advantage of the
best properties of both interpolators. The choice between spline and harmonic fit interpolators
was varied continuously between the two by means of a weighting function which was based on
the local data density. Figure 4 shows sample buoy tracks with a spline interpolator, CSAKM
(IMSL, 1987), and harmonic fit overlaid, demonstrating the inability of the spline to provide
reasonable estimates over gaps of more than a few hours.

4. RESULTS

Tidal analysis from Lagrangian drifters on pack ice is far from a noiseless process. Even
disregarding short term meteorological effects and the coupling of sea ice to tidal motion, there
is still observational error from the ARGOS satellites. With errors on the order of 350 m and
an average 2-hour time between observations, errors of 5 cm s ~, often 20% of typical velocities,
can be expected from observational error alone.
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MZ CURRENT ELLIPSE.
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Fig. 6a. Comparison ellipses for tidal components reproduced from Gjevik et al. (1990) ((top) M,, (bottom) N,).
This is a subset of their Arctic model result which coincides with the southern half of our domain.

37



N2 CURRENT ELLIPSE.
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Fig. 6b. Comparison ellipses for tidal components reproduced from Gjevik et al. (1990) ((top) S,, (bottom) K,).
This is a subset of their Arctic model result which coincides with the southern half of our domain.
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M2 Tidal Current (cm/s)
— North—-South

Fig. 7a. Contours of tidal current magnitudes (M,) in N/S (solid) and E/W (dashed) directions from Gjevik et al.
(1990) are plotted with our tidal ellipses for all buoys overlaid. A clear qualitative difference in the
magnitudes of tidal currents from the deeper (200 m) Barents Sea to the Spitsbergen Shelf (<100 m) is seen
in both Gjevik et al.’s (1990) result and this analysis. The correlations are of order 0.5.
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N2 Tidal Current (cm/s)
— North—Sout

Fig. 7b. Contours of tidal current magnitudes (N,) in N/S (solid) and E/W (dashed) directions from Gjevik et al.
(1990) are plotted with our tidal ellipses for all buoys overlaid. A clear qualitative difference in the
magnitudes of tidal currents from the deeper (200 m) Barents Sea to the Spitsbergen Shelf (<100 m) is seen
in both Gjevik et al.’s (1990) result and this analysis. The correlations are of order 0.5.
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S2 Tidal Current (cm/s)
— North—Southl

Fig. 7c. Contours of tidal current magnitudes (S,) in N/S (solid) and E/W (dashed) directions from Gjevik et al.
(1990) are plotted with our tidal eliipses for all buoys overlaid. A clear qualitative difference in the
magnitudes of tidal currents from the deeper (200 m) Barents Sea to the Spitsbergen Shelf (<100 m) is seen
in both Gjevik et al.’s (1990) result and this analysis. The correlations are of order 0.5.
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K1 Tidal Current (cm/s)
- North—Sout

Fig. 7d. Contours of tidal current magnitudes (K,) in N/S (solid) and E/W (dashed) directions from Gjevik et al.
(1990) are plotted with our tidal ellipses for all buoys overlaid. A clear qualitative difference in the
magnitudes of tidal currents from the deeper (200 m) Barents Sea to the Spitsbergen Shelf (<100 m) is seen
in both Gjevik et al.’s (1990) result and this analysis. The correlations are of order 0.5.

42



Godin (1972) derives a result for the variance of coefficients for a pair of closely spaced
tidal constituents; that the variance of the coefficients is proportional to the variance of the noise
of the process, and inversely proportional to the square of the frequency difference between the
two constituents involved. Between three closely spaced tidal constituents it is not possible to
get a general expression for the variance inflation due to colinearity, but Godin (1972) states that
“... for any set of M equidistant [frequency components] ... the variance of the constituents will
be at least inversely proportional to the ... fourth power of their frequency difference.”

Results of the analysis showed strong tidal signals in the diurnal and semi-diurnal bands.
Tidal current ellipses plotted on maps (Figure 5) showed M, tidal currents up to 70 cm s~
southeast of Svalbard. Analysis for these figures was done with the inertial frequency excluded
from the model to avoid problems of colinearity. In the region south of 76°N, inertial and M,
tidal motion would be indistinguishable and estimates of these components would be highly
inflated.

A test for the presence of inertial motion was done by performing the same analysis that
was done for tidal motion, but using residual data from the tidal analysis. On the assumption that
inertial motion is meteorologically forced and shorter lived than tidal motion, analysis was done
on data in 3-day segments. In this analysis, with only one oscillating parameter in the model,
there were usually enough observations in a 3 day period for satisfactory estimation.

Inertial current ellipses (representing clockwise motion only, hence circular) showed some
of the qualities of inertial oscillations as opposed to tidal motion. Analysis showed highly
variable amplitudes in nearby regions and rapidly varying phases from one period to another.
Tidal ellipses exhibited more slowly varying amplitudes and phases in time and space.

Inertial current velocities computed for Buoy 7104 are compared to wind stresses in
Figure 8. Mean values for reduction from gradient wind and turning angle of 0.8 and 30° were
used along with the neutral drag coefficient of 3.0 x 107!, Three-day average values of wind
stress corresponding to the times and location of the inertial calculations were computed. The
highest correlation observed was 0.53 between the southward component of wind stress lagged
three days and the inertial current speed. Inertial current velocities computed for buoy 7104 are
compared to the wind stress in Figure 8. Note the approximate lag of a day from the wind
maximum to the maximum inertial oscillation. We do not understand why the inertial
oscillations were suppressed from about days 340 to 380, but it may relate to internal ice stress.
There was not a concomitant reduction in tidal amplitude during this period.

An example velocity series for buoy 7103 is reconstructed from the components and
presented in Figure 9. Figure 10 shows the variance preserving spectra for the velocity series
represented in Figure 9. Note the distinct peak differences between the beginning (Arctic deep
water), mid-point (Barents Sea 200-m depth water), and the end (Spitsbergen Bank with shallow
water) series.
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Figure 8. Inertial current velocities computed for buoy 7104 compared to the wind stress (dashed line). Note the
approximate lag of a day from the wind maximum to the maximum inertial oscillation. We do not understand
why the inertial oscillations were suppressed from about days 340 to 380, but it may relate to internal ice
stress. There was not a concomitant reduction in tidal amplitude during this period.
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Buoy 7101
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Fig. 10a. N/S and E/W variance preserving spectra for velocity series represented in Fig. 9b (7101). Note the
distinct peak differences between the beginning (Arctic deep water), mid-point (Barents Sea 200-m depth
water), and the end series (Spitsbergen Bank with shallow water).
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Fig. 10b. N/S and E/W variance preserving spectra for velocity series represented in Fig. 9¢ (7102). Note the
distinct peak differences between the beginning (Arctic deep water), mid-point (Barents Sea 200-m depth
water), and the end series (Spitsbergen Bank with shallow water). -
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Buoy 7103
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Fig. 10c. N/S and E/W variance preserving spectra for velocity series represented in Fig. 9d (7103). Note the
distinct peak differences between the beginning (Arctic deep water), mid-point (Barents Sea 200-m depth
water), and the end series (Spitsbergen Bank with shallow water).
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Fig. 10d. N/S and E/W variance preserving spectra for velocity series represented in Fig. 9¢ (7104). Note the
distinct peak differences between the beginning (Arctic deep water), mid-point (Barents Sea 200-m depth
water), and the end series (Spitsbergen Bank with shallow water).
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Fig. 10e. N/S and E/W variance preserving spectra for velocity series represented in Fig. 9f (7105). Note the
distinct peak differences between the beginning (Arctic deep water), mid-point (Barents Sea 200-m depth
water), and the end series (Spitsbergen Bank with shallow water).
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5. CONCLUSIONS

The methods described here 1) provide a protocol for handling ARGOS buoy position data
and 2) provide estimates of tidal and inertial currents from these same irregularly time-based
Lagrangian observations during CEAREX in autumn of 1988 and winter of 1989. We placed
minimal assumptions on the data and the method is easily implemented with readily available
public domain software.

Tidal currents seen during the CEAREX drift experiment were shown to be slowly varying
in space, in contrast to inertial ellipses which exhibited rapidly varying behavior in time and
space and which were relatively well correlated with the wind. The ice reproduced the
characteristic pattern of tidal ellipses over the Barents Sea shelf in winter, particularly able to
reproduce the differences among the deep-water Arctic basin, the 200-m Barents shelf, and the
shallow Spitsbergen Bank regions. Although the experiment had not intended to span the Barents
Sea, the region provided an opportunity to test these new methods with a natural range of tidal
conditions.
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APPENDIX 1: Inertial Frequencies vs. M, and S, in CEAREX

Rayleigh’s criterion (Godin, 1972) is satisfied if 2T | w—f| = 1 for nearby frequencies ®
and f that are to be resolved in a time record of length 2T". The requirement can be relaxed
somewhat for tidal analysis, with 2T | w—f| = .8 adequate in most cases. Note that at CEAREX
latitudes M, and the inertial component can only be well resolved north of 82°N, while S, and
the inertial component can only be well resolved south of 76°N.
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TABLE Al. Inertial frequencies, synodic periods, and Rayleigh’s criteria for separability of components, at
CEAREX latitudes. A synodic period is the length of time necessary to separate a pair of constituents by a
complete cycle, defined as 1/|(w-f)|, where w and f are nearby frequencies. Synodic periods are shown for
the inertial frequencies encountered in the Drift Experiment versus tidal frequencies for semi-diurnal modes
M, and S,. Frequency units are cycles per day.

Synodic period Rayleigh’s criterion
Latitude f M, S, M, S,

85.77 2.0000 14.76 © 1.015 0

84.0 1.9945 16.08 180.43 0.933 0.083
83.5 1.9926 16.59 134.27 0.904 0.112
83.0 1.9905 17.17 105.21 0.873 0.143
82.5 1.9883 17.85 85.37 0.840 0.176
82.0 1.9859 18.64 71.06 0.805 0.211
81.5 1.9834 19.55 60.30 0.767 0.249
81.0 1.9808 20.63 51.96 0.727 0.289
80.5 1.9779 21.89 45.33 0.685 0.331
80.0 1.9750 23.42 39.96 0.641 0.375
79.5 1.9719 25.26 35.54 0.594 0.422
79.0 1.9686 27.53 31.84 0.545 0.471
78.5 1.9652 30.38 28.72 0.494 0.522
78.0 1.9616 34.07 26.05 0.440 0.576
77.5 1.9579 39.01 23.76 0.385 0.631
77.0 1.9540 45.93 21.76 0.327 0.689
76.5 19500  56.29 20.01 0.266 0.749
76.0 1.9459 73.51 18.47 0.204 0.812
75.5 1.9416 107.58 17.11 0.139 0.876
75.0 1.9371 206.62 15.90 0.073 0.943
74.5 1.9325 4225.8 14.82 0.004 1.012
74.48 1.9323 o0 14.765 0 1.015
74.0 1.9277 220.09 13.84 0.068 1.084
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TABLE A2. Tidal frequencies, wavelengths and locations of colinearity with inertial waves. Latitudes shown are
those at which the inertial frequency matches a given tidal frequency. Inertial waves would be

indistinguishable from tidal components at these latitudes.

Mode Frequency A (hours) ‘Latitude Tidal/Inertial Co-linear Location
0, 0.92954 25.819 27.61 Hawaii
P, 0.99726 24.066 29.82
K, 1.00274 23.934 30.00 Baja California
N, - 1.89598 12.658 70.98 Chukchi Sea
M, 1.93227 12.421 74.48 Central Barents Sea
S, 2.0 12.0 85.77 Northern Barents, Arctic Ocean
M, 3.86455 6.210

TABLE A3. Synodic periods of primary tidal components for some primary constituent pairs under consideration
for estimation from ARGOS buoy data. Note that P, and K, tidal constituents are too close to be separately

estimated by our procedure.

Pl . Kl N2 M2 SZ
0, 14.767 13.661 1.035 0.997 0.934
P, 182.48- 1.113 1.069 0.997
K, 1.119 1.076 1.003
N, 27556 9.613
M, 14.765
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APPENDIX 2: Rotary Current Components

Ellipse characteristics of tidal current constituents are readily calculated by a
parameterization of tidal components in terms of two polar vectors, each of constant amplitude,
which rotate at the angular speed of the constituent but in opposite directions (Pugh, 1987).

East-going and nbrth-going harmonic current constituents are denoted U cos (wz-g,) and
V cos (wr—g,), respectively. "Equivalently, in the notation of (2), these can be parameterized as
A, cos wt + B, sin wt and A,cos ot + B, sin wt. Therefore, U2 = Au? + Bu? and V2 = Av? + BV,
with phases given by g, =tan ! (B,/A,) and g, =tan (B, /A)).

Amplitudes and phases of the clockwise and anti-clockwise rotating vectors are (Q¢ , 8c)
and (Q4c , 84c) tespectively. In terms of parameters (U, g,) and (V, g,) these are

. . %
Qc = E[UZ*VZ—ZUVsm(gV—gu)]

1 ) ¥
Ouc = §[U2+V2+2UVsm(gv—gu)]
Using, +Vcosg,
8¢ = tan™ 8 . gV]
Ucosg,~Vsing,
~Using, +Vcos
8ac = tan™ 5 8 . g"]
cosg,~Vsing,

In terms of the parameterization in (2), the last two equations become

B +A
gc =tant| 2 2
Au_Bv
-B +A
-1 u v
84c = tan
Au_Bv

The semi-major axis is Q. + Q,, the semi-minor axis is |Q. — Q,¢ |, the phase of semi-
major axis is ~1/2(g,,—8¢), and direction of semi-major axis is ~1/2(g,,+8), measured
positive anti-clockwise from east.
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The total current vector rotates anti-clockwise if Q4 > Qc, otherwise it rotates clockwise.
Tidal currents are unconstrained and have distinct, usually non-zero, clockwise and anti-clockwise
rotary components. Inertial currents have only a clockwise component. The estimation technique
in LSE is equivalent to constraining Q4. to zero.
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