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FORMULAS USED TO ANALYZE WIND-DRIVEN CURRENTS

AS FIRST-ORDER AUTOREGRESSIVE PROCESSES

Harold O. Mofjeld
Dennis Mayer*

ABSTRACT. This memorandum justifies fo~ulas used to
analyze wind-driven ocean currents as first-order auto­
regressive processes forced by the wind. A set of
numerical experiments with synthetic data shows that
the formulas give accurate resul ts with both white and
nonwhite noise forcing and with either filtered or non­
filtered data. The formulas are a significant improve­
ment over those traditionally used in autoregression
analysis based on covariances.

1. INTRODUCTION

In anticipation of modeling wind-driven surface currents near Kodiak
Island, Alaska, as first-order autoregressive processes forced by the
wind,l a series of numerical experiments have been run to test the analy­
sis procedure and to study the effect of extraneous noise and filtering
on the results. As discussed by Mofjeld (1975), a current component ui
sampled at a uniform sampling interval ~t is related to a wind component
Vi by the fundamental equation,

u~ = au. 1 + bV. + Z. ,
v - t.- - t. t.

(1)

where Zi is the residual current not related to the wind together with
instrumental noise. Equation (1) relates fluctuations in the current
component, relative to the mean current, to fluctuations in the wind; Ui,
Vi, and Zi are all demeaned time series. Given the current and wind series,
the first objective of the analysis is the calculation of the coefficients
~ and Q from the data. In the following discussion the wind component
has been replaced by a synthetic series. Because of the extensive theory
and simple interpretations applied to white noise forcing (Jenkins and
Watts, 1968), this type of forcing was used in the first set of numerical
experiments to simulate the wind.

The coefficients a and b are chosen to minimize the residual variance,
which is equal to the zero-lag autocovariance of Z:
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Czz(O) = Cuu(O) + ~2CUU(O) + £2C VV (O)

-2~Cuu(1) -2£Cuv (O) + 2abCuv (1) ,
(2)

where the covariances are given by

1 N-k
C (k) =- ~ (x'Y'+k)xy N-k LJ ~ ~

i=l

( 3)

for N consecutive pairs of x and y. On setting derivatives of equation
(2) with respect to a and b equal to zero, a pair of normal equations is
obtained which yield-the following formulas a and b in terms of the co-
vari ances : - -

(5)

(4)a =
Cuu (l) Cvv(O) - Cuv(O) Cuv (l)

Cuu(O) Cvv(O) - Cuv (l) Cuv (l)

Cuu(O) Cuv(O) - Cuu(l) Cuv (l)
b =------------

Cuu(O) Cvv(O) - Cuv (l) Cuv (l)

In applying the formulas (4) and (5) to actual data, it is not ob­
vious how changes in the covariances due to nontida1 currents or low-pass
filtering degrade the estimates of the coefficients a and b.

2. IDEAL WHITE NOISE FORCING

The term white noise refers to a series which has the same spectral
energy at all frequencies. In terms of covariances, this definition is
equivalent to requiring each value in the series to be uncorre1ated with
preceding or following values. Covariances at nonzero lag are zero, by
definition, and the covariance at zero lag is the variance y2,

(6)

(7)

where the Kronecker 6Q k is 1 for k=O and zero for krO. Using white noise
for the wind in equat16n {1), simple expressions for the autocovariance
of the current and for the cross covariance between the current and wind
are derived in the appendix:

£2y2
Cuu(k) = a 1kl

(1 - ~2) ;

(8)
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When a and b are unknown, they may be computed from the covariances;
assuming white noise forcing, Cuv(l) = 0, formulas (4) and (5) reduce to

(9)

(10)

The formulas (4) through (10) will be compared with numerical results ob­
tained from computer experiments.

Deviations of the coefficients a and b produce an increase in the
residual variance. Defining a nondimensional deviation E of the residual
vari ance by

CZZ(~_+~I, ~+~I; 0) - Czz(~'~; 0)
E =------------- (11 )

~2y2

which is normalized to the forcing, the following expression for E may be
derived for white noise forcing, using equations (2), (6), (7), and (8):

E = +-- (12 )

The increase in residual variance is a quadratic function of both the de­
viations a l and b' . The coefficient a ranges from zero, where frictional
coupling to the wind completely overwhelms the water's inertia, to 1,
where inertia dominates. For small a, the increase in the nondimensional
residual variance is proportional to-the square of the deviation a l

• When
~ is close to 1, small deviations in ~ produce relatively large Tncreases
in E. Added to the effect of a l on the residual variance is the effect
of b', which is equal to the square of the fractional deviation (b'/b).
The-effect of deviations of the forcing coefficient b from its optimal
value does not depend on the relative strength of inertia, or autoregres­
sion, as measured by ~'

3. NUMERICAL EXPERIMENTS

Several problems arise when the coefficients a and b are computed from
data. The covariances are computed from a limited-data set which in turn
limits the accuracy to which the covariances can be computed. As discussed
by Jenkins and Watts (1968), covariances at adjacent leads affect each other
when they are computed from data. Hence, equations (9) and (10) are approxi­
mate when using a finite set of discreet data. Since the calculations of
a and b use adjacent covariances, the results may be perturbed by the
altered covariances. The covariances may be further affected by low-pass
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filtering of the data, which is done to resample the current data at the
relatively long, wind sampling interval.

In the numerical experiments, the white noise forcing V was generated
using a random number function which produces random numbers between ~0.5.

The associated probability density function P(V) is one for -0.5 $ V $ 0.5
and zero outside the interval. The expectation value for the variance is
therefore

00 fO.S
y2 =J V2P( V)dV =. V2dV

-00 -0.5

or 1y2 =12 = 0.083333

Ideally, the autocovariance at zero lag should equal the variance derived
above, and the autocovariances at nonzero lag should all be zero. Figure 1
compares ideal and computed autocovariances obtained from series generated
by the random number function. With a series length of N=lOOO, the auto­
covariances approach the ideal values. The data-derived covariances devi­
ate significantly from the ideal values for the shorter series, N=lOO.
This example shows the need for current and wind series of sufficient
length to give accurate estimates of the covariances.

The autoregressive series vi were computed from equation (1) using
the random number function to generate the forcing series V. Figure 2
gives a time series of vi for ~ = 0.95and Q = 0.2; the white noise forcing
has been renormalized to unit variance. A comparison between ideal and
experimental covariances is given in table 1 for series lengths N=500 and
N=lOOO and plotted in figure 3 for Cvv(k), N=lOOO. The agreement between
ideal and experimental covariances appears to be relatively good.

By repeating numerical experiments for fixed values of a, b, and N,
a set of statistics was obtained for the covariances. In table 2 are
given the means and standard deviations for the covariances as obtained
from 10 experiments with a = 0.95, b = 0.20 and N = 1000. The numerical
and ideal covariances agree in that-they are within 1 standard deviation
of each other. Variations in the random forcing produce a larger scatter
in the covariances of the autoregressive process and the nonzero lead co­
variances of the forcing than the scatter of the forcing's variance (zero­
lead autocovariance). This relatively large scatter produces less scatter
in the estimates of a and b, obtained from equations (4) and (5), because
the covariances are highly-correlated. In estimating error intervals for
numerically obtained a and b, this correlation must be considered. Table 3
gives a and Q computed from-the covariances in table 2 using the full for­
mulas \4) and (5) and the approximate formulas (9) and (10).

Both the full and approximate formulas give coefficients which agree
with the ideal values when the mean covariances are used. Only the full
formulas (4) and (5) yield coefficients close to ideal values when the
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Figure 1. Comparison of the ideal autocovariance for white
noise (0.083333 for zero lead and 0.0 for nonzero leads)
with covariances computed from white noise time series
of length N.
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Figure 2. Example of a first-order autoregressive process (~= 0.95,
Q= 0.2) forced by white noise of unit variance.
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Table 1. Comparison of ideal and experimental covariances
(N = series length) ~ = 0.70, ~ = 0.20.

Cuu(k)

k N = 500 N = 1000 Ideal

0 0.076308 0.075321 0.078431

1 0.053788 0.051760 0.054902

2 0.039529 0.035518 0.038431

3 0.030248 0.026168 0.026902

Cuv(k)

k N = 500 N = 1000 Idea1

0 0.19328 0.19545 0.20000

1 0.00227 -0.00373 0.00000

2 0.00929 -0.00280 0.00000

3 0.01290 0.00716 0.00000

Cvv (k)

k N = 500 N = 1000 Ideal

0 0.95985 0.99099 1.00000

1 -0.01864 -0.00760 0.00000

2 0.00368 -0.03787 0.00000

3 0.00338 -0.00539 0.00000
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Formula
;2 tt 2 . k

@ CUll (k ) = 1-g,2 (0)

0.10 [i] Computed from 1000 values
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Figure 3. Comparison of the ideal autocovariance of an autoregressive
process (a = 0.70, b = 0.2) with the autocovariance computed from a
time series of length N = 1000.
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Table 2. Mean covariances and their standard
deviations obtained from 10 numerical ex­
periments; ~ = 0.95, Q = 0.20, N = 1000.

CUI) (k)

k N = 1000 Ideal

0 0.40381 + 0.02566 0.41026

1 0.38311 + 0.02569 0.38974

C (k)vv
k

o

1

N = 1000

0.19929 + 0.00634

-0.00016 + 0.00621

N = 1000

0.99832 + 0.00869

0.00350 + 0.02858

a

Ideal

0.20000

0.00000

Ideal

1.00000

0.00000



Table 3. Coefficients a and b from covariances.- -

Coefficients computed from mean covariances
obtained from 10 experiments (N = 1000)

Approximate
Full formu1 as formulas Ideal
(4) and (5) (9) and (10) values

a 0.94882 + 0.00392 0.94874 + 0.00392 0.95
-

b 0.19978 + 0.00229 0.19962 + 0.00229 0.20

Coefficients computed from covariances
obtained from one experiment (N = 1000)

Approximate
Full formu1 as formulas Ideal
(4) and (5) . (9) and (lO) values

a 0.94769 0.93904 0.95

b 0.19983 0.18570 0.20
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covariances from a single experiment (N=1000) are used. Since these results
were obtained from synthetic series uncontaminated by extraneous noise,
the differences between the results using the full and approximate formulas
must be due to deviations in the covariances for a single experiment. These
deviations are correlated such that the full formulas (4) and (5) compen­
sate for these deviations.

To study the effects of extraneous noise on the coefficients a and b,
white noise was added to the autoregressive series v after the serres was
generated using equation (1) with Zi=O. Table 4 shows that the computed
autoregression coefficient a decreases systematically with increasing noise.
The coupling coefficient b 1S relatively unaffected, except that it is
smaller than the ideal vaTue. The extraneous noise in these experiments
corresponds to instrumental or high frequency noise not directly related
to the autoregressive process. This type of noise is seen to degrade the
estimates of the autoregressive coefficient ~.

If estimating the coefficients a and b, another source of error occurs
when the forcing series Vi is poor1y-known~ A set of experiments was run
in which the extraneous noise Zi was allowed to enter the autoregressive
series Vi through equation (1). Table 5 shows the effects of progressively
smaller fractions of the forcing used to compute the coefficients. The
computed autoregressive coefficient a is seen to decrease slowly as the
additional forcin~, not used in Vi, 1ncreases. The coupling coefficient b
increases more rapidly than ~ decreases, having a 5.6% error when the addT­
tiona1 forcing is equal in amplitude to the forcing Vi.

4. EFFECTS OF LOW-PASS FILTERING

In modeling wind-driven currents as autoregressive processes, the data
must often be low-pass filtered. For example, the sampling interval for
the current data is 0.5 hr or less while the interval for the wind data
is 3.0 hr. The current data must be low-pass filtered and resamp1ed at
3.0 hr to compute cross-covariances. If the cutoff period of the filter
is small compared with the characteristic time constant T (defined in pre­
Vious lab notes), the filtered data would be expected to yield accurate
coefficients. If the cutoff period exceeds the characteristic time con­
stant of the currents, the computed coefficients could differ significantly
from the correct values.

In table 6 are shown the coefficients computed from low-passed data
where both the forcing and the autoregressive process have been low-passed.
For the examples shown, the filtered data is seen to produce coefficients
comparable in accuracy with the unfiltered data, even when the cutoff period
of the low-pass filter exceeds the characteristic time constant of the
autoregressive process. The coefficients were computed using the full
formulas (4) and (5). When the approximate formulas (9) and (10) are used,
the computed coefficients err significantly from the ideal values. For
the second example in table 6, the approximate formulas give a = 0.9953
and b = 11.6314. It is clear that the full formulas must be used with
fi Hered data.
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Table 4. Coefficients a and b computed from white noise
contaminated autoregresslve series u (N = 1000)

Variance of a Error b Error
Extraneous noise (IdeaT=0.95) (%) (Ideal=0.20) (%)

0.00 0.9477 0.2 0.1998 O. 1

0.01 0.9200 3.2 0.1943 2.9

0.02 0.8949 5.8 0.1981 1.0

0.03 0.8644 9.0 0.1912 4.4

0.04* 0.8353 12. 1 0.1974 1.3

0.05 0.8077 15. a O. 1947 2.6

*Amplitude of the extraneous white noise equals the amplitude
of the noise forcing (~2y2 = 0.04) the autoregressive process.
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Table 5. Coefficients a and b obtained from fraction
of the forcing

ui = ~ui-l + ~Vi + ~i
where the last term is allowed to affect the auto­
regressive series

(N = 1000, ~ = 0.95, ~ = 0.2, y2 = 1)

Error Error
c a (%) b (%)

0.0 0.9477 0.2 0.1998 0.1

O. 1 0.9424 0.8 0.2055 2.8

0.2* 0.9381 1.3 0.2113 5.6

0.5 0.9344 1.7 0.2287 14.4

1.0 0.9341 1.7 0.2578 28.9

*Amp1itude of the additional forcing equals the am-
plitude of the forcing series Vi.
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Table 6. Coefficients a and b from low-passed data
(both u and V filtered after u was generated from
the white noise forcing V); N = 875.

Filter's AR process* a b
6 dB time

Period constant Data Ideal Data Ideal

6.0 t:,.t 19.0 t:,.t 0.9478 0.95 0.1972 0.20

24.0 t:,.t 19.0 t:,.t 0.9480 0.95 0.2014 0.20

* au
from H. Mofjeld (1975).T = =--

l-a '
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5. NONWHITE NOISE FORCING

In general, the wind cannot be represented realistically as white
noise. While the discussion in previous sections is essential background
for modeling wind-driven currents, other numerical experiments are needed
to study the procedure for computing coefficients from data where the forc­
ing is not white noise. The wind typically has a red spectrum with decreas­
ing spectral energy with increasing frequency. In the numerical experiments
described below, the wind is modeled by low-pass filtering white noise.

Figure 4 shows the autocovariance of the forcing before and after
low-pass filtering where the 6 dB period of the filter is 6.0 ~t. The low­
pass filter has.a Lanczos-squared form. The covariance takes on the form
of the filter since it is convolved with a delta function (covariance of
white noise). The corresponding autoregressive process' autocovariance
and the cross-covariance are shown in figures 5 and 6, respectively. Using
formulas (4) and (5), the covariances yield the coefficients a = 0.9500
and b = 0.1993, which compare well with the ideal values, a =-0.95 and
b = 0.20. These formulas are therefore able to produce accurate coeffi­
cients from data in which the forcing is not white noise.

6. CONCLUDING REMARKS

Jenkins and Watts (1968) dissuade investigators from using the ap­
proach used above to compute the coefficients a and b; they advocate a
spectral approach rather than one using covariances.- Their argument is
essentially based on the inaccurate results obtained from the approximate
formulas (9) and (10), the errors resulting from the correlation between
adjacent covariances. The numerical experiments above show that the ap­
proach using covariances does yield accurate results when the full formulas
(4) and (5) are used. This approach also avoids a myriad of problems aris­
ing from the spectral approach.
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APPENDIX

ANALYTIC EXPRESSIONS FOR THE COVARIANCES

Cuu(k) and Cuv(k) WHEN V IS WHITE NOISE

For the first-order autoregressive process u uncontaminated by
extraneous noise Z and forced by white noise V, the individual values Ui
in a uniformly sampled time series satisfy the equation

Since

ui = ~ui-l + ~Vi .

ui+k = ~ui-l+k + ~Vi+k '

(Al)

(ui - ~Ui-l)(ui+k - ~ui-l+k) = ~2ViVi+k '

or -~Cuu(k-l) + (1+~2)Cuu(k)-~Cuu(k+l) = ~2Cvv(k) (A2)

For white noise, Cvv(k) = y200,k. Equations (A2) may be put into matrix
form

M Cuu =Cvv ,

where
1+a 2 -2a a a
-a l+a 2 -a a
a -a 1+a 2 -a

M = 1+a 2a a -a
a a a -a

Cuu(O) ~2y2

Cuu (1) a
-+
Cuu = Cuu (2) , and Cvv = a

Cuu (3) a

(A3)

Equation (A3) can be readily solved by Cramer1s rule where the determinants
are expanded by minors. The determinant, IMI, which appears in the denomi­
nator of the solution, is expanded along the first row,

IMI = (1+~2) Do - 2~2Do = (1-~2)Do ,
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where 1+a2 -a 0

-a 1+a2 -a

Do = 0 -a l+a2

0 0 -a

By induction, it can be shown that Do converges (I~I < 1) to (1_~2)-l,

implying that IMI = 1. For Cuu(O), an expansion by minors along the first
column

b2y2 -2a 0

0 l+a2 -a

Cuu(O) = _1_ 0 -a 1+a2

IMI 0 0 -a
0 0 0

gives Cuu(O) = b2y2D_ 0

or Cuu(O) =
b2y2

(l-.~?) (A4)

Since ui+k =~ui_l+k + QV i +k ,

uilJi+k = ~uiui-1+k + QYiVi+k '

which when summed over i yields

Since V is white noise, its value is uncorrelated with its past values and
the past values of u. Hence,

Cuu(k) = ~Cuu(k-l)

or Cuu(k) b2 2 Ik I= (l-~Z) ~

In like manner,

uiVi = ~ui_1Vi + QViVi

or Cuv(O) = Qy2 .

Because V is white noise,

Cuv(k) = 0 for k > 0

20

(A5)

(A6)

(An



Further,

UiVi+k = ~ui-1Vi+k + QViVi+k

or Cuy(k) = ~Cuy(k+1) for k~O

Hence,
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