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A NUMERICAL MODEL FOR THE COMPUTATION OF RADIANCE DISTRIBUTIONS
IN NATURAL WATERS WITH WIND-ROUCHENED SURFACES

Curtis D. Mobley
Rudolph W. Preisendorfer

ABSTRACT. This report is a repository of the details of
derivation of a numerical procedure to determine the unpolarized
radiance distribution as a function of depth, direction, and
wavelength, in a natural hydrosol such as a lake or sea. The
input to the model consists of (i) the incidence radiance
distribution at the air-water surface (ii) the state of randomness
of the air-water· surface as a function of wind speed, (iii) the
volume scattering and volume attenuation functions of the medium
as' a function of depth and wavelength, and (iv) the type of bottom
boundary.

The fundamental mathematical operation in the development of
the numerical model is the discretization over direction space of
the continuous radiative transfer equation. The directionally
discretized radiances, called quad-averaged radiances, are the
averages over a finite set of solid angles of the directionally
continuous radiance. The quad-averaged equations are azimuthally
decomposed using standard Fourier analysis to obtain equations for
the quad-averaged radiance amplitudes. These amplitude equations
are then developed in terms of reflectance and transmittance
functions. The reflectances and transmittances are continuous
functions of depth and are governed by a set of Riccati equations
which is easily integrated. The depth-dependent, quad-averaged
radiances are assembled from the solution reflectances and
transmittances of the water body, in combination with the boundary
conditions.

The model has an expandable library of derived quantities
that are of use in various applications of optics to natural
waters, such as marine biological studies, underwater visual
search tasks, remote sensing, and climatology.

1. INTRODUCTION

This report presents a numerical technique for computing the radiance

distribution in a natural hydrosol, given the optical properties of the

hydrosol itself and appropriate boundary conditions at the surface and bottom

of the water body, along with the radiance incident on the water surface.

General knowledge of the radiance distribution in a natural hydrosol is a

prerequisite for the solution of more specific problems, such as those



§l

occurring in studies of photosynthesis, underwater visibility, remote sensing

of the ocean from aircraft or satellites, heating of the upper layers of the

medium, and climatology. Our goal is thus the development of a model of some

generality and relatively high computational efficiency, rather than the

solution of any particular problem. An analogous goal would be the

formulation of a numerical model for the general circulation of the atmosphere

or oceans. Such a model, once available, can be used as a tool for the

solution of many specific problems. Some of the immediate applications of the

present model are to study various hypotheses about the behavior of the

radiance distribution with depth, direction, and wavelength, and to establish

the ranges of validity of simpler li&ht field models that are potentially

useful in marine biological studies and in underwater visual search tasks.

Water bodies such as oceans and lakes are well approximated locally as

plane parallel media for the purpose of determining the light field within

these natural hydrosols. Thus we consider a water body which is laterally

homogeneous, although its optical properties may vary arbitrarily with

depth. The wind-blown water surface forms the upper boundary of the hydrosol,

and a plane of specified radiance reflectance forms the lower boundary. The

upper boundary is statistically homogeneous but exhibits a directional

anisotropy due to the presence of wind-generated waves. The lower boundary,

for example a sandy lake bottom, is less prone to anisotropy. Natural waters

are directionally isotropic with respect to the scattering properties of the

medium, although the scattering functions may be far from spherical in shape

and the optical properties of the water may vary markedly with depth.

Moreover, the dominant light sources in the euphotic zones and mixed layers of

natural hydrosols are the sun and diffuse sky light, rather than internal

sources such as·fluorescing chlorophyll in phytoplankton.

2
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a. Assumptions of the Natural Hydrosol Model (NHM)

With these comments in mind, we define in this work a Natural Hydrosol

Hodel (NHM) by adopting the following assumptions:

(1) The water body is a plane-parallel medium which

(a) has no internal light sources, and is non-fluorescent

(b) is directionally isotropic,

(c) is laterally homogeneous, but is inhomogeneous with depth.

(2) The upper boundary is the random air-wat~r interface, which is wind­

ruffled, laterally homogeneous, and azimuthally anisotropic.

(3) The lower boundary is a surface whose reflectance is azimuthally

isotropic. This boundary may be either the physical bottom of an

optically shallow water body, or a plane in an optically infinitely

deep water body, below which the water is homogeneous with depth.

(4) There 1S radiant flux incident downward on the upper boundary.

There 1S no radiant flux incident upward on the lower boundary.

(5) The radiance field is monochromatic and unpolarized.

The exact meaning of these assumptions and their mathematical consequences

will be clarified in the discussions below.

Section 2 presents the integrodifferential equation which governs the

light field under the assumptions of the Natural Hydrosol Model. In §3 we

present a technique for the directional discretization of the continuous

equations of §2, and this is followed by a review of the Fourier analysis of

discrete functions in §4. These analysis formulas are then applied in §5 to

the directionally discrete equations of §3, in order to obtain a discrete

spectral model. These spectral equations are algebraically reformulated in §6

in order to derive equations which are suitable for numerical solution on a

3



§1

digital computer. In §7 we show how to solve the model equations for the

spectral amplitudes, and then how to reconstitute the desired radiance

distribution from those spectral amplitudes. Section 8 discusses the

computation of various derived quantities from the computed radiances and the

consequences for simple models of the light field in natural hydrosols.

Sections 9-11 discuss certain preliminary calculations which are needed 1n

order to set up the desired boundary conditions and inherent optical

properties as input to the Natural Hydrosol Model. We close with a section on

computer considerations, such as array storage.

Acknowledgments. Author C.D.M. was supported in part by the Oceanic Biology

Program of the Office of Naval Research (contract no. N00014-87-K-0525) and 1n

part by the TOGA (Tropical Ocean, Global Atmosphere) Council. Ryan Whitney

performed the word processing and Joy Register drew the diagrams.
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2. GOVERNING EQUATIONS

In this section we present the equations which govern the light field of

the Natural Hydrosol Model. Our starting point is the radiative transfer

equation plus equations which describe how light is reflected by and

transmitted through the boundaries of the water body. Figure 1 establishes a

coordinate system for the expression of these equations.

According to lc of the Natural Hydrosol Model assumptions, the water body

caO be represented by extensive horizontal layers of scattering-absorbing

material parallel to the upper and lower boundary surfaces. As shown in

Fig. 1, a wind-orien~ed spherical coordinate system (y,9,,) is defined so that

E.
J

i
WIND

X[a, x]
a

x

X[x, y] /
/ /

Y ~-- -~----....,/

X[y, z]

z
X[z, b]

b

k

Figure 1.--The geometric setting of the Natural Hydrosol Model and definition
of the wind-based coordinate system. The i vector is along the wind
direction. The ~,l,~ vectors form a right=handed system with ~ positive
upward.
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the downwind direction at the water surface has an azimuthal angle of • = o.

The azimuthal angle ., 0 ~ • < 2w, is measured positive counterclockwise from

the downwind direction when looking downward on the water surface from above.

The polar (or zenith) angle 9, 0 ~ 9 ~ w, is measured from the unit outward

normal k (the zenith direction). The normal k is perpendicular to the

bounding planes of the water body and defines the upward direction. Since the

hydrosol is laterally homogeneous, the depth coordinate y is the only relevant

spatial coordinate. We take the optical depth y to be a running depth

variable, a ~ y ~ b, measured positive downward from the upper surface,

located at level a, to the lower boundary surface at level b.

We adopt the convention that the two depths a and x seen 1n Fig. 1 define

a region a ~ y ~ x, which we call the upper boundary. In most applications of

the model, this region can be considered infinitesimal in thickness,

consisting only of the air-water surface. However, there are situations in

which the upper boundary may actually be a composite medium consisting of the

infinitesimal air-water surface plus a slab of finite thickness representing,

for example, an oil film or a surface layer of relatively great biological

activity just below the surface. In either instance the notation is such that

"a" denotes a point in the air and just above the water surface, while "x"

denotes a point in the water below the surface. In our basic computations,

the upper boundary is always considered to be an infinitesimally thin layer,

which merely reflects or transmits light without absorption; in such a case

the boundary itself has no internal structure. The lower boundary is defined

as a slab of depths y, z ~ y ~ b, where b-z may be infinitesimal, finite, or

infinite. In any of these cases "z" denotes a depth in the water just above

the lower boundary, and "~bIt denotes the depth of the lower plane of this

boundary. The water body itself is the plane parallel region of depths y such

6
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that x ~ y ~ z. We will often use the notation "X[YI'Y2]" to refer to the

slab between and including depths YI and Y2. Thus the upper boundary of the

natural hydrosol is the slab X[a,x], the body or water column is X[x,z], the

lower boundary is X[z,b], and so on. The use of two symbols "a" and "x" in

X[a,x] helps keep in mind that the top of the air-water surface is at a and

the bottom is at x, even though these are infinitesimally close.

The independent variables for the Natural Hydrosol Model are the optical

i.e., ~.~ = 1. It is often convenient to use ~ = cose = ~.~ rather than e

itself; then we can think of ~ as specified by ~ and.: ~ = ~<~,,), where

-1 ~ ~ ~ 1, and 0 ~ , < 2~. If a wind-oriented cartesian coordinate system

i-j-~ is defined in accordance with Fig. 1, with i pointed downwind, ~ upward

as defined above, and j = ~ ~ i in the crosswind direction <at ~ = ~/2), then

~(e,,) can be written in any of the forms

! - ~ Ii + ~21 + ~3~ = [~I'~2'~3]

= [sine cos., sine sin" cose]

[(l-~2)~ cos.,
1

= (l-~2 )'1 sin" ~] .

The fundamental dependent variable of the Natural Hydrosol Model 1S the

spectral radiance N(Y;~;A) at depth y in direction ~ at wavelength A. The.

photons are travelling in direction~. Since the water body is assumed non-

fluorescent and the radiance is monochromatic, the wavelength A is held

fixed. We therefore drop "A" from the explicit notation and write the

7
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In the model to be developed we begin with radiant energy from the sun or

sky incident upon the random water surface at y = a. This energy is partly

reflected back to the sky and partly transmitted into the water column at

y = x and below. The details of this transmission through the random surface

are determined by the wave field on the water surface (and hence by the wind

speed) and by the directional distribution of the light sources. It is

intuitively clear that the time-averaged or ensemble-averaged radiance N(y;~)

is thereby determined at each depth y of the entire water column, x ~ y ~ z,

and for all directions ~, by the absorption and scattering properties of the

water and by the interreflections of radiance between the upper and lower

boundaries. The analytical basis for this belief rests in the equation

governing the radiance field in the body of the water and in the boundary

conditions above and below the water body.

a. The Radiative Transfer Equation

The equation for conservation of unpolarized, monochromatic radiance

N(t;~) in a source-free optical medium is the Radiative Transfer Equation (cf.

Preisendorfer, 1965, pp. 65-69):

dN(t;~)

dr = -a(t) N(t;~) + J N(t;~') a(t;~';~) dO(~')

Here t is geometric depth measured positive downward, i.e., along the

(2.1)

direction -k. Moreover, r is the geometric distance (always positive) from a

point at the geometric depth t measured along direction ~; rand t have units

of meters. : is the set of all unit vectors ~, i.e. the unit sphere, and

dn(~') is an infinitesimal element of solid angle about direction ~'. The

volume attenuation function a(t), with units of m- 1 , and the volume scattering

8
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function a(~;~;~'), with units of m- 1 ·sr- 1 , are considered to be known

quantities and are called the inherent optical properties of the water.

The integration of any function f(~) = f(e,~)= f(~,~) over all

directions ~, as in (2.1), is expressible in any of the equivalent forms

1r
J f(~) dn(~) = J

, 0

21t

J
o

1 21r
J J
-1 0

We separate the unit sphere _ into upper, =+' and lower, =_, hemispheres

defined by

-1 ~ ~ < 0, 0 ~ ~ < 21r}

In a similar fashion we will often use a "+" or "-" superscript as shorthand

notation to indicate quantities whose ~ vectors are in the respective =+ or =_
hemispheres. Thus, for example, we have the upward radiance N+(y;~) _ N(y;~)

when ~ E =+ and the downward radiance N-(y;~) = N(y;~) when ~ E =_.

Equation (2.1) can be placed into a more convenient form for numerical

work by noting (from simple plane-parallel medium geometry and our choice of

geometric depth ~ as positive downward) that dr = -d~/~. Here r and ~ are

both interpreted as physical distances, in meters. If we define an increment

of optical depth, dy, as

dy _ a(dd~

then dr = -dy/(a~) and (2.1) can be written

9
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(2.2)

for x ~ y ~ z and ~ £ E. Henceforth the depth variable y will be interpreted

as optical depth, which is nondimensional. The Natural Hydrosol Hodel uses

the optical depth y as its depth variable, since it is the optical depth which

summarize~ most efficiently the depth behavior of the light field.

In the absence of scattering, a = 0 and (2.2) can be immediately

integrated to obtain a simple law of exponential decrease of radiance with

optical depth. However, in natural hydrosols, scattering processes are of

fundamental importance, and the integral in (2.2), which embodies the

phenomenon of "space light" in underwater environs, must be treated with great

care. The scattering function a(y;~';~) describes how strongly photons at

depth y initially traveling in direction ~' are scattered into direction ~.

For directionally isotropic media, the directional dependence of a rests only

on the angle between ~' and ~, and not upon their absolute directions. Thus

for the Natural Hydrosol Hodel we have, for various convenient forms of

notation:

(2.3)

where

(2.4)

defines the scattering angle ~, 0 ~ ~ ~ w. This simplification of a will have

an important influence in the choice of numerical solution procedures.

Without loss of generality, and 1n a convenient contracted notation, we

can write a as the product of the volume total scattering function, s(y), and

the phase function, p(y;~):

10
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where we have defined

<2.5)

and where the volume total scattering function is defined by

1f

s(y) _ 2w J a(y;,) sin, d,
o

(2.6)

It follows from (2.6) that the phase function must satisfy

w
2w J p(y;.) sin~ d. = 1

o
for any y,

or returning to the full (~,,) notation,

2w
J J p(y;~t"t;~,,) d~d, = 1
-1 0

(= J p(y;~t ;~) dQ(~» (2.7)

for any y, ~t and ,t. The volume total scattering function s(y) thus is a

measure of the overall amount of scattering, and the phase function p(y;~)

contains the information about the shape of the scattering function.

Substituting (2.3) and (2.5) into (2.2) gives

-~

dN(y;~)

dy (2.8 )

x S Y s z

~ & -
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where w(y) = s(y)/a(y) is the scattering-attenuation ratio or albedo of single

scattering. This ratio satisfies 0 S w(y) S 1 and is a measure of the

relative importance of scattering and absorption processes in the water.

Equation (2.8) is the basic equation of the Natural Hydrosol Model.

b. Boundary Conditions at the Water Surface

At the random upper boundary of the water, downward radiance incident

from the sky onto the water surface is partially reflected back to the sky and

partially transmitted through the surface into the water. Moreover, upward

radiance incident from the water onto the underside of the water surface is

partially reflected back to the water and partially transmitted through the

surface into the a1r. These processes, after time or ensemble averaging, are

expressed by the pair of equations (cf., Preisendorfer, 1965, p. 123,

Eq. II):*

N(x;~) =I N(a;~' ) t(a,x;~' ;~) dD(~' )

--
+ I N(x;~') r(x,a;~' ;~) dD(~' ) ~ £ -- (2.9)

=+
and

N(a;~) = I N(x;~' ) t<x,a;~' ;~) dn(~' )
=+

+ I N(a,~' ) r(a,x;~' ;1) dD(~' ) 1 £ -+
(2.10)

--

* Equations (2.9) and (2.10) are instances of the interaction principle for
surfaces of plane parallel media. Eq. II of the cited reference allows us
to write down (2.9) and (2.10) in general, on the grounds of linearity of
radiative transfer processes. However, in any specific application of
Eq. II, one must actually determine the numerical values of the rand t
functions. This is the task of the procedure in §9, below.

12
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The rand t functions describe 1n averaged form how radiance is reflected and

transmitted by the boundary.* In particular, in the first term on the right

hand side of (2.9), t(a,x;~';~) determines how much of the downward radiance

N(a;i'), incident on the upper surface at y = a along direction i' E :_, 1S

transmitted through the surface into the water at y = x along direction

~ E :_. Likewise, the second term on the right side of (2.9) shows how much

of the upward radiance N(x;~'), incident on the lower side of the surface at

y = x along direction ~I E :+' is reflected back into the water along

direction ~ E _. Similar comments hold for the terms of (2.10), where now

upward radiance is being transmitted through the surface from the water side

to the air side. Note the reversed (x,a) notation in t(x,a;~';~) and the

reversed hemispheres of ~' and ~' relative to the transmission term of

(2.9). Likewise in the second term of (2.10), downward radiance from the sky

is being reflected back to the sky by the water surface. The order of the

(a,x) and (x,a) arguments identifies the four distinct rand t functions of

(2.9) and (2.10), which shows our use of the depth conventions of Fig. 1.

When computing the light field in the hydrosol, these reflectance and

transmittance functions must be known. For certain special cases, such as

that of a perfectly calm sea surface, the res and tIs are available in

analytic form. However, in the general case of a wind-ruffled, anisotropic

sea surface, the linear interaction principle notwithstanding, the

determination of the res and tIs is a relatively difficult task. Later 1n

this study we will show (in §9) how the reflectance and transmittance

functions can be numerically estimated for wind-blown water surfaces using

* ~or an alternate approach to the random surface's effect on the light field
at and below the surface of a natural hydrosol, see H.O., Vol. VI,
sees. 12.10-12.17.

13
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geometrical optics, quad averaging, and suitable constructions of random

surfaces.

c. Boundary Conditions at the Water Bottom

A pair of equations analogous to (2.9) and (2.10) can be written for an

arbitrary lower boundary. However, the assumptions of the Natural Hydrosol

Model lead to lower boundary conditions which are much simpler than those of

the surface. Since there are no light sources below the lower boundary, there

is no radiance incident on the lower boundary from below, and therefore the

transmission term may be omitted. Thus we have only

t E -+ (2.11)

which shows how downward radiance incident on the lower boundary is reflected

back upward into the water. There is no need for an equation giving N(b;~),

t E =_, corresponding to (2.10), since we are not concerned with finding the

light field below the bottom (although we will find the emergent light field

above the surface Via (2.10».

Either of two types of bottom boundaries can be modeled by the Natural

Hydrosol Model. The first is a matte bottom, which represents for example a

sandy or silty lake bottom. For a matte surface, the reflectance function is

(H.O., Vol. II, p. 215):

r

w
~' , (2.12)

where r_ is the irradiance reflectance of the matte surface, 0 ~ r_ ~ 1. Note

that ~' < 0 since ~' E =_ in (2.11). We see from (2.12) that radiance

14
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incident on the matte bottom is equally reflected into all directions

~ =~(~,.), independent of the incident azimuthal angle .1, in accordance with

our assumption of an isotropic lower boundary.

The second type of bottom boundary is a plane at level z. Below this

plane is an optically infinitely deep water body, in which the optical

properties of the water have a specified variation with depth. In this case

r(z,b;~I;~) gives the reflectance at depth z of the water body due to the

upward scattering of downward radiance at all depths in the entire water body

below level z. An appropriate form of this reflectance is developed in §lO.

d. Discretization of the Hodel Equations

Equation (2.8) and boundary conditions (2.9)-(2.11) constitute the

concinuous geomecrical form of the Natural Hydrosol Hodel (NHH). The word

"continuous" refer·s to the formulation of the model as an integrodifferential

equation in which the direction variables e and, may take any real values in

their allowed ranges, and the term "geometrical" refers to the setting of the

equations in the physical space suggested by the plane-parallel geometry of

the water body. However, in order to solve the NHH equations on a digital

computer (with finite storage capacity), we have decided to discretize the

equations so that only a finite number of radiance directions need be

computed. This discretization process is the subject of the next section; the

result is termed the discrece geomecrical form of the NHH. Furthermore, it is

numerically advantageous, for the reason explained below, to recast the

discrete geometrical NHH into a spectral form, termed the discrete spectral

NHH. This final formulation of the NHH is solved for a finite set of discrete

spectral amplitudes. These amplitudes are then used to compute the discrete

geometrical radiances, which are the final output of the numerical model. In

15
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the limit of infinitely fine resolution in our chosen discretization process,

these discrete geometrical radiances approach the continuous geometrical

radiances which are in turn the solutions of the continuous geometrical

equations. Not.e that the word "spectral" now, and henceforth, refers to the

Fourier decomposition of the azimuthal angle, and not to the wavelength of

light.

Before proceeding with the discretization operations, it is worthwhile

considering the theoretical and numerical implications of two available paths

which lead to discretized model equations. The path briefly sketched above is

shown as the right hand branch in Fig. 2. The discretization process consists

of first partitioning the unit sphere 3 into a finite number of subsets

bounded by lines of constant ~ and constant~. These subsets are termed quads

and can be visualized as regions bounded by latitude and longitude lines on a

globe (cf. Fig. 3 below).* After defining these quads, the discretization

process consists of in;egrating all model equations over the various quads,

where "integration over a quad" means integrating over all directions ~ such

that ~ is within the solid angle subtended by that quad. The discretization

is thus a directional averaging of the continuous equations, after which, for

example, a continuous radiance N(y;~) is replaced by a discrete radiance

N(y;u,v), where (u,v) are the discrete integer indices labeling quad Quv '

N(y;u,v) is the average of N(y;~) as ~ varies over Quv ' The model equations

of level 2 in the right-hand branch of Fig. 2 turn out to be a set of coupled

* This intuitively simple procedure generalizes the classical partition of the
unit sphere 3 into just two subsets 3+ and 3_, the upper and lower
hemispheres of directions about each point of the environment, and which
yielded the classical two-flow theory of light. For an initial exploration
of this generalization see H.O., Vol. V, pp. 57-61 and H.O., Vol. IV,
pp. 97-103. It is perhaps of interest to note that this procedure returns
to and completes a numerical solution program outlined along the present
lines 20 years ago (cf. Preisendorfer, 1965, footnote, p. 204). Modern
computers now allow that program to be completed and widely applied.
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Continuous, Geometrical
Model Equations Level I

/ \
Fourier Series Analysis Directional (Quad) Averaging

(Exact) (Information Loss)

Infinite, Discrete, Spectral Finite, Discrete, Geometrical
2Model Equations Model Equations

Series Truncation Fourier Polynomial Analysis
(Information Loss) (Exact)

Finite, Discrete, Spectral Finite, Discrete, Spectral 3
Model Equations Model Equations

Solution of the Fin ite, Solution of the Finite,
Discrete, Spectral Equations Discrete, Spectral Equations

(Exact) (Exact)

Finite, Discrete, Spectral Finite, Discrete, Spectral 4Amplitudes Amplitudes

Partial Fourier Synthesis Fourier Polynomial Synthesis
(Exact) (Exact)

Continuous,Geometrical Discrete, Geometrical 5
Radiances Radiances

Limit of Infinitely Many Limit of Infinitely Fine
Terms in Spectral Sums Directional (Quad) Averaging

Continuous, Geometrical
(UTrue") Radiances 6

Figure 2.--Two paths leading to a discrete spectral model. The NHH takes the
right-hand path.
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ordinary differential equations with respect to depth y for a finite number of

discrete, or quad-averaged, radiances. It is important to note that any loss

of resolution, or realism, of the present numerical model when compared to

nature, occurs in the quad-averaging level of the discretization procedure.

The Fourier polynomial analysis leads to an uncoupling of the equations over

azimuth space, without loss of information. This permits a savings in

computational effort when handling reflectance and transmittance matrices.

The remaining steps of the solution procedure eventually yield a set of

discrete geometrical radiances which are exact solutions of the discrete

geometrical model equations. How closely these solution radiances correspond

to the "true" solutions of the continuous equations depends only on how fine

is the original partitioning of the unit sphere = into quads. The loss of

model accuracy thus has an easily visualized, geometrical origin, and the

discrete solution radiances are readily interpreted as averages of the "true"

continuous radiances.

An alternate approach to obtaining a finite set of model equations is

shown as the left hand branch of Fig. 2. In this approach, which goes back to

the early work of Eddington and of Jeans (1917), the continuous geometrical

model equations are first Fourier analyzed over direction space using.

spherical harmonics to find an infinite set of equations for the discrete

spectral radiance amplitudes. No loss of accuracy occurs in this level of the

reformulation. However, the infinite series in these spectral equations must

be truncated at some finite value in order to obtain a finite set of coupled

ordinary differential equations for the spectral amplitudes that is amenable

to numerical solution. It is this truncation which introduces a loss of

accuracy into the numerical model, particularly in the hydrologic optics

setting which has volume scattering functions that are highly peaked in the

18
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forward direction; a faithful representation of a(y;~l;~) requires very many

spherical harmonics to be retained by the model. The solution radiances of

level 5 on the left branch in Fig. 2 are now exact solutions of the truncated

model equations; these radiances themselves are continuous functions of the

azimuthal angle +. How closely the solution radiances correspond to the true

radiances depends only on how many terms were included in the truncated

series. Although the solution radiances are easily interpreted as

approximations of the true radiances, the loss of model accuracy due to series

truncation at the spectral equation level is not as easily visualized. It is

for this reason that in this study we adopt and explore the potentialities of

the right hand path of Fig. 2 as our solution procedure. The primary goal 1S

the form of the local interaction equations, (5.29), below).

It may be noted that the left branch of Fig. 2 can also lead to local

interaction equations of precisely the form (5.29). This means that the

solution procedures of §6 and 7 are also available for exploration of the

numerical road starting out along the Eddington-Jeans (i.e., the left) path of

Fig. 2. Indeed, the first rudimentary form of this approach is due to

Chandrasekhar (1950) building on an insight of Ambarzumian (1943).

The next several sections of this report give the mathematical details of

the various steps outlined above and in the right branch of Fig. 2.
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3. DIRECTIONAL DISCRETIZATION OF THE MODEL EQUATIONS

We now address the mathematical details of the directional, or quad,

averaging of the model equations.

§3 I
I
t
f
f
f
I
I
t

For our purposes we partition the unit sphere of directions, =, into

Partitioning the Unit Spherea.

quadrilateral domains called quads, and into polar caps. A quad is bounded by

circular arcs of constant ~ (or a) and circular arcs of constant~. The polar

caps are circular domains centered on the two poles of the sphere. Figure 3

illustrates a partitioning of = by means of 9 circles of constant ~ (4 in the

upper hemisphere, 4 in the lower hemisphere, and the equator) and by 20

semicircles of constant~. Thus there are 4 x 20 + 4 x 20 = 160 quads, and

two polar caps. The notation "Qpq" denotes the quad indexed by the pth ~ band

and the qth ~ band, where p and q are numbered from a reference quad chosen

for convenience. We are free to center the q = 1 row of quads on the ~ = 0,

or downwind, direction as shown by the wind-oriented l-l-! coordinate system

in Fig. 3. The figure also shows two directions, ~I and ~, respectively

belonging to two different quads, Qrs = Ql,4 in =_ and Quv = Q3,5 in =+. Note

that the solid angles Drs and Duv associated with quads Qrs and Quv are in

general unequal in size.

Let the number of quads in the ~-direction be M (counting polar caps) and

let the number in the ~-direction be N (we have M = 10 and N = 20 in

Fig. 3). Furthermore, let M and N be even, i.e., of the form M = 2m and

N = 2n and, as will be convenient later (cf. paragraph f, below), let n itself

be even. This restriction to even M and n values represents no significant

loss of generality in the numerical model, but greatly simplifies the analysis

formulas. We also require that non-polar cap quads have equal angular widths

~~ in the ~-direction, thus

20



Figure 3.--An example partitioning of the unit sphere into quads, for the case
of m = 5, n = 10. The origin of the wind-oriented i-j-k coordinate
system is at the center of the unit sphere =, and ~T and ~ are unit
vectors.
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Then the centers of the non-polar quads Quv have the ~ values

~v = (v-l)d~ v = l, ••• ,2n • (3.1)

The azimuthal angle ~v is not defined for the polar cap quads (just as ~ is

not defined at the poles, e = 0 and 9 = w, in a spherical coordinate

system).

The angular size d~ (or de) of the quads in the ~ direction can be fixed

as desired. There is no requirement that the quads in different ~-bands

defined by pairs of neighboring ~ circles have equal d~ values. One simple

scheme for defining the ~-bands is to let d~u = d~ = 11m, and thus have quads

of equal ~-size and hence of equal solid angle (except for the polar cap

quads) Duv = d~ud~v = d~d~, since d~v = win. With this choice there are

2(m-1)2n non-polar quads of size Duv = (l/m)(w/n) and two polar cap quads of

Size Om = (1/m)(2w), which total to the required 4w steradians in =. If we

set

d~
2n = d~ for = 1, ••• ,m-l- (m-l)2n+1 uu

and

d~ = d~ for the polar cap, u = m,m 2n

then all quads, including the polar caps, have the same solid angle

dOuv = dO = 2w/[(m-l)2n+1]. This equal solid angle partition is shown in

Fig. 4a for m = 10, n = 12.
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c

b-

d
Figure 4.--Further examples of partitions of the unit sphere into quads. (a)

m = 10 ~-bands and n = 12 ,-bands, with all solid angles nand 0
equal. (b) m = 10 and n = 12, with all 68 values equal. f~} m = ~3,
n = 30 with equal 69 values, so that 68 = 4° and 6~ = 6°. (d) m = 10,
n = 12 with an ad hoc selection of the 68 values.
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The equal solid angle partition may be inconvenient for some

applications, since the quads near the pole cover a large a range and thus,

for example, may cause an unacceptable loss of a-resolution for solar

positions near the zenith or lines of sight directed at the nadir. Another

convenient choice of ~-bands is to use equal AS values, as shown in Fig. 4b

for m = 10, n =12. Here the a-resolution is the same everywhere (the polar

caps have a half-angle of A9/2), but of course the quads in different ~-bands

have different solid angles guv. A quad resolution of m ~ 10, n ~ 12 has been

found to be reasonable for use in debugging and in production model runs where

extreme accuracy is not required.

Some applications of the Natural Hydrosol Model may require even finer

directional resolution. For example, changing the sun's elevation by only a

few degrees may have a large effect on the subsurface light field when the sun

is near the horizon. Figure 4c shows a higher resolution, equal A, partition

of =with m = 23 and n = 30, so that Aa = 4° and A, =6°. Grids of this

resolution are currently (1988) at the limit of computational feasibility.

Figure 4d shows an m = 10, n = 12 grid with an ad hoc Aa selection which gives

Aa = 2° near the horizon and A9 = 20° near the poles.

It can be noted that a grid for which the solar disk, which subtends an

angle of about 0.5°, fills one quad of size Aa =A, = 0.5° would require

m = 180, n = 360. Since computation and storage requirements of the model are

generally proportional to m2n 2 , such a grid would require nearly 300,000 times

the computer effort relative to the m = 10, n = 12 grid. Such resolution 1S

far beyond current general-purpose computer capacities (1988). Such

resolution would, however, at present not be beyond the capacity of dedicated

24
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computers that could be constructed for specific radiative transfer

integration tasks (cf., H.O., Vol. 1, p. 208).*

In our later development we shall have frequent need to evaluate sums of

discrete functions, f(p,q), defined on the quads Qpq of =. Thus liLL £(p,q)"
p q

will denote a sum of f(p,q) over all quads and polar caps in the unit sphere

Henceforth, unless otherwise noted, the polar caps will be considered as

special quads. We shall also occasionally write sums over all quads as

separate sums over =+ and"=_, and we shall sometimes add a "+" or "-"

superscript to the summand as a reminder of which hemisphere is referenced by

the sum, as for example in

LL
p q

f(p,q) = LL
p q

(Q in =)pq

Here "(Qpq in =)" means "all quads Qpq of = are to be summed over."

"(Qpq in =+)" is interpreted as "all quads Qpq of =+ are to be summed over",

etc. For ease of indexing in the computer code, we also let p = 1,2, ••• ,m

label the u-bands of the quads Qpq' regardless of whether Qpq is ln =+ or =_;
p = 1 is the row of quads nearest the "equator" and p =m refers to the polar

cap quads. Since there is no • dependence for the polar caps, these "quads"

are always special cases. The value of f(p,q) at a polar cap will then be

+denoted by "f-(m,·)". Thus we write

* Another possibility would be to produce a variable-grid partltlon of =
around directions where there exists a high radiance gradient. In this way
the grid would be fine around the sun direction and become progressively
less fine away from that direction. This would, however, require a
revision of the spectral decomposition of the present method.
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m-l 2n m-l 2n

LL £(p,q) L L f+(p,q) + f+(m,o) + L L f-(p,q) + f-(m, 0 )=
p q p=l q=l p=l q=l

(Q in ::)
(3.2)

pq

Sums over _ or :t will always be computed as shown by the explicit notation of

b. Quad-Averaging

Let "F(yg)" denote any function of depth y and direction~. The quad-

average of F(y;~) over any quad Quv in : is defined by

1F(y;u,v) :: Q
uv

Q in::uv

1
nuv

(3.3)

The quad-averaged qua~tities are the fundamental building blocks of the

numerical Natural Hydrosol Model. Owing to the "smearing out" of the

continuous F(y;£) by the directional averaging in (3.3), the numerical model

cannot resolve features of the radiance distribution which subtend solid

angles smaller than nuv • In a manner of speaking, the quad-averaging process

replaces the clear unit sphere (with perfect resolution) by a polyhedron of

frosted glass windows; each window (i.e., quad or polar cap) homogenizes the

radiance distribution within that window. Note, however, that the Natural

Hydrosol Model is capable of arbitrarily fine resolution in the vertical

direction down through the body of water, so long as the number of depths y,

where a solution is desired, remains finite.

The basic step of the quad-averaging procedure can be represented as the

formal replacement of a function F(y;~,~), defined on the unit sphere :, by

the following linear combination F(y;~,~) of its quad averages F(y;p,q):
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F(y;~,cll} - LL x (~,cll) F(y;p,q} , (J.4)
p q pq

a ~ y :$ b

(~,cll) £ -
where

t: if (~,cll) £ Qpq
Xpq(~'cll} -

if (~,cll) l Qpq ,

It "and where L L denotes a sum over all quads and caps Qpq in the unit sphere
p q

=, evaluated as shown explicitly in (3.2). Observe that F(y;~,cll} is constant

as (~,cll) varies over Qpq' and is of magnitude F(y;p,q}, even though the

original F(y;~,cll} in (3.3) may have varied over Qpq. This follows from our

interpretation of F(y;u,v} as an average and emphasizes the consequence of the

directional averaging operation. This same quad average over Quv' namely

F(y;u,v}, is obtained from (3.3) if F(y;~,cll} is used in place of F(y;~,cll}•.

That the step function form F(y;~,cll} of F(y;~,cll}, given by (3.4) is consistent

with (3.3) in this sense, is verified by direct substitution of (3.4) into

(3.3). Thus (3.3) becomes

1 II F(y;~,cll} d~dcll
1 II [i I X (u,o> F(y;P,q:] d~dcll=Q

Quv
Q

Quv
p q. pquv uv

= LL F(y;p,q) 1 II X (~,cll) d~dcll •n pqp q uv . Quv

= F(y;u,v)

That is, we have
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ff F(y;~,~) d~d~
Quv

(3.5 )

The interchange of summation and integration in the derivation of (3.5) is

possible since only Xpq(~'~) depends on (~,~). But Xpq(~'~) is non-zero

(namely of unit magnitude) only when (~,~) £ Qpq' so the integral over Quv is

non-zero only when quad Qpq is quad Quv • In terms of the Kroneker delta

symbol,

if k = 0

if k *' 0 ,
(3.6)

the second line of the derivation leading to (3.5) becomes

rr
p q

I
F(y;p,q) n

uv

1= F(y;u, v} sr
uv

n = F(y;u,v) ,uv

where we have noted that the solid angle of quad Quv is just

nuv 0.7>

Thus (3.5) and (3.4) constitute a transform pair which respectively carry a

function of (~,~) into a function of (u,v), and conversely.
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c. Discretization of the Radiative Transfer Equation

We are now prepared to apply the quad-averaging operator (3.3) to the

entire radiative transfer equation (2.8); the result will be the quad-averaged

version of the equation. Eq. (2.8) written in terms of (~,~) is

where x S y S z and (~,~) £ _. Let us now consider, term by term, the effect

on (3.8) of quad-averaging.

(i) The derivative term

On the left hand side of (3.8) we have

1 II t~ dN(y;~'~~ d d~ = _I_ I d~ I d~t~ dN(Y;~,~~
n dy ~ n dyuv Quv uv t1~ t1~u v

~ (2) ~ (2)
1

u v
d~t~ dN(y;~, ~~= I d~ In dy

,
uv ~ (1) ~ (1)

u v
(3.9)

where ~u(I), ~u(2) and ~v(I), ~v(2) are the bounding ~ and ~ values,

respectively, of quad Quv • Thus t1~u = ~u(2) - ~u(l) and

t1~v = ~v(2) - ~v(I). The continuous radiance N(y;~,~) is replaced by its

approximating step function form using (3.4), so that (3.9) becomes
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1
= ---nuv

dN(y;u,v) 6c\l
dy v

~ (2)
u

J
~ (1)

u

= -
1

g
uv

dN(y;u,v) 6e1l ~[~2(2) - ~2(1)]
dy v u u

~[~2(2) - ~2(1)] = ~[~ (2) + ~ (1»)[~2(2) - ~ (1») _ ~ A~
u u u u u uu

where the overbar denotes the average ~ value over the quad or polar cap.

Thus we have the result

1
nuv

(3.10 )

Henceforth we will drop the overbar, and "~u" will always denote the average ~

value over the Quv quad or polar cap. Observe that at this stage of the

developments ~u can take on negative as well as positive values, just as can

its continuous counterpart~. Thus if Quv is in =_, then ~u < 0, and if Quv

1S in =+, then ~u > O. Observe that the ~u's come in signed pairs by virtue

of the same decompositions of =+ and =_ into quads. (Later, in (5.2) and

beyond, the ~u will be restricted to their positive subset.)
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(ii) The attenuation term

The first term on the right hand side of (3.8) yields, by definition, the

quad-averaged radiance, -N(y;u,v).

(iii) The scattering term

The integral on the right side of (3.8) is quad-averaged as follows:

1
nuv

=~nuv

=~
nuv

II dl!d41{(L
Q r suv

II dl!d41{L L
Q r suv

In the first step above, the l!'-41' integration over all directions n has been

rewritten as a sum of integrations over all quads comprising the unit

sphere. In the second step, the radiance has been replaced by its approximate

step function form over each quad. Owing to the step function Xpq (l!',41'), we

have a contribution to the l!'-41' integral only when (p,q) = (r,s), which

leaves just

II)(Y) II dl!d41 LLN(y;r,s) II d~'d41' p(y;l!',41';l!,41)nuv Quv r s Qrs

= II)(Y) LL N(y;r,s) _1 Sf dl!d41 II dl!'d41' p(y;l!',41';l!,41)nr s uv Q Qrsuv

= II)(Y) LL N(y;r,s) p(y;r,slu,v) ,
r s

where we have defined the quad-averaged phase function as
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p(y;r,slu,v) 1 SS dJ,ld. SS dp'd.' p(y;p' ,.' ;P,.)- g
uv Quv Qrsx S y S z

Qrs and Quv in =+ or --
r,u = 1, ••• ,m

(3.11)

s,v = 1, ••• ,2n

Note that p(y;r,slu,v) is well defined even if Qrs or Quv is a polar quad.

Although the discrete azimuthal angles .s and .v are not ~efined for the polar

quads, the continuous azimuthal angles .' and. are defined within the polar

caps, except at the poles themselves (J,I' = ±1, J,I = ±1), so that the

integrations shown in (3.11) can be performed. Following the notational

convention for polar cap values in (3.7), if Qrs or Quv are polar caps, we

write p(y;r,slu,v) respectively as "p(y;m,-Iu,v)" or "p(y;r,slm,-)". If Qrs

and Quv are both polar caps, we write* "p(y;m, -1m, -)".

Collecting the results of (i)-(iii) above, we obtain the quad-averaged

radiative transfer equation:

dN(y;u,v) ( ) () \ \ ( ) ( I)-J,lu dy = -N y;u,v + ~ y L L N y;r,s p y;r,s U,v
r S

(-1 S J,lu S 1)

u = 1, ••• ,m

v = 1, ••• ,2n

(3.12 )

* How these singular cases are handled 1n a computer program is explained in
§12.
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where I I represents a sum over all quads Qrs in :, evaluated as in (3.2). We
r s

now have a finite set of ordinary differential equations with respect to

optical depth y for the finite number of quad-averaged, or discrete, radiances

N(y;u,v). Equation (3.12) is thus the discrete geometric form of the

continuous geometric eq. (2.8).

d. Symmetries of the Phase Function

As discussed in §2a above, the isotropic volume scattering function and

hence the phase function p(y;~',,';~,,) depends at each y only on the angle

between the directions (~',~') and (~,~). The basic symmetry of

p(y;~',,';~,~) = p(y;~';~) is then given by the following equality

which holds whenever

where, as in (2.4)

(3.13 )

There are four immediate corollaries of (3.13) which are useful in practice.

Thus we have for p(y;~';~),

1) Invariance under interchange of ~',~:

33
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2) Invariance under interchange of ~',~:

(3.l3b)

3) Invariance under simultaneous sign changes of u',u:

(3.l3c)

4) Invariance under simultaneous shifts of ~',~; i.e., for all angles a,

As a special case of 4), set a = -~'. Then with the help of 2),

p(Y~U',~';u,~) = p(Y;U',O;u,~-~')

= p(Y;U',O;u,-(~-~'»

(3.l3d)

(3.l3e)

This shows that for fixed y, u', and u, p(Y;U',O;u,~-~') is an even

function of ~-~'. This observation is a basis for the cosine representation

of p(y;U' ,~';u,~) (cf. (4.11), (3.l3k), below, and (5.5a» which we shall use

in the reduction of the equation of transfer to spectral form.

In what follows we shall use properties 2)-4) to reduce the complexity of

the spectral form of the equation of transfer. The only property not used is

1) which is a form of reciprocity property (full reciprocity is obtained by

combining 1) and 2».
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The preceding symmetries are inherited by the quad-averaged form of the

phase function. To show these symmetries succinctly we adopt the following

conventions. If Qrs is in =+ or =_, with r = l, ••• ,m, then Q-r,s is in __ or

=+' respectively. More precisely, Q-r,s is the quad that is the mirror image,

in the equatorial plane of :, of the quad Qrs. Finally, shifting the

azimuthal index s in Qrs by an arbitrary integer a produces a new quad Qr,s+a

which is the quad Qrq whe.re q - (s+a) mod(2n). In other words we find q by

dividing s+a by 2n and taking the remainder. A zero remainder is identified

with 2n. Hence it follows that -s = (-s+2n) mod(2n) (see Fig. Sb, below, for

the case n = 12. Check, for example, that s+a = 22+4 = 26 mod24 = 2 and that

-s = -2 = (-2+24) mod(24) = 22.) With these preliminaries, the preceding

symmetries of p(y;~',~';~,~) take the following forms in the quad-averaged

context of the phase function. Each of the following symmetries may be proved

by using the corresponding property 1)-4) in (3.11) and reducing the result to

the desired form.

Thus we have for p(y;r,slu,v),

1)' Invariance under interchange of r,u:

p(y;r,s\u,v) = p(y;u,slr,v)

2)' Invariance under interchange of s,v:

p(y;r,slu,v) = p(y;r,vlu,s)

3)' Invariance under simultaneous sign changes of r,u:

P(YiC,s\u,v) = p(Yi-r,s\-u,v)
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4)' Invariance under simultaneous shifts of s,v, i.e., for all integers a,

p(y;r,s\u,v) = p(y;r,s+alu,v+a)

From 4)' and 2)' we find

p(y;r,slu,v) = p(y;r,Olu,v-s)

= p(y;r,Olu,-(v-s»

(3.13i)

(3.13j)

Since the working range of s and v is 1, ••• ,2n, we can either replace ° by 2n

in (13.3j) or using 4)' again, write the preceding equalities as

p(y;r,s/u,v) = p(y;r,llu,(v-s)+l)

= p(y;r,llu,(s-v)-l) (3.13k)

e. Discretization of the Surface Boundary Equations

The surface boundary conditions (2.9) and (2.10) on the radiance field

are discretized in the same manner as the radiative transfer equation.

Consider, for example, (2.9):

(3.14)

+ J N(x;~',~') r(x,a;~',~';~,~) d~'d~'

-+
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The left side of (3.14), when quad-averaged, yields by definition the quad-

averaged radiance. The first term of the right side of 0.14) becomes

1
nuv

after rewriting the integral over =_ as a sum of integrals over all quads Qrs

in =_, and after replacing N(a;u',~') by its approximate step function form

(3.4). The last expression can be reordered to get

1111 N(a;p,q) ff-
r s p q t uv

Observe that the u'-~' integral involving Xpq integrated. over Qrs 1S non-zero

only if (p,q) = (r,s); so we have left just

11 N(a;r,s) frf-
r s t uv

= 11 N(a;r,s) t(a,x;r,slu,v) ,
r s

0.15 )

after defining the quantity in braces to be the quad-averaged transmittance:

t(a,x;r,slu,v)
1

- Q
uv
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This transmittance is therefore for the downward quad-averaged radiance

incident at level a of boundary X[a,x]. The second term on the right side of

(3.14) is treated in an exactly analogous manner to obtain a result

corresponding to (3.15). Collecting these results, we have the discrete

geometric boundary condition at level x of boundary X[a,x]:

N(x;u,v) = LLN(a;r,s) t(a,x;r,slu,v) + LLN(x;r,s) r(x,a;r,slu,v)
r s r s

. (3.17)

which holds at level x of X[a,x] for all quads Quv in _. Note how the order

of a,x in t(a,x;r,s\u,v), for example, shows that the (r,s) pairs in the first

sum are over Qrs in =_, while Qrs varles over =+ in the second sum. A similar

equation is obtained from (2.10), namely

N(a;u,v) = LLN(x;r,s) t(x,a;r,slu,v) + LLN(a;r,s) r(a,x;r,slu,v)
r s r s

(3.18)

which holds at level a of X[a,x] for all quads Quv in ~+.

Just as in the continuous equations (2.9) and (2.10), the four transmittance

and reflectance functions in (3.17) and (3.18) are considered known as regards

the solution procedure for the radiative transfer equation. We shall consider

in §9 the numerical computation of these quantities.

We observe that the continuous transmittance and reflectance functions in

(2.9) and (2.10) have units of steradian- 1 , whereas their discrete forms seen

in (3.17) and (3.18) are dimensionless. The continuous rls and tIs are

densities, showing how much incident radiance is reflected or transmitted per

steradian. The discrete rls and tIs are integrated densities, showing how

much quad-averaged radiance is reflected or transmitted between particular
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quads Qrs and Quv • The magnitudes of the discrete forms depend explicitly on

the solid angles of the quads, as is evident from the defining equation

(3.16) •

The quad-averaged phase function of (3.11) and the quad-averaged surface

reflectances and transmittances of (3.16) all have the same mathematical form,

namely f(r,slu,v) where we write in analogy to (3.11):

£(r,s lu,v) :: a1

uv
Qrs' Quv in =

(3.19 )

Here f(~',.';~,.) is any phase, surface reflectance or surface transmittance

function. Corresponding to f(~',.';~,.), there is a step function

f(~',.';~,.), which we use formally to repl.ce f(~',.';~,.), namely

f(~',.';~,.) :: ~ ~ ~ ~
r s u v

(lJ',.'),(~,.) £ :=

X (~' .') X (~.) f(r,slu,v)
rs' uv' nrs

(3.20)

As can be verified, substituting f(~',.';~,.) into (3.19) we obtain

f(r,slu,v). This is comparable to the verification of (3.3). Theref~re,

relations (3.19) and (3.20) are a transform pair which carry a function of two

directions back and forth between the discrete and continuous representations.

Note that for any directions (~',.') in Qrs and (u,.) in Quv ' (3.20)

implies that

= f(r,slu,v)
nrs
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for all (~',,') in Qrs and (~,,) in Quv • This result is also obtained

approximately from (3.19) if 0rs and 0uv are sufficiently small so that

f(~',,';~,,) can be taken as constant over the quads Qrs and Quv • Once again

we see the implications of the quad-averaging operation on the directional

resolution of a physical quantity. Note also that if we wish to numerically

compare any two-directional quad-averaged quantity (e.g. r(a,x;r,s/u,v» with

its continuous counterpart (in this case, r(a,x;~',,';~,,) for (~' ,.') in Qrs

and (~,,) in Quv >' then the r~le in (3.21) says we must first convert the

dimensionless, quad-averaged quantity f(r,slu,v) into its approximate,

dimensional, continuous counterpart by dividing f(r,slu,v) by 0rs.

f. Symmetries of the Surface Boundary

The discussion of the previous section is valid for completely arbitrary

rand t functions. However the actual model of a wind-blown sea surface which

we adopt for the natural hydrosol model is based on a two-dimensional

probability distribution of the wave slopes in the form (cf., H.O., Vol. VI,

p. 148):

(3.22)

Here ~u and ~c are the wave slopes in the upwind and crosswind directions,

respectively; and 0 2 ~ a U and 0 2 = a U are the variances of ~u and ~c' where
u u c c

U is the wind speed. p(~u'~c) 1S the probability density of occurrence of a

wave facet with slopes ~u and ~c. For unequal proportionality constants,

au * ac ' the wave slope distribution is anisotropic. Measurements indicate

that au = 3.16 x 10- 3 sec m- 1 and a e = 1.92 x 10- 3 sec m- 1 , so aulae = 1.65.

With, = 0 chosen as in Fig. 1 to be the downwind direction, the distribution
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(3.22) displays the azimuthal symmetry of an ellipse with its major aX1S in

the upwind-downwind direction and its minor axis 1n the crosswind direction.

In order to exploit the elliptical symmetry of the water surface, recall

from §2 that a direction £ = (~1'~2'~3) has the components ~l

~2 = (1-~2)~ sin., ~3 = ~ in the wind-based coordinate system. If a downward

directed light ray £' is reflected by a wave facet into the upward direction

~, then it follows from the laws of geometrical optics that the wave facet

must have the slopes

t u = -(~1-~~)/(~3-~;)

t c = -(~2-~;)/(~3-~;)·

(See Preisendorfer and Mobley, 1985 for a detailed development of these

relations.) Then the argument of the exponential in (3.22) can be written

1
02"

u

(~2-~;)2

(~3-~;)2

This function clearly has the symmetries
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q(~',~';~,~) = q(~',2w-~';~,2w-~)

= q(~' ,w-~';~,w-~)

(3.23a)

(3.23b)

(3.23c)

for -1 ~ ~' ~ 1 and -1 ~ ~ ~ 1, and for the azimuthal arguments in the ranges

o ~ ~' < 2w and 0 ~ ~ < 2w. These symmetries are associated with the

symmetries of an ellipse and are illustrated in Fig. Sa.

Since the symmetry properties of the reflected radiance are entirely

determined by the symmetry properties of the water surface itself, via the

underlying wave-slope distribution (3.22), it follows that r(a,x;~',~';~,~)

also obeys the elliptical symmetries of (3.23). Similar examination of the

other three possibilities for reflected and transmitted light leads to the

same elliptical symmetry properties of the ,',~ variables in r(x,a;~' ,,';~,~),

t(a,x;~',~';~,~) and t(x,a;~',~';~,~).

The symmetries of (3.23) in turn imply that the quad-averaged

reflectances and transmittances given by (3.19) obey the corresponding

symmetries

f(r,slu,v) = f(r,2n+2-slu,2n+2-v)

= f(r,n+2-slu,n+2-v)

= f(r,n+slu,n+v) •

(3.24a)

(3.24b)

(3.24c)

for all Qrs and Quv in E and specifically for r,u = 1, ••• ,m and

s,v = 1, ••• ,2n. The azimuthal arguments in (3.24) are computed modulo 2n, on

the range 1, ••• ,2n. Figure 5b illustrates the symmetries (3.24) for the case

of 2n = 24 azimuthal quad divisions. The indexing of (3.24) is not as lucid
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Figure 5.--Azimuthal symmetries of the reflectance and transmittance functions
looking downward at the air-water surface. Panel a represents the
continuous case, whose symmetries are expressed by (3.23). ~I at ~I

represents an incoming light ray, and ~ at ~ represents the ;eflected or
transmitted ray. The four pairs of similarly drawn vectors all have the
same reflectance and transmittance. Panel b represents the discrete case
for 2n = 24. The symmetries are expressed by (3.24). s represents a
quad Q s containing incoming radiance N(y;r,s) and v represents the quad
Q re~eiving the reflected or transmitted radiance N(y;u,v). The four

uy . '1 1 1pairs of Siml ar y shaded Q s,Q quads a 1 have the same quad-averaged. r uv
reflectances and transmittances.
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as the arguments of (3.23), owing to the azimuthal numbering of quads from ~

to 2n (instead of from 0 to 2n-l).* Nevertheless, a quad indexed by 2n+v 1S

the same as the quad indexed by v. For example, the quad indexed by 1 is the

same as that indexed by 2n+1. A moment's contemplation of Fig. 5b, moreover,

shows that quad s, centered at ~s' is the symmetric partner, about the wind

direction, of quad 2n+2-s, centered at ~2n+2-s = 2~ - ~s.

We also note in Fig. 5b that the directions ~s = ~/2 (s = n/2 + 1) and

~s = 3w/2 (s = 3n/2 + 1) are located at quad centers. Having quads centered

on the directions at right angles to the wind (at ~l = 0) enables us, in

applications of the NHM, to place the sun (or other incident light source) at

right angles to the wind if we wish to compare, say, the differences in the

radiance distributions generated by incoming solar rays parallel to and

perpendicular to the wind direction. This is our reason for choosing n

even. If n is odd, then the directions at ~/2 and 3w/2 lie on the boundary

between two quads, which is not as convenient.

The symmetries of (3.24) imply that the quad-averaged reflectance and

transmittance functions need be computed and stored for Qrs only in the "first

quadrant" of the unit sphere, i.e., for azimuthal indexes s = 1,2, ••• ,¥+1 only

(here is where it is convenient to have n even) and for r = l, ••• ,m: all

other possible values can be obtained from symmetry, as is easily seen in

Fig. 5b. Thus the elliptical symmetry of the wave slope distribution (3.22)

gives a factor of four reduction in the computation and storage requirements

involved with processing the rand t functions. However, as seen in (3.24),

the discrete indexing conventions are somewhat cumbersome. We therefore

* The numbering of quad azimuth indexes from 1 to 2n instead of from 0 to 2n-l
(as would be instinctively done by a mathematician) was dictated by Fortran
programming language restrictions at the time the associated computer code
was written.
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choose to retain the general notation "f(r,s\u,v)", with s and v running over

their full ranges s = 1, ••• ,2n and v = 1, ••• ,2n, in equations such as (3.17)

qr (3.18). The symmetry relations (3.24) will, however, be used at the

appropriate time to introduce simplifications in the spectral model.

g. Discretization of the Bottom Boundary Equations

The bottom boundary condition (2.11), or

is discretized in the same manner as the surface boundary conditions to obtain

the following result which holds at level z of X[z,b] for all Quv in

N(z;u,v) = LLN(z;r,s) r(z,b;r,slu,v) •
r s

: .-+.

(3.25)

For a matte bottom, r(z,b;~',~';~,~) is given in analytic form by (2.12)

which, when substituted into (3.19), glves
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r(z,b;r,slu,v} 1 ff d\Jd41 ff d"'d~f :- "J= 0uv Quv Qrs

\J (2)r r
=

___1_
0 ~41' f \J'd\.l'

'If Q uv 5 \J (l)uv
r

r
~t:(2) ":OJ= ~41'

'If S

r

~tr(2) + "rOJ tr(2) -"rOJ= ~41'
'If S

r
= ~41' \J ~\.I'

11' S r r

Therefore,

r(z,b;r,slu,v} =
r

(J.26)

for Qrs in =_ and Quv in =.. It is to be noted that \.I r < 0 since Qrs in =_.
Thus the matte reflectance is a positive-valued function, the magnitude of

which depends explicitly on the quad solid angle 0rs'

The matter of the evaluation of the air-water surface transfer functions

1S considerably more complex than the bottom transfer function and will be

taken up in §9. Moreover, the reflectance of the lower boundary of a medium

resting on an infinitely deep water layer will be considered in §lO.

We have now arrived at level 2 of Fig. 2, 1n that we have developed a

finite set of discrete geometrical model equations for the quad-averaged

radiances.
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4. FOURIER POLYNOMIAL ANALYSIS

In order to recast the discrete geometrical equations into a discrete

spectral form, we need several results from the theory of Fourier analysis of

discrete functions. This section collects the needed formulas; they will be

applied in §S.

a. Discrete Orthogonality Relations

We first present several formulas involving trigonometric functions whose

arguments are the discrete azimuthal angles ~v defined in (3.1). Let

k,l = O, ••• ,n. Then

2n
L

v=1
cos(k~ ) cos(l~ )

v v

if k * 1
if k = 1 = a or n
if k = 1, 1 = 1, ••• ,n-1.

Using the Kronecker delta symbol (3.6), these results can be condensed as

2n
L cos(k~ ) cos(l~ ) = n(ok+1 + 0k-1 + 0 ) . (4.1)

v=l v v kH-2n

Likewise we have

2n

{~
if k * 1

L sin(k~ ) sin(l~ ) = if k = 1 = a or nv vv=l if k = 1 1 = 1, ••• ,n-1

which can be written

Finally we note that, for all k,l = O, ••• ,n,
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2n

L
v=l

cos(k~ ) sin(l~ ) = 0 •
v v

§4

(4.3)

After application of trigonometric identities and (4.1)-(4.3), we obtain the

following formulas for k,l = 0, ••• ,n-1:

and

2n

L
v=1

2n

L
v=l

cos(k~ ) cosl(~ -~ )
v s v

sin(k~ ) cosl(~ -~ )
v s v

(4.4)

(4.5)

b. Fourier Polynomial Formulas

Let f v = f(~v) be any discrete function of the azimuthal angle ~, where

the ~v' v = 1, ••• ,2n, are given by (3.1). Then f v has the Fourier polynomial

representation

f =v

n
L [£1(1) COS(l~v) + £2(t) sin(l~ )]

1=0 v
(4.6)

v = 1, ••• ,2n

where £1(1) and £2(1) are the spectral amplitudes, which we shall determine

below. This is the formula by which we will transform the discrete

geometrical Natural Hydrosol Model into discrete spectral form. We shall see

that the number of values of the discrete function f v (namely 2n) is

determined exactly by n+l generally nonzero cosine terms and n-1 generally

nonzero sine terms 1n (4.6). The cos(t~v) term with t = 0 gives a
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constant, £1(0), which is the average of f v over v = 1, ••• ,2n. Moreover, the

cos(n$v) term gives the "two-point oscillation," the wavelength of which is

2d$ = 2~/n. This shows that the shortest resolvable wave in the Fourier

representation is directly determined by the fineness of the directional

resolution d$ in the quad-averaging. Using the representation (4.6) for f v '

which exactly reproduces f v ' will introduce no further loss of radiance detail

in the azimuthal direction when N(y;u,v) replaces f v • Since sin(l$v) is

identically zero if l = 0, or l = n, the amplitudes £2(0) and £2(n) may be

arbitrarily chosen. We therefore will define £2(0) = £2(n) _ 0, which will be

convenient for bookkeeping purposes in the computer code.

The cosine amplitudes £l(l) are determined by multiplying (4.6) by

cos(k$v) and summing over v to find

2n
1:

v=l
f cos(k$ ) =

v v

n

1:
l=O

n
+ 1:

1=0

Applying the orthogonality relations (4.1) and (4.3) yields

2n
1:

v=l
f cos(k$ ) =

v v

Replacing the index k by l and defining

if l = 0 or l = n

if l = l, ••• ,n-l
(4.7)

we can write
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(4.8)

1 = O, ••• ,n

Expanding (4.8) gives

1
2n

£ 1(0) = ~ f2n v=l v

1
2n

£1(2.) = ~ f cos(2.4> )
n v=l v v

1
2n

f 1(n) = ~
(_l)v f2n v=l v

(the average of f )
v

if 2. = 1, ••• ,n-1

The generally non-zero sine amplitudes £2(2.) are determined for 2. = 1, ••• ,n-1

in a like manner by multiplying .sin(k4>v) into (4.6), summing over v, and using

(4.2) and (4.3) to find

f sin(2.4»
v v

(4.9)

1 = 1,2, ••• ,n-1.

Here Y2. is defined simi larly to €2. in (4.7):

Cif 2. = o or 2. = n

Y2. - nO - 622, - 6 ) = (4.10)
22.-2n if 2. 1, ••• ,n-1=

Note that Yo = Yn = 0 and that these values, which will be of use in later

developments, do not occur in (4.9). Moreover, in the allowed range of 1 in

(4.9), we have Y2. = €2. = n. Expanding (4.9) and recalling our decision to set

£2(0) = £2(n) = 0, gives

50



§4

£2(0) =0

1
2n

£2(1) =- L f sin(l~ )
n v=l v v

£2(n) = 0 .

if 1 = 1, ••• ,n-l

Equations (4.6)-(4.10) bear a resemblance to the well known Fourier series

representation of a continuous function of ~, although the two-point

amplitudes £i(n) and £2(n) are peculiar to the discrete case.

Consider next a function that is a linear combination of COS1(~s-~v)

terms:

_ g[cos(~ -~ )] =
s v

n

L
1=0

(4.11)

This form is motivated on the basis of (3.13k). Upon multiplying gsv by

cos(k~v)' summing over v, applying (4.4) and recalling (4.7), the amplitudes

g(l) of gsv are defined to be

Since gsv depends only on the difference ~s-~v rather than on ~s and ~v

(4.12)

separately, we can, for example, anchor ~s-~v to ~i = 0, i.e., set s = 1 in

(4.12). This will be done later in (5.5b).

We finally consider the representation of an arbitrary discrete function

of two direction variables ~s and ~v. Let hsv = h(~s'~v); s,v = 1, ••• ,2n.

Then we expect that hsv is of the form
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n n
h = L L h11 (k,1) cos(kcjl ) cos(1cj1 )sv k=O 1=0 s v

n n
+ L L h12 (k,1) cos(kcjl ) sin(1cj1 )

k=O 1=0 s v

(4.13 )
n n

+ L L h21 (k,1) sin(kcjl ) cos(1cj1 )
k=O 1=0 s v

n n
+ L L h22 (k,1) sin(kcjl ) sin(1cj1 ) .

k=O 1=0 s v

To find the amplitudes h11 (k,1),.for example, we multiply (4.13) by

cos(k'cjIs) COS(1'cjIv) and sum over s and v to obtain

2n 2n
L L

s=1 v=l
h cos(k'cjI) cos(k'cj1 ) =sv s v

n

L
k=O

+ 3 other similar terms.

<DOCk'.) lIn
J~=1

Using (4.1)-(4.3) formally yields the first of the following defining equations:

1 2n 2n
h11 (k,1) - L L h cos(kcjl ) cos(1cj1 )

EkE1 s=1 v=l sv s v

1 2n 2n
h12 (k,1) - -- L L h cos(kcjl ) sin(lcj1 )

EkY1 s=l v=l sv s v

(4.14)

1
2n 2n

h21 (k,1) - L L h sin(kcjl ) cos(lcj1 )
YkE1 s=1 v=1 sv s v

1 2n 2n
h22 (k,1) - L L h cos(kcjl ) sin(1cj1 )

YkY1 s=1 v=l sv s v
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Analogous operations readily yield similar formulas for the remaining three

amplitudes as shown in (4.14). The pattern of the formulas follows from and

builds precisely on the one-dimensional case: see (4.8) and (4.9) for the

allowed ranges of k and 1. Note that cosine amplitudes have £1' while sine

amplitudes have Yl normalizers, and that £1 = Yl = n in the common allowed

ranges (k,l = 1, ••• ,n-l). The arbitrary zero amplitudes £z(O), £z(o) now have

their counterparts in h1Z (k,1) =hZ1 (k,1) =hzz (k,l) = 0 for k and 1 equal to a

or n, as the "2" subscript on h requires. Thus, for future reference we

summarize these singular values as

h1Z (k,0) = h1Z (k,n) = 0 , k = O, ••• ,n

h21 (0,f.) = h21 (n,1) = 0 , 1 = O, ••• ,n
(4.14a)

h22 {0,0) = hZ2 (n,n) = 0

h22 (n,0) = h2Z (0,n) = 0

It will turn out that when (4.14) and (4.l4a) are applied to the air-water

surface's transfer functions in §5b below, the amplitudes h12 (k,1) and h21 {k,f.)

will be identically zero owing to certain symmetries of the surface.

We now have at our disposal all of the tools necessary for converting the

discrete geometrical Natural Hydrosol Hodel into a discrete spectral form.

c. Rayleigh's Equality

A check on the spectral parts of the computer code can be made using a

Rayleigh-type equality, which relates the squares of the values f y to the

squares of their amplitudes £1(1) and £2(1.). To derive the present form of

Rayleigh's equality, we evaluate 2
y

fZ in terms of the amplitudes, as follows:
y
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1:
v=l

f2 =
v

§4

=
n n

1: 1:
k=O 1I.=0

2n

1:
v=l

cos(k, ) cos(lI., )
v v

+ 3 similar terms.

The sums over v are evaluated by (4.1)-(4.3). The four preceding summation

terms reduce to two:

2n n n

1: f2 = 1: 1: £l(k) £1(1I.) n(6k+1I. + 6k-1I. + 6 )
v=l v k=O 1I.=0

k+1I.-2n

n n
+ 1: 1: £2(k) £2(1I.) n(6 k_1I. - 6k+1I. - 6k+1I.-2n) .

k=O 1I.=0

Only the k=lI. terms remain, and thereby we find the desired form of Rayleigh's

equality:

2n

1:
v=l

f2 =
v

(4.15)

Expanding (4.15) and explicitly evaluating Ell. and YlI. gives an alternate useful

form

1 2n
\ f2

2n l. v
v=l

(4.16)

A Rayleigh's equality can be derived for the two-dimensional case by

evaluating 1: 1:
s v

h 2 •
sv

The result corresponding to (4.15) is
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5. THE NATURAL HYDROSOL MODEL IN DISCRETE SPECTRAL FORM

a. Transforming the Radiative Transfer Equation to Spectral Form: The Local
Interaction Equations

The discrete geometric transfer equation shown in (3.12) can be rewritten

as separate equations for upward radiances, N+(y;u,v) where Quv is in =+, and

for downward radiances, N-(y;u,v) where Quv is in =_. The + and - superscripts

are now added to the radiances to denote which hemisphere, =+ or =_, contains

Quv (recall the discussion leading to (3.2». In a similar fashion, a general

function of (r,s) and (u,v) would require two superscripts. Thus for the phase

function p(y;r,slu,v) we would write

"p++(y;r,slu,v)" for p(y;r,slu,v) if Qrs in =+ and Quv in =+'

"p+-(y;r,slu,v)" for p(y;r,slu,v) if Qrs 1n -+ and Quv in =-,

"p-+(y;r,s/u,v)" for p(y;r,slu,v) if Qrs in -- and Quv in =+,

"p--(y;r,slu,v)" for p(y;r,s/u,v) if Qrs 1n -- and Quv 1n --.

The isotropy of the phase function as expressed by (3.l3h) implies that

and

Thus only a single superscript is needed, and we shall write

and

" +(. I )"p y,r,s u,v

(S .1)

" -(. I )"p y,r,s u,v for

S6
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where we have recalled the azimuthal symmetry of the quad-averaged phase

function. With th~ superscripted notation, the quad-averaged radiative transfer

equation of (3.12) takes its two-flow form:

;11
u

+
d!r(y;u,v) =

dy
-~(y;u,v) + w(y) LLN+(y;r,s) p±(y;r,slu,v)

r s
(5.2)

+ w(y) ~ ~ N-(y;r,s) p;(y;r,slu,v)
r s

where now l1u > 0 and

u,r = 1, ••• ,m

v,s ~ 1, ••• ,2n

and ttL Lit represents sums over hemispheres indicated by the superscript on N.
r s
Equation (5.2) is a coupled pair of differential equation systems. The

up~ard sys~e. is obtained by taking all upper signs together. This system

describes the evolution with depth y of the upward radiances H+(y;u,v). The

down~ard sys~e. is obtained by taking all lower signs together, and describes

the evolution of downward radiances N-(y;u,v). Note particularly that l1u > 0

for u = 1, ••• ,m for both upward and downward systems; the negative values of ~u

seen in (3.12) are now incorporated in the +~u notation of (5.2).

The system (5.2) is in the form of the local in~erac~ion principles or the

local form of the principles of invariance. See Preisendorfer (1965, p. 103)

and R.O., Vol. III, p. 4; Vol. II, p. 295. This pair of systems of differential

equations can be solved as it stands using boundary conditions (3.17), (3.18)

and (3.25) and applying the general tools and procedures of §6 and §7, below,

leading to the various reflectance and transmittance matrices of the body of the
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water mass. However, as noted in our introductory remarks, the computation and

storage loads accompanying (S.2) can be cut considerably by first resolving the

N±(y;u,v} into their azimuthal spectral amplitudes, and finding the spectral

counterparts of (S.2).

The derivation of the spectral form of (S.2) begins by noting that, for

+fixed y and u values, N-(y;u,v} as a function of v can be represented by a

trigonometric polynomial of the form (4.6)*:

(S.3)

a ~ x ~ y ~ z ~ b

u = l, ••• ,m

v = 1, ••• ,2n

+We have added arguments (y;u) to the cosine amplitudes for radiance, A1(y;u;I.},

and to the sine amplitudes for radiance, A1(y;U;1}, in order to show their full

functional form as needed in the computations. These amplitudes, for fixed y

and u, are computed from equations (4.8) and (4.9) given the v-dependence of

+N-(y;u,v}. Specifically, we have, for the case of quads:

+ 1
2n +

A~(y;u;l} = L r(y;u,v} cosl. 1 = O, ••• ,n
&1. v=l v

u = l, ••• ,m-l

+ 1
2n +

A'2(y;u;l} = - L r(y;u,v} sinllj1 I. = l, ••• ,n-l
Yl v=l v

u = l, ••• ,m-l

(S.3a)

(S.3b)

* Theoretical works on radiative transfer theory (e.g., Preisendorfer, 1965 or
1976) sometimes use the notation "A (y,±;u;l)" instead of "A±(y;u;I.}", that
is, they try to keep a basic symbolPsuch as Ap free of avoid~ble
superscripts. The present notation is chosen so that the arguments of a
function, here y, u and 1, show only those independent variables which the
associated FORTRAN computer code references in DO-loops.
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Of particular interest is the ~=O case for the cosine amplitude. This will

serve to define a generalization of the classic two-flow irradiance model (in

§8). In this case (5.3a) reduces to

u = l, ••• ,m

+ 1 IA-1{y·,u;O) =~=-~
Q(Z) Z

u

+
tr{y;~.> dQ{.Q (5.3c)

where Zu is the zone comprising all quads Quv ' v.= 1, ••• ,2v for u = l, ••• ,m-l;

and O{Zu) is the solid angle content of Zu' namely O{Zu) = 2n 0uv. For u = m,

Zm is the polar cap. +Thus AT{y;u;O) is then simply the zonally averaged

radiance for zone Zu' or cap Zm. The classic two-flow irradiance model has only

one "zone": the upper or lower hemisphere of::. Hence the system of zero-mode

equations (5.23) below will serve to check the accuracy of the classic

irradiance model. For the polar cap case in general, where u = m, there 1S by

definition no dependence of radiance on the azimuthal angle .v' and an expansion

like (5.3) is formally trivial. To retain the useful notation in (5.3),

however, we recall the notational convention in (3.2) and define

+ + 1 I +
A"i{y;m;O) - tr{y;m,·) (= n{z ) tr{y;.£,) dO{.£,) , as 1n (5.3c)

m Zm

+
A"i(y;m;l.) - 0 , I. = 1, ••• ,n (5.4)

and

+
A'2{y;m;l.) - 0 , ~ = 0, ••• ,n .

Therefore Eq. (5.3) may be regarded as holding for ~ll quads and caps, if we

remember that all amplitudes for polar caps are by definition zero, except the

cosine amplitude for the zero azimuthal wave number.
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Continuing the preliminary observations leading to the spectral form of

(S.2), we note that, for fixed y, rand u, where r * m and u * m, the quad­

averaged phase functions p±{y;r,slu,v) can, by the isotropy conditions

(J.lJe,k), be written as linear combinations of cost{~s-~v)' s,v = 1, ••• ,2n.

Thus p±{y;r,slu,v) can be represented by a series of the form (4.ll), namely

n

L
t=O

(S.Sa)

r,u = 1, ••• ,m

s,v = 1, ••• ,2n.

The amplitudes p±{y;r,u;t) are defined by an equation of the form (4.l2), namely

(S.Sb)

We next consider the four cases which occur 1n numerical computations of

the amplitudes p±{y;r,u;t). Each of these cases 1S evaluated by specializing

the form of (S.Sb). They are as follows:

1) Ouad-to-Ouad Case (u,r = l, ••• ,m-l). With s = 1, (S.Sb) becomes

(S.6a)
2n +
L p-{y;r,llu,v) cos{t~ )

E t v=1 v

+ 1p-{y;r,u;t) _

t = O, ••• ,n

2) Cap-to-Ouad Case (r = m; u = l, ••• ,m-1). Then (S.Sb) becomes
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+p-(y;m,u;lL) _ 0 , lL = l, ••• ,n (5.6b)

3) Ouad-to-Cap Case (r = 1, ••• ,m-l; u = m). Then (5.5b) becomes

+p-(y;r,m;O)

+p-(y;r,m;r.) _ 0 , I. = 1, ••• ,n (5.6c)

4) Cap-to-Cap Case (r = m, u = m). Then (5.5b) becomes

+p-(y;m,m;O)

+p-(y;m,m;l.) _ 0 , I. = 1, ••• ,n (S.6d)

Observe in (5.6a,b,c) that s or v has been set to 1, as the case may be. This

1S permissible by virtue of the dependence of p±(y;r,slu,v) on v-s rather than

on v and s separately (see (3.13k».

We turn next to the decomposition of (5.2) into its spectral components.

We split the task into two main parts: (i) the case of a non-polar-quad output

radiance N±(y;u,v), u = 1, ••• ,m-l; and (ii) the case of the polar cap· radiances

N±(y;m,.).

For case (i), we now use the radiances and phase functions from (5.3) and

(5.5a) to substitute into (5.2). The sum over quads in (5.2) must now be

explicitly evaluated as 1n (3.2). For the present case of a non-polar output

quad, i.e., u = 1, ••• ,m-l, the radiative transfer equation (5.2) becomes
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(5.7)

m-1
20 0 E

.;0('. j CI +
+ tIl(y) ~ ~ ~ A:(y;r;l) COS(l~s)

+ cosk(cP -cP )+ A2(y;r;l) p-(y;r,u;k)
r=1 s=1 l=O S k=O s v

+ +
+ l.Il(y) A1(y;m;0) p-(y;m,u;O)

m-1
20 0 E

.;0('. j CI+ l.Il(y) ~ ~ ~ A~(y;r;l) CO~(l~s) + A;(y;r;l.) A+(. • k) cosk(cP -~ )p y,r,u,
r=1 s=1 l=O s k=O s V

+ tIl(y) A~(y;m,o) A+(. .0)p y,m,u, •

The second and fourth terms on the right side of (5.7) each have the form

m-1 n n ~20l.Il(y) ~ ~ ~ A1(y;r;l.) p(y;r,u;k) ~ co.('. ) co.k(. -. ~.
r=1 1.=0 k=O s=1 . s s v

m-1 n n

C
20

+ l.Il(y) ~ ~ I A2(y;r;l.) p(y;r,u;k) ~ sin(l~ ) co.k(. -. j • (5.8)
r=1 l=O k=O s=1 s s v

Application of (4.4) and (4.5) to the sums over s gives

m-1
tIl(y) ~ ~ ~ A1(y;r;l) p(y;r,u;k) n(ok+l + 0k-l + 0k+l-2n) cos(l~v)

r=1 I. k

m-1
= l.Il(y) ~ ~ A1(y;r;l) p(y;r,u;l) n(1 + 02l + 02l-2n) cos(l~ )

r=1 l v

m-1
+ l.Il(y) ~ ~ A2(y;r;l) p(y;r,u;l) n(1 - 02l - 02l-2n) sin(l~ ) •

r=1 l v
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Thus (5.7) becomes

+l!
u

n m-l +
+ w(y) L L A;(y;r;t) p-(y;r,u;t) n(l - 6

21 - 0 ) sin(l. )

1=0 r=l
21-2n v

n m-l
+ w(y) L L A~(y;r;t) p+(y;r,u;t) n(l + 02t + 6 21- 2n ) cos(l. )

t=O r=l v

n
+ w(y) L LA;(y;r;t) p+(y;r,u;t) n(l - 621 - 621- 2n ) sin(t. ) •

1=0 r v

The polar quad terms are coefficients of COS(I.v ) for t = 0, and as such they

can be incorporated into the other summations. Now recalling £1 of (4.7) and

Yt of (4.10), the preceding equation can be written
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n 1=0
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+
dA"2(y;u;l.)

cos(l.cIl ) +v dy

n

L
1=0

(5.10)

n L1

+

+
+ + ~+ lIl(y) L L Al (y;r;l) p-(y;r,u;l.) &1. + A1 (y;m;1) p-(y;m,u;1)61. cos(l.cIl )

1=0 r=l v

n

~l +
.p±( y; r. u; 1)y~+ lIl(y) L A2(y;r;l.) sin(l.cIl )

1.=0 r=l
v

n

~Il P'(Y;"'U;l).~+ lIl(y) L A~(y;r;1) p+(y;r,u;l.) & .. + A~(y;m;l) cos(1cP )
1=0 r=l v

n

~l p'(Y;r'U;l)Y~+ w(y) L A;(y;r;l.) sin(1c1l ) •
1.=0 r=l v

We now take advantage of the linear independence of coS(1c1l y ) and sin(1c1l y )

to observe that this last equation must hold true for each I. value I. = O, ••• ,n

for the Al and for I. = 1, ••• ,n-1 for the A2 amplitudes separately.

Accordingly, collecting together and equating coefficients of cos(1c1l y ) in.

(5.10) gives
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m-l
+ W(y) &1 L A~{y;r;1) p+(y;r,u;1) + w{y) °1 A~{y;m;l) p+{y;m,u;1)

r""l

where x S y S z

u = l, ••• ,m-l

1 "" O, ••• ,n

and ~ > O.u

Collecting together and equating coefficients of sin(1~v) on each side of

(5.10) for 1 = l, ••• ,n-l in (5.10) gives a similar equation for the sine

ampli tudes:

(S.ll)

where x S y S z

u"" l, ••• ,m-l

1 = l, ••. ,n-l

and ~ > o.u

m-l +
+ w{y) L +

Y1 A2 (y;r;1) p-(y;r,u;1)
r=l

m-l
+ w{y) Y1 L A~(y;r;l) ~+( 0 01)P y,r,u,

r=l

(5.12)
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Since A1(y;u;1) = 0 when t = 0 or t = n (recall Eq. (4.9) and the comments

following (4.6», we can regard (5.12) as formally holding for the full range

of 1 values, 1 = O,l, ••• ,n.

We now return to (5.2) and consider case (ii), namely the case of the

polar cap radiances N±(y;m,.). Once again our goal is the appropriate

spectral decomposition of (5.2). Setting u = m in (5.2) and recalling the

procedure in (3.2) we obtain

d + +
+ ~ -- ~(y;m,·) .. -~(y;m,·)m dy

(a)

+ Iil(y)
m-l 2n
L L

r=l s=l

+ +N (y;r,s) p-(y;r,slm,.) (b)

(5.13)

(c)

m-l 2n
+ Iil(y) L L N-(y;r,s) p+(y;r,slm,·)

r=l s=l

(e)

Now N±(y;m,.) in line (a) of (5.13) is reduced to spectral form by (5.4).

Indeed, we see at once that in the present case (of u = m) there will be only

+one up-down pair of nonzero spectral radiance amplitudes, namely AT(y;m;O).

Thus (5.13) should reduce to a nontrivial pair of coupled equations describing

the depth rate of change of Ai(y;m;O) and A7(y;m;O). The reduction of term

(b) in (5.13) is made via (5.3) and the quad-to-cap case (5.6c) for

p±(y;r,slm,.). From the latter we see that the only nonzero term in (5.5a) 15

that for t = O. Hence term (b) in (5.13) becomes
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Moving the sum-over-s operator inward to the trigonometric functions we see

that (b) in (5.13) reduces to

In like manner, (c) 1n (5.13) becomes

Also 1n like manner, (d) and (e) in (5.13), respectively, become

m-l
w(y) EO L A~(y;r;O) p+(y;r,m;O)

r=l

and

Assembling these results (5.13) becomes
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m-1
+ w(y) EO L

r=l
(5.14)

m-1
+ w(y) EO L A~(y;r;O) p~(y;r,m;O) + w(y) A~(y;m;O) p~(y;m,m;O)

r=l

This 1S the desired spectral form of (5.2) for the polar cap case u = m.

As they stand, the set of coupled equations (5.11), (5.12) and (5.14)

constitute the spectral form of (5.2). However, unlike (5.2), the physics

they describe is obscured by being spread over a variety of different terms.

Nor is there a suggestion as to any solution procedure other than an

unceremonial dumping of the equation set into some prepackaged numerical

subroutine for solution of coupled ordinary differential equations. (This

will not work unless the subroutine has provisions for solving a two-point

boundary value problem and unless this two-point problem is specified with

care.) However, by a regrouping of the various terms in (5.11), (5.12) and

(5.14) we can package them in a form of some heuristic value, both physical

and mathematical, which will suggest the solution procedure for the complete

boundary value problem •
.
The two equations of (5.11), written separately and rearranged, become
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1:

r=l
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- 6 r - U
]

lJu

+
+ Al (y;m;Jl.)

m-l [W(y) EJl. ~-u(Y;r'U;1)]
+ 1: A~ (y;r; 1) ..

r=l

[

W(y) 6Jl. J.lp-
u

(y;m,U;1)]
+ A~(y;m;Jl.)

for u = l, ••• ,m-l and Jl. = O, ••• ,n, and moreover

(5.15)

m-l
+ 1: A~(y;r;Jl.)

r=l

+ A~(y;m;1) (5.16)

for u = l, ••• ,m-l, and 1 = O, ••• ,n.

The two equations of (5.12) written separately and rearranged, become
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d + m-1 ["(y) YI. p+(y;.,u;t) 6 ~
~

+ r-u
- dy A2 (y;u;l.) = A2 (y;r;l.) ---

r=l ~u ~u

m-1 ["(y) v. ~:(y;.,u;t)~+ ~ A;(y;r;l.)
r=l

d - m-1 ["(y) Vt ~:(y;.,u;t)~
~

+
dy A2 (y;u;l.) = A2(y;r;l.)

r=l

["(y)
+

m-1 YI. p (y;r,u;l.)

-~~+ ~ A;(y;r;l.)
r=l ~u llu

for u = 1, ••• ,m-1; and I. = 1, ••• ,n-1.

(5.17)

(5.18)

Next, the two equations of (5.14) written separately and rearranged, become

d' +- - A (y·m·O)dy 1 "

and finally

+ [w(y) p+(y;m,m;O) - _1J
+ A1 (y;m;O)

~m llm

m-1 [W(y) £0 P~Am-(Y;r,m;o)J
+ ~ A~(y;r;O)

r=1

[

W(y) P-~Ym;m,m;o)J
+ A~(y;m;O) ..
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:y A~(y;m;O) =
m-1
I

r=l

§5

+ [l.Il(y) P-~mY;m,m;o)]
+ Ai (y;m;O) ..

[~(y> ., +m-1 P (y;r,m;O)

-~+ I A~(y;r;O)
r=l lJm lJm

+ A~(y;m;O)
[~(y> p+(y;,..m;o>]

lJm
(5.20)

The quantities in the square brackets of the preceding equations are the

local reflectance and transmittance functions for the radiance field

ampl.itudes A1(y;u, I.). We shall now define them formally in the usual four-

case analysis regarding quad and polar cap directions (cf. (5.6». Our goal

is the construction of the mxm local reflectance matrix 2(y;l.) and the mxm

local transmittance matrix i(y;l.) for each azimuthal mode I. = O, ••• ,n and for

all depths y, x ~ y ~ z. Let the elements in the r th row and uth column of

these matrices be denoted by "[e,(y;I.)]ru" and "[i(y;l)]ru". Moreover, observe

(cf. (4.7), (4.10» that in the range I. = 1, ••• ,n-1, we have Yl = EI. = n.

Then we make the definitions as follows:

1) Ouad-to-Ouad Case (u,r = 1, ••• ,m-l)

[Hy;I.)]
- ru _ [Eft l.Il(y) p+(y;r,u;l.) - 6 ]/ll!

'" r-u u

[e,(y;I.)]ru = EI. l.Il(y) p-(y;r,U;I.)/lJu

I. = O, ••• ,n
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[iCy;1)]
- mu
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2) Cap-to-Ouad Case (r = m; u = 1, ••• ,m-l)

- '. ~<y) ":<y;m;U;ll/Uu!

[p(y;1)] : °1 w(y) P (y;m,u;1)/~
- mu u

1 = O, ••• ,n

3) Ouad-to-Cap Case (r = 1, ••• ,m-l; u = m)

(S.20c)

[iCy;O)] w(y) +
- EO P (y;r,m;O)/~

- rm m

[iCy;1)] - 0 for 1 = 1, ••• ,n- rm
(So20d)

[,;(y;O)] w(y) P-(y;r,m;O)/~:. £0- rm m

[,;(y;1)] - 0 for 1 = 1, ••• ,n
- rm

4) Cap-to-Cap Case (r =m; u = m)

[iCy;O)] [w(y) +
1]/~- P (y;m,m;O) -

- IIIID m

[iCy;1)] - 0 for 1 = 1, ••• ,n
- mm

(S.20e)

[,;(y;O)] - w(y) p-(y;m,m;O)/~
- mm m

[,;(y;1)] - 0 for 1 = l, ... ,n.
- mm

With these definitions, (5.15) and (5.16) become
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d +
- dy A1{y;u;1)

m
= L

r=l

+
A1{y;r;1) [i{y;1)] +

- ru

m

L
r=l

A-
1
{y;r;1) [p{y;1)]

- ru

(S.lSa)

m
= L

r=l

+A1 (y;r;1) [p{y;1)] +
- ru

m

L
r=l

A-
1
{y;r;1) [i{y;1)]

- ru

(S.16a)

valid for 1 = O, ••• ,n and u = l, ••• ,m-l.

Equations (S.17) and (5.1S) become, on recalling that £1 = Y1 for

I. = 1, ••• ,n-l,

m

L
r=l

m

= L
r=l

+A2{y;r;1) [i{y;1)] +- ru
A-2{y;r;l.) [p{y;I.)]

- ru

(S.17a)

A-2{y;r;1) [i{y;1)]
- ru

(S.18a)

m

L
r=l

+A2{y;r;1) [p{y;1)] +
- ru

m
= L

r=l

valid for 1 = l, ••• ,n-l and u = l, ••• ,m-l.

Equations (S.19) and (S.20) become

d +
- dy Al (y;m;O)

m
= L

r=l
A+

1
(y;r;0) [i{y;O)] +

- rm

m

L
r=l

A-
1
{y;r;0) [p{y;O)]

- rm

(S.19a)

:y A~{y;m;O)
m

= L
r=l

A+
1
{y;r;0) [p{y;O)] +

- rm

m

L
r=l

A-
1
{y;r;0) [i{y;O)]

- rm

(5.20a)

valid for u = manly.
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We next examine these systems of equations for the two naturally

occurring cases of azimuth index values t = O, ••• ,n. These are the case for

t = 0 and the case of all remaining values t = l, ••• ,n.

For the case of t .. 0, (S.lSa), (S.16a), (S.19a) and (S.20a) form a

system of 2m coupled ordinary differential equations in the 2m unknowns

+AT(Y;u;O), u = 1, ••• ,m. It will be useful to write out the mxm matrices

i(y;O) and ~(y;O) for inspection. For example,

[i(y;O)]l,l [i(y;0)]l,2 [i(y;O)]l,m-l [T(y;O)] 1- ,m

i(y;O) .. (S .21)
[i(y;O)]m-l,l [i(y;0)]m-l,2 [i(y;O) ]m-l ,m-l [T(y;O)] 1

- m- ,m

[T(y;O)] 1 [T(y;O)] 2 [T(y;O)] 1 [T(y;O)]
- m, - m, - m,m- - m,m

The matrix ~(y;O) has a similar appearance; just replace "T" by "p". The

zero-mode cosine amplitudes can then be assembled into a lxm vector by

defining

(5.22)

Thus the system (S.15a), (5.16a), (5.19a) and (S.20a) for the case 1 = 0 can

be written

(5.23)

It is interesting to note that this system by itself, for large enough m, is

sufficient to accurately compute all the quantities needed in the two-flow

irradiance model discussed in §8.
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Next we consider the same system (5.15a), (5.16a), (5.19a), and (5.20a)

for the case where 1 = 1, ••• ,n. By (5.4) we have AT(y;m;l) = 0 for 1 in this

range. Moreover, by examining the definitions of [!(y;l)]ru and [e(y;l)]ru in

the four cases above, we see that the bottom (the mth) rows and right-most

(the mth ) columns of these matrices are filled with zeros. This suggests

defining two (m-1)x(m-1) matrices !(y;l) and e(y;l) for the case 1 = 1, ••• ,n

where, for example

(5.24)

[T(y;l)] 1 1- m- ,m-

The (m-1)x(m-l) matrix e(y;l), 1 = 1, ••• ,n has a similar appearance; just

replace "T" by "p" in (5.24).

The non-trivial zero-mode cosine amplitudes for the case 1 = 1, ••• ,n can

then be assembled into a 1x(m-1) vector by writing

(5.25)

Thus the system (5.l5a), (5.16a), (5.19a), and (5.20a) for the case

1 = 1, ••• ,n can be written

(5.26)

x ~ y ~ z ., 1 = 1, ••• ,n

The equation set (5.17a) and (5.18a) for the sine amplitudes A1(y;U;1),

u = 1, ••• ,m-1, 1 = 1, ••• ,n-1, can be assembled into matrix form also. We now
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use the (m-1)x(m-1) matrices i(y;l) and £(y;l) defined 1n(5.24), and for the

non-trivial sine amplitude 1x(m-1) vectors, we write

(5.27)

Then we obtain from (5.17a) and (5.18a):

(5.28)

x S Y S z ; 1 = 1, ••• ,n-1

Equation systems (5.26) and (5.28) give all the required azimuthal

information needed to study the shapes of radiance distributions in natural

hydrosols; while as already noted, (5.23) contains the information on scalar

irradiances and horizontal irradiances.

Observe that the sets of equations (5.23), (5.26), and (5.28) govern

individual azimuthal modes 1 = O, ••• ,n. This permits a considerable savings

in storage requirements during a computation of the amplitudes for each mode;

and in fact this is the reason for going from the relatively aesthetic set

(5.2) to the total collection of amplitude equations, above. We note that the.
total number of nontrivial radiances in (5.2) is 2(m-1)2n + 2 = 4mn - 4n + 2,

where the "2(m-1)2n" term tallies the quads and the "2" is for the polar caps

(for which the v index is unneeded). These 4mn - 4n + 2 radiance equations

must be solved simultaneously. Equation (5.23) governs 2m amplitudes, (5.26)

governs 2(m-1)n amplitudes, and (5.28) governs 2(m-1)(n-1) amplitudes, for a

total of 4mn - 4n + 2 amplitudes. Thus the "information content" is the same

for either the "radiance" or the "amplitude" formulations but, as just noted,

the amplitude equations can be solved as a sequence of smaller systems of

equations.
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Much of our discussions below and, indeed, even the programming of the

theory, will be materially simplified if we cast (5.23), (5.26), and (5.28)

into a commonly dimensioned algebraic mold. Moreover, we recover a measure of

beauty lost while spectrally decomposing (5.2). This simply entails filling

out the lx(m-l) vectors A~(Y;l) in (5.25) and (5.27) to become lxm vectors

with zero mth components. Moreover the (m-l)x(m-l) matrices in (5.24) receive

an mth row and an mth column of zeros compatible with their four-case

definitions, above. When this is done, (5.23), (5.26), and (5.28) become

expressible in the unified form

d + + :;
:; -- A-(y·l) = A-(y;l) _T(y;l) + A (y;l) _p(y;l)dy -p' -p -p

where p = 1,2

1 = O, ••• ,n

x ~ y ~ z

+
and A-(y;l)

-p

(5.29)

These equations are the local interaction equations for the radiance

amplitudes. Henceforth, whenever (5.29) is referred to, it will be assumed

that all vectors and matrices involved are m-dimensional. There is only one

exception to this convention; it occurs in §10; and the reason for the

exception is discussed there.

b•. Symmetry Implications for the Spectral Form of the Surface

Boundary Reflectance and Transmittance Functions

The discrete geometric boundary conditions at the water surface are given

by (3.17) and (3.18). These equations involve four quad-averaged reflectance

and transmittance functions which have the symmetries expressed by (3.24).
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For fixed non-polar indexes rand u, i.e. where r * m and u * m, these

reflectance and transmittance arrays can be viewed as discrete functions of

the azimuthal angles .s and .v' As such they can be represented by an

expansion of the form of (4.13). Thus for example,

where the tij(a,x;r,klu,~) are given by equations of the form of (4.14).

The symmetries expressed by (3.24) lead to a considerable simplification

of (5.30). Consider for example the t12 term patterned after the h12 term of

(4.14):

1 2n 2n
~ ~ t(a,x;r,slu,v) cos(k. ) sin(~. )".

EkY t s=1 v=1 s. v

By (3.24a) we have

1 2n 2n
~ ~ t(a,x;r,2n+2-slu,2n+2-v) cos(~. ) sin(~. ) •

EkY~ s=1 v=1 s v

Changing summation indices to Sl _ 2n+2-s and Vi _ 2n+2-v gives

1 22
~ ~ tCa,x;r,s' lu,v') cos(k.2 +2 ,) sin(t41 2 2 ,)

EkY t s'=2n+1 v'=2n+1 n -s n+ -v
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Since '2n+2-w = 2w - 'w' and by the evenness of the cosine and the oddness of

the sine we get

1 2 2
t l2 (a,x;r,klu,t) = L L t(a,x;r,s'lu,v') cos(k, ,)[-sin(t,,)] •

£kYt s' =2n+1 v' =-2n+1 s v

Noting that quad s = 2n+l is the same quad as s = 1 (cf., Fig. 5b) and

reordering sums we find

t l2 (a,x;r,k\u,t)
2n
) t(a,x;r,s'lu,v') cos(k, ,) sin(t, ,)

v"'=l s v

Therefore it follows that

(5.30a)

for r,u = l, ••• ,m and k,t = O, ••• ,n.

An identical analysis shows that t 2l (a,x;r,klu,t) = 0, over the full r,k, u,t

ranges, and the same results are found for the other three reflectance and

transmittance functions. Thus the bilateral symmetry of the surface about the

wind direction eliminates two of the four terms in (5.30).

Another important simplification is obtained from (3.24b). Consider the

evaluation of the tll term in (5.30) using the pattern of the hll term in

(4.14):
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2n 2n
~ ~ t(a,x;r,slu,v) cos(k~ ) cos(t~ )

EkE 1 s=1 v=1 s v

1=
2n 2n
~ ~ t(a,x;r,n+2-slu~n+2-v) cos(k~ ) cos(t~ ) ,

EkE t s=1 v=1 . s v

where the last equation results from the application of (3.24b). Changing

summation indices to s' = n+2-s and v' = n+2-v gives

1 2-n 2-n
~ ~ t(a,x;r,s' \u,v ' ) cos(k~ +2 I) cos(t~ +2 ,)

EkE t s'=n+1 v ' =n+1 n -s n . -s

wherein a nonpositive value of S' references quad s'+2n, as is illustrated in

Fig. Sb. Since ~n+2-s' = W-~S' we have

cos(k~ +2 ,) = cosk(w-~ ,) = (_l)k cos(k~ ,)n -s s s

and our last equation for til becomes

1 2-n 2-n
~ ~ t(a,x;r,s' lu,v ' )(-l)k cos(k~ ,)(_1)1 cos(l~ ,) ,

EkE1 s I =n+1 v' =n+1 s v

which upon reordering the summations becomes

2n
) t(a,x;r,s' lu,v ' ) cos(k~ ,) cos(l~ ,)

vV=l s v

k+t A I= (-1) t11(a,x;r,k u,l) •

Therefore it follows that

if k+9. is odd,
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and r,u = 1, ••• ,m and k,l = O, ••• ,n.

The symmetry expressed by (3.24b) thus eliminates the need to explicitly

compute one half of the tll(a,x;r,k/u,l) matrix elements. Corresponding

results are obtained for t2 2(a,x;r,klu,1) and for the other three reflectance

and transmittance functions.

The elliptical symmetry of the wind-blown water surface clearly results

in a major computational savings in the treatment of the surface boundary. We

can also simplify 'the notation to one subscript for rand t functions, e.g.

tl(a,x;r,k/u,l) = tl 1(a,x;r,klu,1) in (5.23), since the cross product terms

are zero. Equation (5.30) then can be replaced by

n n
t(a,x;r,slu,v) = L L tt(a,x;r,klu,l) cos(k,s) cos(l, )

k=O 1=0 v

n n
+ L L t 2 (a,x;r,klu,1) sin(k, ) sin(l, )

k=O 1=0 s v

where

(5.31a)

for k,l = O, ••• ,n

and where

1 2n 2n
t 2 (a,x;r,klu,1) - L L t(a,x;r,slu,v) sin(k, ) sin(l, )

YkYl s=1 v=1 s v (5.31b)

if k,l = 1, ••• ,n-1

0 if k = 0, 1 = 0, ••• , n

0 if 1 = 0, k = 0, ••• ,n
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These equations are patterned after (4.14) and hold for all u,r =

moreover, t 1 and t2 are zero when k+t is odd, as noted above.

1, ••• ,m; and

r
u
f:

It will be convenient for future reference to explicitly consider the

four main cases of (S.3lb) for the rand u variables. These cases are the

four possibilities of whether the initial and final indexes are associated

with quads or with polar caps. Thus we have the

1) Ouad-to-Ouad case (u,r = 1, ••• ,m-1). Then (5.31b) is unchanged:

1 2n 2n
L L t(a,x;r,slu,v) cos(k~ ) cos(t~ )

£kEt s=1 v=1 s v

for k,t = O, ••• ,n
(S.31c)

1 2n 2n
L L t(a,x;r,slu,v) sin(k~ ) sin(t~ )

YkYt 8=1 v=l s v

if k,t = 1, ••• ,n-1

° if k = 0, t = O, ••• ,n

° if t = 0, k = O, ••• ,n

2) Cap-to-Ouad Case (r = m; u = 1, ••• ,m-1). Then (5.31b) reduces to

1
2n

t1(a,x; m,Olu,t) - L t(a,x;m, ·Iu,v) cos(t~ )
£t v=1 v

t = O, ••• ,n

{: = 1, ••• ,n
t1(a,x;m,klu,t) - ° = 0, ••• ,n

t 2(a,x;m,k\u,1) _ ° k,l = O, ••• ,n
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The amplitudes in (S.32) give rise to the representation

n
t(a,x;m,·lu,v) = L t 1 (a,x;m,0Iu,1) cos(l,v)

"=0

3) Ouad-to-Cap Case (r = 1, ••• ,~1; u = m). Then (S.31b) reduces to

(S.33)

1 2n
L t(a,x;r,slm,·) cos(k, )

t k s=l s

k = O, ••• ,n

_
°{k.. == O, ••• ,n

t 1(a,x;r,klm,1)
1, ••• ,n

t 2 (a,x;r,klm,1) _ ° k,l = O, ••• ,n

The amplitudes 1n (S.34) give rise to the representation

(S .34)

n
t(a,x;r,slm,.) = L

k=O
(S.35)

4) Cap-to-Cap Case (r = m; u = m). Then (S.31b) reduces to

t1(a,x;m,0Im,0) _ t(a,x;m,.\m,·)

t 1 (a,x;m,klm,1) _ °; k,l = 1, ••• ,n

t 2 (a,x;m,klm,1) _ °; k,l = O, ••• ,n
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The formulas. (5.31c)-(5.36) for tp(a,x;r,klu,t) form the requisite pattern for

the remaining three transfer functions of the air water surface:

tp(x,a;r,klu,t), rp(a,x;r,klu,t), and rp(x,a;r,klu,t), p = 1,2. Except for

the switches of position of "a" and "x" and going from "t" to "r", the

patterns set by '(5.31)-(5.36) are identical to the patterns found for the

remaining three cases.

c. Transformati9n of the Surface Boundary Conditions to Spectral Form

We are now in a position to transform the discrete geometric boundary

conditions (3.17), (3.18) and (3.25) into a discrete spectral form. The same

general procedure as was used on the radiative transfer equation in §5a is

applicable. We shall illustrate the process with eq. (3.17), which can be

written as

m-l 2n
N-(x;u,v) = I I N-(a;r,s) t{a,x;r,slu,v) + N-(a;m,.) t{a,x;m, ·Iu,v)

r=1 s=l
(5.37)

m-1 2n + ++ I I N (x;r,s) r(x,a;r,slu,v) +N(x;m,·) r(x,a;m, ·/u,v) .
r=l s=1

Once again we must treat the polar cap terms explicitly. The radiances can be

represented as in (5.3), and the rand t functions can be represented as in

(5.3la). Then for u = l, ••• ,m-l (5.37) becomes
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m-1 2n
= L L

r=1 s=1
(5.38)

x { r r t1(a,x;r,k' lu,1) cos(k'~ ) cos(f.~ ) +
k'=O 1=0 s v

n
+ A~(a;m;O) L t 1(a,x;m,0Iu,1) COS(l~v)

1=0

+ a similar set of terms 1n A+ and r(x,a).

Note that the polar cap terms have been represented by the appropriate Eqs.

(5.4) and (5.33). The first term in the right side of this equation can be

regrouped as

m-1
L LL L

r=l k k' 1

sin(l~ )
v

cos(1~ ")
vCOSCk·.S~

SinCk·.s~

SinCk'.s~ Sinc,• .>} .

+ A~(a;r;k)

Using the orthogonality conditions (4.1)-(4.3) on the sums over s reduces this

expression to
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The Kronecker 6-functions force k' = k, leaving £k and Yk factors, so that

(5.38) becomes

(5.39)

I
I

I•

cos(lI.41 )
v

+ a similar set of terms in A+ and i(x,a).

We now once aga1n call upon the linear independence of the cosine and sine

functions. In particular we can in (5.39) equate the coefficients of cos(lI.41v )

to get, after reordering the rand k sums,

A~(x;u;l,) =

t1( ••x;m.kIU'O>'k}
(5.40a)

<, (x •• ;m,klu.o> 'k}'

This expression holds for u = l, ••• ,m-l; 1I. = O, ••• ,n.
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We return now to (5.37) to take care of the polar cap case, i.e., the case of

u = m. Setting u = m in (5.37) and recalling what happens in this case (cf. (5.4),

(5.35), (5.36», we have the present version of (5.38):

++ a similar set of terms in A and r(x,a)

Rearranging this to use the orthogonality properties of the trigonometric

functions, we find

r-In
cos(k~ ) COS(k'~ ~

~=l s. sJ

++ a similar set of terms 1n A and r(x,a)

This reduces to
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A~(x;m;O) =

6kr,(Z,a;m,k 1m,o>}
(5.40b)

Now define the (r,u) elements of an mxm matrix tl(a,x;kll) Via

[t1(a,x;klt.)]- ru
={Ek~l(a'X;r'klu'l)

°kt1(a,x;r,klu,t.)

for

for

r = l, ••• ,m-l

r = m,
(5.41)

and for u = l, ••• ,m ., k,t. = O, ••• ,n

with corresponding definitions for the other three rl and tl matrices. Note

that (5.32), (5.34) and (5.36) imply that many of the matrix elements of

(5.41) are zero for l = l, ••• ,n.

The amplitude equations (5.40a,b) then can be written

A~(x;u;l,) = ~l (a,x;kll~ }
ru

which hold for u = l, ••• ,m and l = O,l, ••• ,n. Using the full lxm vectors of

amplitudes defined as in (5.29), these equations and hence the spectral

version of (5.37) for the cosine amplitudes can be placed in the matrix form

(k+l even)

n

L
k=O

+ n
!l(x;k) El(x,a;kll) + L !~(a;k) il(a,x;kll) •

k==O

(k+l even)

(5.42)
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The notation "k+lI. even" on the sums reminds us that, as was seen in the

preceding section, those t and r terms for which k+lI. 1S odd are identically

zero and need not be included in the sums.

Table 1 displays the pattern of zero and non-zero elements in the

matrices defined by (5.41) and used in (5.42).

Equating the coefficients of sin(lI.~v) in (5.39) gives an equation

for !;(x;lI.) which has the same form as (5.42). Moreover, recall (cf. (5.4»

that Ai(x;m;lI.) =° for 1I. = O, ••• ,n. We can then define the mxm matrix

for r = 1, ••• ,m-1
{:kt ,<a,x;r,kIU,ll and 1I. = 1, ••• ,n-1

[t 2 (a,x;kI1l.») -- ru for r = m
and 1I. = 0 or 1I. = n

and for u = 1, ••• ,m ; k = O, ••• ,n

with corresponding definitions of the same form for the other r2 and t 2

(5.43)

functions. Table 2 displays the pattern of zero and non-zero elements in the

matrices defined by (5.43).

Thus (5.37) and hence (3.17) reduce to the following pair of matrix

statements:

n + nL A (x;k) r (x,a;klll.) + \ A-(a;k) t (a,x;k\lI.)
k=O -p -p k~O -p -p

(5.44)

(k+lI. even) (k+lI. even)

where p = 1 or 2 and 1I. = O, ••• ,n.
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Table 1.--Illustration of the struc~ure of the cosine spectral arrays defined by Eq. (5.41). s(r,klu,t)
represents any of the four cosine amplitudes, tl(a,x;r,klu,l), t1(x,a;r,klu,t), r1(a,x;r,klu,t),
or r 1 (x,a;r,klu,1). The factors of 2n, n, 0 or 1 multiplying these elements are special values of £k
and 6k• The requirement that n be even goes back to Fig. 5b. Observe fihat half of the block matrices
are zero (cf. (5.30b», and that every block matrix has zeros in its mt row and mth column, except for
the k = 0, 1 =0 block matrices (ef. (5.32)-(5.36».
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Table 2.--Illustration of the structure of the sine spectral arrays defined by Eq. (5.43). s(r,klu,l)
represents any of the four sine amplitudes, t2(a,x;r,klu,1), t2(x,a;r,klu,1), r2(a,x;r,klu,1), or
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With a corresponding development, the surface boundary condition (3.18)

in spectral matrix form becomes

n
A+(x;k) t (x,a;kI1) + \ A-(a;k) r (a,x;kI1)
~ ~ Jo~ ~

+ n
A (a;1) = 2
-p k=O

(k+1 even) (k+1 even)

(5.45)

where p = 1 or 2 and 1 = O, ••• ,n.

Equations (5.44) and (5.45) are the desired spectral forms of the surface

boundary conditions and are at a notational level equivalent to the radiative

transfer equation (5.29).

It should not be overlooked that when the upper boundary is involved, the

amplitude for one 1-mode is directly coupled to the amplitudes for all other

1-modes. Thus in (5.44), ~;(x;1) is determined by sums over k involving'

~;(a;k) and ~;(x;k)with k * 1. This coupling of 1-modes is a consequence of

the anisotropy of the upper boundary. In contrast, we recall from the local

interaction equations (5.29) that, within the isotropic water medium (i.e.,

over the depth range x ~ y ~ z), the amplitude for a given 1-mode is

independent of the amplitudes for other k-modes, k * 1. If the upper boundary

were isotropic, symmetry would cause the sums over k in (5.44) and (5.45) to

collapse to single terms for the 1th modes, i.e., the 1-modes would

decouple. This is the case at the bottom boundary.

d. Transformation of the Bottom Boundary Conditions to Spectral Form

The isotropy of the bottom boundary means that the quad-averaged

reflectance r(z,b;r,slu,v) depends azimuthally on Is-vi, not upon s and v

independently, for non-polar quads Qrs and Quv ' In particular, the azimuthal

dependence is on cos(~s-~v)' as was the case for the isotropic phase
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function. Just as for the phase function (recall (5.5» we can represent

r(z,b;r,s\u,v) by the form (4.11):

r(z,b;r,slu,v) =
n

L
lI.=O

(5.46)

which holds for all Qrs in __ and Quv in _+ and where from (4.12)

Hz,b;r,ulll.) (5.47)

We now evaluate (5.47) by going through the four main cases, as in

(5.6a,b,c,d):

Quad-to-Quad Case (r = 1, ••• ,m-1; u = 1, ••• ,m-1). Then with s = 1, (5.47)

becomes

1=r(z,b;r,ulll.)

lI.=O, ••• ,n

2n
L r(z,b;r,llu,v) cos(lI., )

Ell. v=l v
(5.47a)

Quad-to-Cap Case (r = 1, ••• ,m-1; u = m). Then (5.47) becomes

r(z,b;r,mIO) = r(z,b;r,llm,-)

(5.47b)

r(z,b;r,m\lI.) = 0 1I. = 1, ••• ,n
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Cap-to-Ouad Case (r = m; u = l, ••• ,m-l). Then (5.47) becomes

r(z,b; m,uIO) = r(z,b; m,· lu,1)

(5.47c)

r(z,b;m,ult) = 0 t = 1, ••• ,n

Cap-to-Cap Case (r = m; u = m). Then (5.47) becomes

r(z,b;m,mIO) = r(z,b; m,-Im,·)

(5.47d)

r(z,b;m,mlt) = 0 t = 1, ••• ,n

When the bottom boundary condition (3.25), viz.

N+(z;u,v) = LLN-(z;r,s) r(z,b;r,slu,v) ,
r s

(5.48)

is rewritten for u = 1, ••• ,m-1 using (5.3), (5.4), (5.47) and the specific

cases of (5.47), we have
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m-1
= L

r=l

2nCnL LA:(z;r;k)
s=1 k=O

m-l C2n= L LA:(z;r;k) LHz,b;r,ull.) L cos(kcll s ) co.oC. -. ~
r=l k I. 5=1

v s

m-l
I iCz;b;r,ulo) Crn.inck.) co.oc. -. ~+ L LA;(z;r;k)

r=1 k I. s=1 s v 5

+ A:(z;m;O) r(z,b;m,uIO) •

(5.48a)

The sums over s can be reduced by (4.4) and (4.5) so that the right side

becomes

+ A:(z;m;O) r(z,b;m,uIO) •

The Kronecker deltas leave only terms with k = I., with EI. and YI. multipliers,

so that we have left just the following for u = 1, ••• ,m-1:
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n m-l
~~(z;r;1) r(z,b;r,uI1) 6J= L L £1 cos(1lj1v) + A~(z;m;1) r(z,b;m,ullL)

lL=O r=l
(5.49)

n m-l
+ L L A;(z;r;1) r(z,b;r,u\1) Y1 sin(1lj1v) .

1=0 r=l

For the case u = m, we return to (5.48a), set u = m, recall (5.4) and

(S.47a-d), and find

I

+Al (z;m;O) =
m-l
L

r=l
A;(z;r;k)

x r(z,b;r,mIO) + A~(z;m;O) r(z,b;m,mIO)

m-l
= L A~(z;r;O) £0 r(z,b;r,mIO) +

r=l

+ A~(z;m;O) r(z,b;m,mIO)

We can now define the mxm matrices r (z,b;1) for p = 1,2 via-p

[r l (z,b;2,»)- ru
={£1~(Z'b;r,uI1)

62,r(z,b;m,ul2,)

for

for

r = l, ••• ,m-l

r = m
(5.50)

and for u = l, ••• ,m 2,=O, ••• ,n

for r = 1, ••• ,m-1

~ t·r<z,b;r,u',' and 2, = 1, ••• ,n-1
[r 2 (z,b;1»)- ru for r = m

and 2, = 0 or 2, = n

and for u = l, ••• ,m.
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These definitions hold for u = l, ••• ,m, keeping in mind (5.47b,c,d) for the

four main cases. By means of these definitions, Eq. (5.49) then can be

written for u = l, ••• ,m-l, and also for the case u = m, as

Using the 1xm amplitude vectors of (5.29) we find

n
L [!7(z;1) COS(1~v) + !~(Z;1) sin(1~v)]

1=0

=
n n

L !~(Z;1) ±l(z,b;1) COS(1~v) + L
1=0 1=0

Invoking the linear independence of cos(1,v) and sin(1'v)' we obtain a matrix

equation for the spectral form of the bottom boundary condition:

+
A (z;1) ::
-p (5.52)

where p :: 1 or 2 and 1 = O,l, ••• ,n.

Equation (5.52) is the general spectral form of the lower boundary

condition (3.25). Under assumption (3) in §la, the lower boundary is

azimuthally isotropic. Hence, unlike the surface boundary conditions (5.44)

and (5.45), the bottom boundary condition exhibits decoupling of the
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I-modes. There are two cases we consider; a matte surface and a plane surface

above an infinitely deep homogeneous hydrosol.

We recall from (J.26) that for the special case of a matte bottom,
r

r(z,b;r,slu,v) = -
1r

J.I Q •
r r

This function in (5.47) leaves just

J.I n (= r(z,b;r,llu,v) for {vr,~ =1 l'··2·,m) , (5.53a)r r , ••• , n

r(z,b;r,ull)

whence

r(z,b;r,uIO) =

and

r

1r

J.I n )
r r

2n
I

v=l
cos(l~ ),

v
fr,u=l, ••• ,m
ll=O, ••• ,n

r(z,b;r,u\l) O f
{

r,u = l, ••• ,m
= or It = 1'" , ••• ,n

(5.53b)

Hence only the case 1 = 0 is non-trivial. That is, by (5.50) and (5.53) we

have [rl(z,b;I)]ru = 0 for 1 = l, ••• ,n and u,r = l, ••• ,m. Further,

[r2(z,b;I)]ru = 0 for all 1 = O, ••• ,n and u,r = l, ••• ,m. Hence (5.53) is

consistent with the cases in (5.47a,b,c,d) for a reflectance r(z,blr,l/u,v)

that is independent of u and v and that depends only on r. Then the lower

boundary condition (5.52) for a matte bottom reduces to just

(5.54)

with ~t(z;l) = Q for 1 = l, ••• ,n, and ~~(z;l) = Q for 1 = O, ••• ,n.

The case of the reflectance of an infinitely deep hydrosol is discussed

1n §10.

We have now obtained a discrete, spectral form of the Natural Hydrosol

Model in the form of equations (5.29), (5.44), (5.45) and (5.52). However, we

are not yet ready to proceed with the numerical solution of the local

interaction equations (5.29). In order to integrate (5.29) down into the
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water column, i.e., over all depths y such that x ~ y ~ z, we need the initial

values for the amplitudes namely ~~(X;l). The upper surface boundary

+conditions (5.44) and (5.45) relate the needed ~p(X;l) to each other and to

+ A

known or measurable quantities such as ~p(a;l) and the rand t matrices of the

air-water surface, but the boundary conditions by themselves cannot be solved

+to obtain the needed initial conditions (there are four unknown vectors ~p and

only two equations). A reformulation of the spectral model is clearly needed,

and this is done in the next section.

We do note in passing, however, that the present spectral model could be

solved approximately as a series of upward and downward integration sweeps of

the local interaction equations (5.29). This is a rather quixotic approach,

but it is worth a momentary consideration in order to make a general point.

To see how this might be done, consider the following. Radiance passes

through the upper boundary (e.g., from the sun) and into the water column

(using the transmit~ance part of (5.44», where the light field varies with

depth according to the local interaction equations. Some light is scattered

back toward the surface at each depth y, and some light eventually reaches the

lower boundary where it is partially reflected (using (5.52». This upwardly

scattered and reflected radiance is itself partly scattered again into

downward directions at each y level, and some radiance reaches the water

surface, where it is partly transmitted into the air and partly reflected back

into the water column. And so it goes, ad infinitum. The radiance field

which we desire is the total of the contributions of an infinite number of
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scatterings and interreflections like those just described.* The solution

field can be approximately obtained by a finite sequence of integrations of

(5.29) back and forth between the boundaries; termination of the integration

sequence is made when the contribution of another sweep to the accumulating

sum of sweep contributions is acceptably small. However, an exact summation

of the infinite number of interreflections can be made in closed form by the

powerful algebraic techniques of invariant imbedding theory when the media are

of the one-parameter type. The resulting equations are solved by just one

pair of integration sweeps and give the desired total radiance field. This

algebraic reformulation of the spectral model is the subject of the next

section.

e. The Case of the Vanishing Polar Caps

We pause to examine what happens to the basic equation systems (5.11) and

(5.12) wpen we let the radii of the polar caps go to zero. First, recall from

(5.6b) that p±(y;m,u;O) = p±(y;m,·lu,l). Next observe from (3.11) that

generally p(y;r,slu,v) • 0 as Drs • O. In the case that Qrs = Qm' a polar

cap, it follows that p±(y;m,u;O) • 0 as a polar cap's radius approaches O.

Since A1(y;m;t) goes to a finite limit (namely the radiance N(y;m,·) for

* What is being described here is a fundamental and powerful heuristic
approach to scattering problems known as the "natural solution"
procedure. See, for example, Preisendorfer (1965, p. 73) and H.O.,
Vol. II, p. 203 for the case of photons; and Preisendorfer (1973, pp. 47­
48) for the case of water waves, which explicitly realizes the above
multiple scattering procedure. These references also contain some
historical notes on the natural solution procedure. This procedure is so
powerful that it can operate on all levels of radiative transfer theory,
from obtaining simple estimates of radiance fields by single or double
scattering order calculations, to establishing the existence of solutions
of the equation of transfer for radiance in arbitrary geometrical
settings. Ultimately, as computer power continues to evolve, the natural
solution may be the way to go in general, irregular geometries and for
polarized fields in such geometries.
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1 = 0, and vanishes otherwise (1 = l, ••• ,n) we conclude that the two cap terms

in (5.11) vanish along with the caps. The set (5.12) is unaffected as the

caps go to zerO. These effects also can be seen in (5.15) and (5.16). The

result is that (5.15) and (5.16), for the case of zero-radius caps, are

autono.aus equations (e.g., m-l equations in m-l unknowns) as are also (5.17)

and (5.18). Similar observations can be made for the boundary conditions.

The present theory can therefore be applied to natural hydrosols with capless

direction spaces.

It is interesting to see that (5.19) and (5.20) reduce under these

conditions to useless appendixes: one can integrate (5.19) and (5.20) down

into the hydrosol provided AT(y;m;O) += N-(y;m,·) are known at some depth

Y ~ x. However, such information is not accessible within the context of.the

Natural Hydrosol Model: the continuous-direction information N-(a;~) is the

given input to the HaM. Upon undergoing quad averaging, this purely

directional information at level a is smeared out. The model solution then

determines the quad-averaged radiances N±(x;u,v) at level x below the

surface. +There is no unique road back, however, to N-(x;~) at level x. Hence

we get the interesting "mule" equations (5.19) and (5.20). That is, these

equations, born of quad averaging p±(y;~';~) only over the ~', cannot "have any

progeny (solutions) in the HaM context.

This mule equation phenomenon can be witnessed quite generally by

allowing Quv (but not Drs) in (3.12) shrink to zero. The result is the hybrid

equation

-11 dd N(y;f;) =
y -

where

-N(y;i) + oo(y) I I N(y;r,s) p(y;r,s;i)
r s

(5.55)

p(y;r,s;i) - J J p(Y;i'ji) dD(i)
Qrs
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Suppose then we have used the NHM to compute the quad-averaged radiances

N(y;r,s) for all Qrs in _. Can we make use of (5.55) to compute N(y;~) at

some y for any ~ in:1 It would at first seem that this 1S possible. The

equation set could obviously be integrated at once over all y, x ~ y ~ z,

knowing N(y;~) for a single depth, say x, and for some fixed direction ~o.

But how 1S one to come by knowledge of N(x;~o)1 This, as we saw above, is

inaccessible knowledge at level x in the context of the NUM.

In sum, then, equations (5.15)-(5.18) hold if the polar cap terms are

removed from (5.15) and (5.16). The quads around the polar cap are replaced

by triangles sharing a common vertex at the poles of the unit sphere of

directions (cf. Fig. 3; and let the polar cap shrink to a point). If we index

the quads, starting at the equator, from 1 to m-l, where the polar triangles

are indexed by m-l, then (5.15)-(5.18) apply at once with the polar terms

removed from (5.15) and (5.16). + +The resultant four equations for AT and Al

then have identical forms. Of course (5.15) and (5.16) apply, as before, to 1

in the range O, ••• ,n; while (5.17) and (5.18) still apply to 1 in the range

l, ••• ,n-l. Equations (5.19) and (5.20) become infertile, in the sense

described above, and are disregarded.

What then is to be gained by deriving the local interaction equations

(5.29) with polar caps included as part of the decomposition of the unit

sphere:1 The answer is in the economy of description of radiance around the

polar region: one small cap will do just as well in resolving zenith or nadir

radiances as 2n triangles. However, it should be clear to the reader, who has

closely followed the derivation of (5.29) to its very end, that a much simpler

and cleaner derivation results by eliminating the polar caps. So take your

pick as to which derivation you prefer; and remember: the present polar cap
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derivation includes the non-polar cap alternate as a special case, but not

conversely.
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6. TRANSPORT FORM OF THE SPECTRAL EQUATIONS

a. Fundamental Solutions: Motivation

In this section we review some results from the elementary theory of

differential equations, and then go on to introduce the notion of the global

interaction principles. These will be the gl~bal versions 9f the local

interaction equations (5.29). We then can establish the imbed and union rules

for optical media, and also the Riccati differential equations for the global

reflectance and transmittance operators. These topics constitute the modern

transport approach to solving radiative transfer problems in lakes and seas.

To fix ideas, we consider a coupled system of two equations; the

generalization to a system of many equations (in particular, to the local

interaction equations (5.29» will then be obvious.

Consider the pair of equations*

dn(y) =
dy

d,(y) =
dy

n(y) .(y) + ,(y) p(y)

,(y) .(y) + n(y) p(y)

(6.1)

where p(y) and .(y) are continuous functions on x ~ y ~ z. This system can be

placed in matrix form by defining the two-element row vector

~(y) - [n(y), ,(y)]

and the system matrix

(1 x 2)

* For a reader familiar with the two-flow irradiance model (cf.,
Preisendorfer and Mobley, 1984), the following introductory exercise is
directly applicable to that model. Set n(y) = H(y,+), and ,(y) = H(y,-),
and generalize p(y), .(y) to p(y,±), .(y,±).
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_ f'[(Y) p(Y"Yl

l:p(y) '[(Y1.1
(2 )( 2)

to get

(6.2)

The system (6.1) can be integrated from x to any point y, using as

initial conditions n(x) = 1 and t(x) = O. Let the solutions at y be nl(y) and

to(y). Likewise, (6.1) can be integrated with the initial conditions n(x) = 0

and t(x) = 1. Let these solutions be no(y) and tl(y). Each pair of solution

vectors (nl(y), to(Y)] and (no(y), tl(X)] is a fundameneal solueion of

fundamental solution vectors. Now use the fundamental solution vectors to

(6.1). Note that at y a X the fundamental solution vectors are (1,0] and

(6.4)

(6.3)(2 )( 2)
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nonsingularity of ~(x,y). Note that

The linear independence of the fundamental solutions guarantees the

define the fundameneal maerix

independent for all y values in x S y S z. Therefore the general solution of

solutions associated with (6.1) for continuous p(y) and '[(y) remain linearly

example, Coddington and Levinson, 1955, pp. 28, 69) that the fundamental

(6.1) over the range x S y S z can be written as a linear combination of the

(0,1], and are clearly linearly independent. It is easily shown (see, for
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Since the fundamental solutions each satisfy (6.1), it follows that

n(y) - n(x) n 1 (y) + ~(x) nO(y)

~(y) - n(x) ~O(y) + ~(x) ~l(Y)

gives the general solution of (6.1) for arbitrary initial conditions

[n(x), ~(x)]. In matrix form this equation is

~(y) = H(x) ~(x,y) , I (6.5)

which is known·as the mapping property of ~(x,y), since ~(x,y) maps the

initial vector ~(x) into the solution vector ~(y).

Two important properties of ~(x,y) can be obtained from (6.5).

Differentiating (6.5), applying (6.2), and letting the,initial conditions H(x)

be arbitrary leads to the conclusion

(6.6)

This equation merely states that the fundamental solutions satisfy (6.1). A

second property is found from the observation that the solution at z, ~(z),

can be expressed two ways using the mapping property:

~(z) = H(x) ~(x,z)

or

H(z) = ~(y) ~(y,z)
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where ~(y,z) is constructed as a set of fundamental solutions whose initial

values are taken at y rather than at x (thus ~(y,y) = I). Substituting (6.5)

into the second of these two equations and using the arbitrary initial

condition H(x) yields the group property for ~:

~(x,z) =~(x,y) ~(y,z) •

It follows from (6.7) (upon setting x = z) that

(6.7)

It is clear that the general solution of (6.1) or (6.2) is closely tied

to the linear algebra of the system matrix !(y) and the fundamental matrix

~(x,y) •

b. Fundamental Solutions: Application

We next apply the concepts introduced 1n the previous section to the

local interaction equations, (5.29). Now the 1xm vector of upward amplitudes,

~;(Y;l), takes the place of n(y); and the 1xm vector of downward amplitudes

~;(Y;l) takes the place of ,(y). Likewise the mxm matrices £(y;l) and i(y;l)

replace p(y) and ,(y), respectively, in (6.1). Then (5.29) can be written as

Defining

(l x 2m)
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and

(2m )( 2m) (6.8)

the local interaction equations can be written as

d-- A (y'1) = A (y;1) K(y;1)
dy -p' -p -

where p = 1 or 2 and 1 = O, ••• ,n. Observe that the system matrix is

independent of p = 1,2.

In analogy to the pair (6.2) and (6.6), we have the present pair (6.9)

and

(6.10)

for 1 = O, ••• ,n and for x $ y $ z. The fundamental matrix H depends on the

1-mode, but is the same for p = 1 or p = 2. H is now (2m) )( (2m) in'size, and

the initial conditions for (6.10) are

~(x,x;1) _ I

where! is the (2m»)«2m) identity matrix.

The group property (6.7) is now, for each 1 = O, ••• ,n, and x $ y $ z,

~(x,z;1) = ~(x,y;1) ~(y,z;1),

and we can write the mapping property (6.5) as
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A (y;l) = A (x;l) _H(x,y;t),-p -p

for p = 1,2 and 1 = O, ••• ,n, with x ~ y ~ z.

(6.13)

The results just presented apply to a downward integration of (6.9) along

the water column from x to y. We can also consider an upward integration from

z to y, for which a corresponding set of fundamental solutions exists. For an

upward sweep we have the corresponding development:

(6.14)

and

A (y;t) = A (z;t) H(z,y;l)
-p -p -

where p = 1,2; 1 = O, ••• ,n; and x ~ y ~ z.

It should be noted that the integration sweeps of (6.10) or (6.14)

proceed routinely as long as !(y;t) is continuous. If !(y;t) is

discontinuous, as at the air-water boundary, we can cross the discontinuity

not by integration but by an extended form of the group property (6.12).

Thus, for example, given the incident amplitude vector ~p(a;t) just above the

air-water surface, and given the fundamental matrix ~(a,x;t) which we assume

for the moment to be associated with the air-water surface in some way, we can

integrate (6.10) from x to y (since !(y;t) is continuous in the water column)

to find ~(x,y;t). We would then use the extended form of (6.12) to obtain
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~(a,y;I.), and thus the solution ~p(Y;I.) via (6.13). However, we will not

proceed this way, since the fundamental solution, while a beautiful analytic

tool, is not readily amenable to the preceding kind of hybrid integration-

algebraic task. This is the case since the fundamental matrix H(a,x;l.) for

the air-water surface must first be derived by certain algebraic procedures

from the basic reflectance and transmittance matrices rand t of the air-water

surface. Perhaps more importantly, the fundamental solution procedure 1S

numerically inherently unstable,* so that great care must be exercised in the

integration of (6.10) and (6.14) over ranges of y on the order of 10 or more

optical depths. For all these reasons, therefore, we turn to a more versatile

and physically more meaningful mode of solution of (6.10).

c. Global Interaction Equations

Let us expand the general solution (6.13) so that the upward and downward

amplitudes are visible:

(6.15)

For the slab X[x,y] of the plane-parallel medium (cf. Fig. 1) we think

of A-(x;l.) as being incident on X[x,y] from above at level x, and A+(y;l) as
-p -p

being incident on X[x,y] from below at level y. These incident amplitudes are

thought of as initiating the light field in X[x,y]. Hence, we may think

+of A (x;l.) as being the associated response of the slab X[x,y] at x,
-p

and A-(y;l.) as being the response of the slab X(x,y] at y. The term
-p

"incident" is motivated by the idea of light shining downward into the slab at

* An examination of the numerical instability of the fundamental solution
procedure was made in the water-wave context of invariant imbedding theory;
see Preisendorfer (1977, p. 40).
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x and upward into the slab at y. "Response" calls to mind the light leaving

the slab at x and y after the slab has responded at all internal levels to the

light incident on its boundaries. We now see that (6.15) gives the incident

and response amplitudes at level y as a function of the incident and response

amplitudes at level x, and thus is not in a useful form even if ~(x,y;!) is

known. What is needed is an equation relating the response amplitudes at x

and y to the incident amplitudes at x and y. Such an equation can be obtained

by rewriting (6.15), as follows.

Recall first that here I and H are each (2m)x(2m). Then write (6.15)

as

(6.16a)

We wish to reorder the extended horizontal vector into the form

in which the first two vectors are the response vectors and the second two are

the incident vectors. This can be accomplished by the following matrix

mapping of the two kinds of vectors, above:

. lli 0+ - + - 0 I[A (y;1), A (y;1), A (x,!), A (x,!)] I 0-p -p -p -p
o 0

The 0 and I elements of the matrix operator are each mxm matrices. We can

partition this matrix operator as
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where !l and !2 are each (2m)x(2m). Now observe that

so that p2 can be inserted into (6.l6a):

Performing the indicated multiplications of P acting to the left and to the

right yields

Expanding this equation gives

or

[~;(X;l), ~;(y;t)] = [!;(y;l), ~;(x;t)][!2 ~(x,y;l) - !1][!2-!1 ~(x,y;l)]-l

(6.l6b)

which gives the desired reordering of the amplitude vectors.

We define
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The continuity of !(y;l) guarantees the existence

of the inverse in the definition of ~(x,y;l). We can partition ~(x,y;l) as

~(x,y;l)

where the Rand T matrices are defined in context and are each mxm. They are

termed, respectively, the standard reflectance and standard transmittance

matrices. These matrices may be defined explicitly by performing the

indicated operations in (6.17). First, we define four mxm submatrices of

~(x,y;l) in context by writing

(6.18)

Then we find from (6.17) that (cf. H.O., Vol. IV, p. 43)

!(y,x;l) = ~l(x,y;lI.) ~+_(x,y;l) (6.17a)- +

.!(x,y;l) = ~__(x,y;l) - ~_+(x,y;l) !;~(x,y;l) ~+_(x,y;l) (6.l7b)

.!(y,x;l) = !;~(x,y;l) (6.l7e>

!(x,y;l) = -!_+(x,y;1) ~:;~(x,y;l) (6.17d)

From (6.11) it is clear that, for 1I. = O, ••• ,n,

~++(x,X;l) = ~__ (x,x,;lI.) = I

~+_(x,X;l) = H_+(X,x;lI.) =Q

(mxm)

(mxm)

(6.l7e)

(6.l7£)

By what we have just observed about H(x,y;l), at y = x we have
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!.(x,x;l.) = I

!(x,x;l.) = 0

which express the intuitively clear idea that a water slab of zero thickness

has unit transmittance and zero reflectance. Observe that the Rand T

matrices are independent of p = 1 or 2. Therefore, (6.16b) can be written

+[A (y;I.),
-p

_ ~T(Y'X;I.)
A (x;I.)]
-p !(x,y;l.)

Expanding this equation gives the global interaction equations for the slab

X[x,y] and azimuthal spectral indexes I. = O, ••• ,n:

+ +
!.(y,x;l.) + A-(x;l.) !(x,y;1) (6.19)A (x;l.) = A (y;l.)

-p -p -p

A-(y;l.) +
!(y,x;1) + A-(x;1) !.(x,y;1)= A (y;l.) (6.20)-p -p -p

for the cases p = 1 or 2.

An analogous development can be made for slab X(y,x]

with A (y;1) = A (z;l.) M(z,y;l.) as the starting point. Moreover,
-p -p -

representations analogous to (6.11a-d) can be made. We then obtain the global

interaction equations for the slab X[y,z]:

+A (y;l.)
-p

A-(z;1)
-p

= A+(z;1) _T(z,y;l.) + A-(y;1) _R(y,z;l.)
-p -p

= A+(z;l.) _R(z,y;1) + A-(y;1) _T(y,z;1)
-p -p

(6.21)

(6.22)

where !.(z,z;1) = I and ~(z,z;1) = o.
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The Rand T matrices for X[x,y] or X[y,z] therefore can be evaluated at

once using (6.17) or its analogs for X[y,x], knowing the fundamental operators

~(x,y;1) or ~(y,z;1), r~spectively. However, except for (6.17c),we will use

a numerically more expedient procedure, to be outlined in paragraph f,

below. The exception, wherein we use (6.17c), will occur in §10.

For future reference, these analogs for the slab X[y,z), are

!(y,z;1) = !:':(z,y;1) ~_+(z,y;1) (6.2la)

!(z,y;1) = ~++(z,y;1) - ~+_(z,y;l.) ~:':(z,y;1) ~_+(z,y;1) (6.2lb)

!(y,z;1) = ~:':(z,y;1) (6.2lc)

!(z,y;1) = -H+_(z,y;1) H:~(z,y;l.) (6.2ld)

The standard transmittance and reflectance operators, in (6.19) and

(6.20) describe the transmittance and reflectance of the entire slab X[x,y),

and thus carry two depth arguments to show the slab in question. The order of

the depth arguments, e.g. T(y,x;1) vs. T(x,y;1), is related to the direction

in which the photons are traveling. Thus in (6.19) we see that the upward

(response) amplitude ~;(X;1) at the top of slab X[x,y) is equal to the upward

(incident) amplitude A;(y;1) at the bottom of the slab, as transmitted through

the slab from y to x, plus the downward (incident) amplitude A;(X;1) at the

top of the slab, as reflected by the entire slab between x and y. Analogous

interpretations hold for (6.21) and (6.22). This notation is designed to be

intuitively clear and allows us to write down by inspection the global

interaction equations for arbitrary slabs.

We also note that equations such as (6.19)-(6.22), which hold for each

azimuthal spectral I. value independently, are easily written in a form which

incorporates all I.-modes together. To do this, we concatenate the lxm

vectors A+(x;1), 1=0,1, ••• ,n, into a lxm(n+l) vector A+(x) via
-p -p

115



+
A (x)
-p

§6

+ + +
_ [A (x;O), A (x;l),···,A (x;n)j-p -p -p

(6.23)

r

with corresponding definitions for the other amplitude vectors. Likewise we

define an m(n+l) x m(n+l) block-diagonal matrix

!(y,x;O) 0 0 0

0 !(y,x;l) 0 0

!(y,x) - (6.24)

0 !(y,x;n)

with corresponding definitions for the other Rand T arrays. Then (6.l9) can

be written

+A (x) =
-p

1 x m(n+l) • (6.25)

x S Y s z

If the water itself were an anisotropic scattering medium, then the full form

(6.25) would be required for the interior slab X[x,y], since the l-modes would

not decouple and thus !(y,x) and the other related matrices would not -be

block-diagonal. We shall retain where possible the explicit l-mode notation,

as in (6.l9), in order to emphasize the simplifications obtained from the

scattering isotropy of the water body. When developing global interaction

equations for the surface boundary slab X[a,x], we will find that the full

matrix form, as in (6.25), is required due to the scattering anisotropy of the

upper boundary. Our notation thus highlights the effects of the model

assumptions about an isotropic medium with an anisotropic boundary.
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d. Invariant Imbedding Equations - Imbed Rules

Useful rules for finding the radiance amplitudes within a slab, knowing

the incident amplitudes, can be derived from the global interaction

equations. Consider a general slab X[x,z) composed of slabs X[x,y) and

X[y,z). These subs1abs may be surfaces or bodies of water. The results below

will show how to find the radiance distribution at level y knowing the

distributions at x and z. The global interaction equations for X[x,y] are

glven by (6.19) and (6.20), and the corresponding equations for X(y,z) are

given by (6.21) and (6.22). We now solve these equations for A+(y;l) and-p

~;(Y;l), the amplitudes at the level y between the two slabs X[x,y) and

X[y,z), using, say, (6.20) to replace ~;(Y;l) in (6.21):

This equation yields

or

+A (y;l)
-p

+= ~p(Z;l) !(z,y;l)[! - !(y,x;l) !(y,Z;l)]-l

+ !;(X;l) !(x,y;l) !(y,z;l)[! - !(y,x;l) !(y,z;l)]-l

+ + -A (y;l) = A (z;l) T(z,y,x;l) + A (x;l) _R(x,y,z;l) ,-p -p - -p

a ~ x ~ y ~ z ~ b

(6.28)

for 1 = O, ••• ,n and p = 1 or 2, where the complete transmittance and complete

reflectance functions are defined by
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and

!(x,y,z;l) = !(x,y;l) !(y,z;l)[! - !(y,x;l) !(y,z;l)]-t

=!(X,y;l)[! - !(y,z;l) !(y,x;l)]-t !(y,z;l) •

(6.29)

(6.30)

The last equation results from use of the matrix identity ~(! - Y~)-t =
(! - ~ y)-t~. Substituting ~;(Y;l) from (6.21) into (6.20) and solving for

~;(Y;l) yields, for 1 = O, ••• ,n, and p = 1, or 2:

(6.31)

a ~ x ~ y ~ z ~ b

for 1 = O, ••• ,n and p = 1 or 2, where

(6.32)

and

(6.33)

Equations (6.28) and (6.31) are the invariant imbedding equations, or imbed

rules, which relate the response amplitudes at any level y within a slab to

the incident amplitudes at the boundaries x and z of the slab (cf.
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Preisendorfer, 1958, 1961. For a recent application, see Preisendorfer and

Mobley, 1984). Note that the complete Rand! functions require three depth

arguments in order to specify the slab boundaries x and z, and the

intermediate level, y. The orders of these arguments, (x,y,z) or (z,y,x),

once again serve to keep in mind the various directions of photon travel

ultimately making up a reflection or transmission.

The i-mode invariant imbedding equations can be written so as to

incorporate all i-modes together, just as was done for (6.19) via (6.23) and

(6.24) to get (6.25). Then (6.28) and (6.31) read, for p = 1 or 2:

+ A+(z) !(z,y,x) + A-(x) !(x,y,z) (6.34)A (y) =-p -p -p

and

A-(y) +
!(z,y,x) + A-(x) !(x,y,z) (6.35)= A (z) ,

-p -p -p

a S x S y S z S b

where the amplitude vectors are now 1 x m(n+l) and the complete reflectance

and transmittances matrices are m(n+l) x m(n+l) block diagonal matrices.

The invariant imbedding equations will find their application in §7

below, where we assemble the final solution from its constituent parts.

e. Partition Relations - Union Rules

The partition relations we derive here serve to give the standard

reflectance and transmittance matrix operators for the union of two contiguous

slabs in the natural hydrosol, knowing these operators for each part of the

union (cf. Fig. 1).

Thus suppose we have the four matrix operators each for X[x,y) and for

X[y,z), a ~ x S y ~ z S b. We wish to find the four operators for
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X[x,z) = X[x,y] U X[y,z]. We seek ~(x,z;I), !(z,x;I), and ~(z,x;I), T(x,z;l)

such that

+ + !(z,x;l) + A-(x;l) !(x,z;l)A (x;l) = A (z;l)-p -p -p

and

A-(z;l) + !(z,x;l) + A-(x;l) !(x,z;l)= A (z;l)-p -p -p

(6.36)

(6.37)

Now, starting with global interaction equation (6.19) we replace ~;(Y;I) there

by means of the representation of ~;(Y;I) given by the imbed rule (6.28):

!;(X;I) = [!;(Z;I) !(z,y,x;l) + !;(X;I) !(x,y,z;I»)!(y,x;l)

+ A-(x;l) R(x,y;l)
-p -

which, on collecting coefficients of the incident amplitudes on X[x,z),

becomes

+
A (xa)-p

+=A (z;I)[T(z,y,x;l) T(y,x;I»)
-p - -

+ !;(X;I)[!(x,y;l) + !(x,y,z;l) !(y,x;I)] (6.38)

Since both (6.36) and (6.38) are general descriptions of the response

amplitude ~;(X;I) of the slab X[x,z] subject to arbitrary incident amplitudes

- +
~p(X;I), ~p(Z;I), we conclude that for 1 = O, ••• ,n,

!(z,x;l) = !(z,y,x;l) !(y,x;l)

~(x,z;l) =!(x,y;l) + ~(x,y,z;l) !(y,x;l)

a ~ x ~ y ~ z ~ b
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In like manner, now starting with global interaction equation (6.22) and

replacing ~;(y;t) there by means of imbed rule (6.31) and comparing the result

with (6.37), we find for t = O, ••• ,n:

!(x,z;t) = !(x,y,z;l) !(y,z;l)

!(z,x;l) =!(z,y;t) + ~(z,y,x;l) !(y,z;t)

a ~ x S y S z ~ b

Equations (6.39)-(6.42) are the union rules for finding the !'! quartet

(6.41)

(6.42)

associated with X[x,z) knowing each of the quartets for X[x,y) and X[y,z).

f. Riccati Equations for the Standard Operators

The global interaction equations and the invariant imbedding equations

all involve the various standard reflectance and transmittance operators. We

now derive a set of differential equations governing the! and T operators

within the water column X[x,z), and show how these equations can be integrated

to obtain the needed Rand! operators.

Consider the slab X[x,y), and the associated global interaction equation

(6.20):

Differentiating this equation with respect to y gives

dy

+
d~p(Y;l) + d!(y,x;l) d!(x,y;l)

= ---~--- _R(y,x;l) + A (y;l) + A-(x;l)
dy -p dy p dy
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The local interaction equation (5.29) can be used to replace the derivatives

of the amplitudes:

+A (y;l.)
-p

The two occurrences of ~;(y;l.) in the last equation can be replaced V1a the

global interaction equation (6.20). On rearranging the result, we find

This equation must hold for arbitrary incident amplitudes ~;(x;J.) and ~;(y;J.)

on the slab X[x,y]. Therefore the coefficients of the incident amplitudes

must be individually zero, from which we obtain (6.43) and (6.44), below.

Repeating this procedure beginning with (6.19) yields (6.45) and (6.46),

below, for I. = O, ••• ,n; and x ~ y ~ z:
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:y !(y,x;l) = [i(y;l) + !(y;l) !(y,x;l)] + !(Y'X;l)~(Y;l) + i(y;1) !(y,X;l2]

(6.43)

We recall from the defining equation for the standard operators that

!(x,x;l) = a and !(x,x;1) = I , for 1 = O, ••• ,n.

(6.44)

(6.45)

(6.46)

(6.47)

The Riccati equations (6.43)-(6.46) are called the downward Riccati

quartet, since they can be simultaneously integrated with a downward sweep

from x to any depth y, x S y S z, beginning with the initial conditions

(6.47). Note that the ~(y,l) and i(y;l) matrices (defined in (5.21) and

(5.24» are in general different for different azimuthal spectral 1 values, so

that !(y,x;l), !(x,y;l), etc., also depend on 1, even though the initial

conditions are independent of 1.

Now consider the slab X[y,z]. We can differentiate the global

interaction equations (6.21) and (6.22) with respect to y and, following the

procedure leading to (6.43)-(6.46), eventually arrive at the upward Riccati

quartet for each 1 = O, ••• ,n; and x S y S z:
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- :y !(y,z;l) = [~(y;l) + !(y;l) !(y,z;l)] + !(Y'Z;l)~(Y;l) + ~(y;l) !(y,Z;l2]

(6.48)

- :y !(z,y;l) = !(Z,y;l)~(Y;l) + ~(y;l) !(y,Z;l2] (6.49)

d
- dy !(y,z;l) =

d ( ) =- dy ! z,y;l

(6.50)

(6.51)

with the initial conditions

!(z,z;l) = 0 and !(z,z;l) = I , for 1 = O, ••• ,n. (6.52)

Equations (6.48)-(6.51) can be integrated 1n an upward sweep from z to x, with

initial conditions given by (6.52).

The Riccati equation quartets (6.43)-(6.46) and (6.48)-(6.51) are the

heart of the Natural Hydrosol Hodel's solution procedure. In particular the

two pairs (6.43), (6.44) and (6.48), (6.49) are the main workhorses in this

study. These two pairs of equations are integrated by n+1 independent

downward and upward sweeps: one sweep in each direction for each 1 v~lue,

1 = 0,1, ••• ,n. The equations are numerically well behaved in the sense that

there is no possibility of a solution growing exponentially with depth

(physical reflectances and transmittances are bounded by 0 and 1, so their

spectral equivalents are also bounded). By using a sufficiently small step

increment Ay and a high-order integration scheme (e.g., a sixth order Runge-

Kutta algorithm), the standard reflectances and transmittances can be obtained

with any desired degree of accuracy. The Rand! arrays need be saved only

for a prechosen set of y values, x = Y1 $ Y2 $ .•. $ yq = z, where final

output of the radiance field is desired.
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(6.53)
n n

A-(x;l) = L A+(x;k) r (x,a;kll) + L A-(ajk) t (a,x;kll)
-p k=O -p -p k=O -p -p

(k+l even) (k+l even)

* For an application of the Riccatian quartets to linear hydrodynamics, see
Preisendorfer, 1975, pp. 62-63. Once again the power of the transport
solution procedure applied to systems of linear differential equations is
evident.

Recall eq. (5.44) which gives one of the surface boundary conditions on

The power of the Riccati equations in the present hydrosol model is

with corresponding definitions for A-(a) and A+(x). Also define an-p -p

m(n+l) x m(n+l) transmittance matrix using blocks of the form !p(a,x;kll):

where p = 1 or 2 and 1 = O,l, ••• ,n. The amplitude vectors in (6.53) are lxm

the amplitudes:

g. Global Interaction Equations for the Surface Boundary

particular we are able to avoid coupling with the anisotropic surface until

X[x,z] with the boundary conditions for slabs X[a,x] and X[z,b] in order to

obtain a complete solution for the entire water body.

the last minute. We thus first solve the radiative transfer equation for a

surface and bottom boundary conditions to be imposed on the water body.* In

(recall (5.22) and (5.25» and the! and r matrices are mxm (recall (5.41) and

(5.43». Now define 1 x m(n+l) amplitude vectors as in (6.23), i.e•.

"bare slab" X[x,z]. It then remains to couple this interior solution for slab

within the water body itself, without any consideration whatsoever of the

revealed by noting that they allow us to solve the radiative transfer problem
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(6.54)

t (a,x;OIO) 0 t (a,x;OI2) 0
-p -p

° t (a,x;110 0 t (a,x;113)
-p p

t (a,x;2Io) 0 t (a,x;212) 0p -p

t (a,x;Oln)
-p

o

t (a,x;2,n)
p •

t (a,x;nIO)
:-P

o t (a,x; In,2)
p

o t (a,x;nln)
-p

The matrix !p(a,x) is a block matrix with a checkerboard pattern of mxm zero

and non-zero blocks, the details of which were seen in Tables 1 and 2. With a

similar definition for !p(x,a), (6.53) becomes, for boundary X[a,x]

Likewise, boundary condition (5.45) for boundary X[a,x] can be written

(6.55)

(6.56)

Comparison of (6.56) with (6.25) shows that the matrix version of this upper

boundary condition is formally just like the global interaction equation for a

water slab X[x,y]. But unlike (6.25), which decomposes into the individual

mode equations (6.19) and thus holds for each t value separately, (6.56)

incorporates all t-modes into the same equation and cannot be further

decomposed since !p(x,a) and !p(a,x) are not block-diagonal. Corresponding

comments apply to (6.55). The computer code handling of (6.55) and (6.56) is

discussed in §12b, below.
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A

We see that the upper surface transmittance and reflectance arrays !p and

!p are acting like standard! and! operators but now for the infinitesimally

thin slab X[a,s] which constitutes the upper boundary. The operators !p and

!p for the surface boundary are now order m(n+l) square matrices, due to the

coupling of the l-modes; and, moreover, they depend on p.

h. Global Interaction Equation for the Bottom Boundary

The bottom boundary condition (5.52), i.e.,

(6.57)

is much simpler than the corresponding upper boundary equations (5.44) and

(5.45) for the air-water surface. From (6.57) with the help of (5.54) (for

the case of a matte bottom) or the results of §lO (for the case b = m), we

immediately identify the required standard reflectance operator for the lower

boundary slab X[z,b):

R (z,b;l) _ r (z,b;l) , 1 = O, ••• ,n.
-p -p

(6.58)

Since X[z,b] is defined to be opaque in all cases we consider here, it follows

that the remaining three Rand ! operators need not be defined for the present

hydrosol model.

In the solution procedure of the present model (in §7b.4) it will be

required to find the reflectance !p(y,b;l) of the composite slab

X[y,b) = X[y,z) U X[z,b] as seen from the water side for all y, x S y S z. We

can find an explicit formula for !p(y,b;l), for x S y S z, using the union

rule (6.40) along with (6.30) applied to this case by replacing the arguments

(x,y,z) with (y,z,b), respectively. The desired result is
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R (y,b;1) =_R(y,z;1) + T(y,z;1)[I - r (z,b;1) R(z,y;1)]-1 r (z,b;1) _T(z,y;l)
-p - - -p - -p

(6.59)

for any y in the range x ~ y ~ z. We will now show how to simplify the task

of finding !p(y,b;1). Two facts about this formula are of interest here:

(0 R (y,b;1) • r (z,b;1) as y • z
-p -p

R (y,b;1), as a function of y, obeys (6.48) for each fixed p, b,
-p

and 1.

Property (i) follows by inspection of (6.59), using the continuity of the!

and! matrices with respect to y, and initial conditions (6.52) for the upward

Riccati quartet (6.48)-(6.51). Property (ii) is either immediately obvious on

physical grounds (think of the photons sensing the change of !p(y,b;l) through

the incremental growth of X[y,b] at level y) or it is not. In the latter

case, one verifies the assertion by differentiating (6.59) with respect to y,

and then reducing the derivatives of the Rand T matrices using all four

members of the upward Riccati quartet (6.48)-(6.51).

As a consequence of these observations, we may generate !p(y,b;l) by

simply sweeping (6.48) upward with the initial condition (6.58).
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7. SOLUTION PROCEDURES FOR THE NATURAL HYDROSOL MODEL

We are finally in a position to numerically solve the present Natural

Hydrosol Model for the radiance distribution throughout the water column,

given (1) an input radiance distribution from the sky, (2) the various

reflectance and transmittance operators which describe the upper and lower

boundaries, and (3) the scattering and absorption functions which describe the

water itself.

a. Initial Calculations

When faced with a physical setting in a lake or sea, for which we would

like to compute the radiance distribution, we must first choose the quad

resolution. As discussed in §3a, we must pick m and n, so that the unit

sphere E is partitioned into 2m latitude bands and 2n longitude bands, as 1n

Figs. 3 and 4. Of course, the larger m and n are, the better is the angular

resolution of the solution radiance N±(y;u,v), but the more expensive are the

computations. Storage and computation requirements generally depend on m2n 2 ,

so doubling the angular or quad resolution in both the ~ and' directions

results in a factor of 16 increase in computer requirements. Once m and n are

chosen, we must pick a particular algorithm for determining the quad size A~u'

u = 1,2, ••• ,m, as discussed in §3a. Thus the first task of the program is

(1) Given: Values of m and n and the desired type of quad

partitioning.

Compute: The layout of the quads Quv on the unit sphere E.

After the directional resolution of the Natural Hydrosol Model has been

fixed in the manner just described, the next order of business is the

determination of the upper surface transmittance and reflectance arrays:

(2) Given: The wind speed over the water surface.
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Compute: The four quad-averaged transmittance and reflectance

functions t(a,x;r,slu,v), etc., using the ray-tracing technique

of §9, below, and equations (9.1) and (9.7) therein.

Compute: The spectral forms t (a,x;kli), etc., using (S.31b),
-p

(5.32), (5.34) and (5.36).

The computations of initial step (2) form a major part of the work in the

Natural Hydrosol Model. The determination of the reflectance at the bottom

boundary is much easier:

(3) Given: The desired type of bottom boundary--either matte or

infinitely deep and homogeneous.

Compute: The spectral reflectance matrix for the bottom boundary,

!p(z,b;i).

(a) If the bottom is a matte surface, use (5.50), (5.51) and (5.53).

(b) If the bottom boundary X[z,b] represents an infinitely deep,

homogeneous water column, use (10.8) and (10.9).

We next prepare the input radiances:

(4) Given: A sky radiance distribution incident on the water surface,

N(a;~) - N(a;p,.), -1 ~ p < 0, as. < 2w

Compute: The quad-averaged radiances N-(a;u,v), using (3.3).

Compute: The incident radiance amplitudes ~;(a;l), using (4.8),

(4.9) and (5.22), (5.25), (5.27).

The final initialization task is the processing of the volume scattering

and volume attenuation functions which describe the water column itself:

(5) Given: The volume scattering function a(y;~';~) =
s(y)p(y;p',.';P,.) and the volume attenuation function a(y) for

the water column, x S y S z.
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Compute: The scattering-attenuation ratio w(y) = s(y)/a(y) and the

quad-averaged phase function p(y;r,slu,v), using (3.11) as

evaluated in (11.3).
+

Compute: The spectral phase functions p-(y;r,ull) using (S.Sb) as

specialized in (S.6a)-(S.6d).

The volume scattering function a and volume attenuation function a may in

some cases be g1ven as functions of the optical depth y. This is likely to be

the case if a and a are analytic functions, based perhaps on theoretical

work. On the other hand, an experimenter measures optical properties as a

function of the geometric depth t. Thus a set of optical properties measured

at geometric depths must be converted into optical depth form before being

used as input to the Natural Hydrosol Hodel. This conversion is easily made

by integrating the equation which defines the optical depth y:

(7.1)

where aCt) is the (measured or given) volume attenuation function at geometric

depth t.

Let aCt) be given at a set of geometric depths tl,t2, ... ,tZGEO. Then

the simplest approach to integrating (7.1) is to assume that aCt) varies

linearly with t between each (ti,ti+l) pair of points, that aCt) = a(tl) if

t ~ tl, and that aCt) = a(tZGEO) if t ~ tZGEO. One could also use a more

sophisticated approach, such as spline fitting, to define a continuous aCt)

from the measured set of a(ti) values. With the linear assumption, aCt) has

the form aCt) = ai + bit for ti ~ t < ti+l' i = O,l, ••• ,ZGEO, where to = x and

tZGEO+l = Z. Integrating (7.1) with the linear form of aCt) gives
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y(t) = a·t + ~b.t2 + [y(t.) - a·t· - ~b.t~] ,1 1 111 1 1

where ti S t s ti+l' and where

~(ti+1J - «(ti~ a(t i +1) - a(t.)
a(t.) b. 1a. = - t· =1 1 1 t. 1 - t. 1 t i +1 - t.1+ 1 1

(7.2)

Equation (7.2) can be used to find the optical depths at which the measured

scattering and attenuation functions are given.

We thus consider w(y) and p±(y;r,sI1), as computed above, to be known at

a discrete set of optical depths Yi' i = 1,2, ••• ,YOP, where in the notation of

Fig. 1, x S Y1 < Y2 < ••• < YYOP ~ z.

We note that steps (2)-(5) above are independent. Therefore we can

perform these initial computations and save the results for several selected

wind speeds, bottom boundary types, incident radiance distributions, and water

types. Then a great many radiance solutions can be obtained from the various

combinations of the above inputs, without having to repeat the initial

computations. In practice, the computation of the surface boundary spectral

arrays in step (2) is especially expensive, and step (5) mayor may not be

expensive, depending on the nature of the scattering function. Steps (3) and

(4) are trivial in cost, so that it is generally more convenient to repeat

these calculations with each model run than it is to save their results.

In summary, we now have available the following quantities:

~-(a;1) , a lxm incident radiance matrix for each 1-mode (1=0,1, ••• ,n).

t (a,x;kI1), an mxm surface transmittance matrix for each p value,-p

p = 1,2; and for those k and 1 values for which (k+1) is even (k and

1 = O, ••• ,n), and likewise we have the remaining air-water surface

112



§7

!p(z,b;I), an mxm bottom reflectance matrix for each p andt value,

p = 1,2; I = O, ••• ,n.

a(Yi)' the volume attenuation function on a set of optical depths Yi'

1 = 1,2, ••• ,YOP.

p±(Yi;r,ull), the phase function amplitudes on the set of optical depths

Yi' and for r,u = 1,2, ••• ,m, and 1 = O, ••• ,n.

b. Assembling the Solution

We are now prepared to enter the main solution algorithm. At this point

we must select a set of depths Yj' j = 1,2, ••• ,YOUT, where we wish to save the

model output for later displays and finding of derived quantities. We fix the

endpoints at x and z, i.e., x = Y1 < Y2 < ••• < YYOUT-l < YYOUT =z, but

otherwise the internal depths Yj are arbitrary. Hote that the set of depths

Yj where model output is desired is independent of the depths Yi where the

inherent optical properties of the water are specified. Figure 6 compares the

various depths which have been referenced in the preceding paragraphs.

We now proceed to integrate the Riccati equations for each I-mode. We

enter a loop over all t values, 1 =0,1, ••• ,n, where for each 1 value the

following computations are performed.

(1) Compute p(y.;I) and ~(y.;I) using (S.20b-e).
- 1 - 1

The arrays are

computed at each Yi level where the optical properties a(Yi) and

+
p-(Yi;r,ult) are known, i = 1, ••• ,YOP.

(2) Obtain !l(z,b;t) for the desired bottom boundary. This array may

have been previously computed in step 7a.3, or it may be computed at

this time.

(3) Integrate the Riccati equations (6.43) and (6.44) with initial

conditions (6.47), in a downward sweep from x to z. The integration
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•••

• Y2
=
•••••• •:
• Yj

0----......• ED Yi{ by } =_ linear _ EEl

(I + I 0 --t by. j . interpolation-
Integratlon .... Yj + I

• 0«7.1) -. ED Yi + I
•• ••

•

l )--....~....--

{ZGEO 0 --- ___
"ED Yvop

==
.... YVOUT-I
!!!i55
===

Figure 6.-~Comparison of the three sets of depths referred to in the NHM. To
the left the Itolt symbol shows the geometric depths where attenuation and
scattering functions are measured, and in the center 1t~1t shows the
corresponding optical depths. To the right, the It_It symbol shows the
optical depths where the Riccati equation solution routine requires
values of the local reflectance and transmittance matrices P and i and
Ite lt shows the optical depths where the final radiance solution is to be
obtained.
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requires that ~(y;1) and !(y;1) be continuous functions of y. Such

continuous functions are defined as needed by linear interpolation

of the known p(y.;1) and i(y.;l), which were computed in step (1)
- 1 - 1

above for the discrete set of y values, Yi' i = 1,2, ••• ,YOP. The

interpolation is done element by element; thus for example

where Yi $ Y $ Yi+l. The results of the integration, ~(Yj,X;1) and

!(X'Yj;1), are saved at each optical depth Yj' j = 1,2, ••• ,YOUT,

where the solution field is desired.

(4) Integrate the Riccati equation (6.48) with initial condition

Rp(z,b;l) = r p(z,b;l) (cf. eq. (6.58» in an upward sweep from z to

x for p = 1,2. The results Rp(Yj,b;l) are saved for 1 = O, ••• ,n and

p = 1 and 2, at each Yj level where the final output is desired.

There are two types of bottom boundary that may be considered. (i)

The matte bottom at a finite depth z below x. In this case, as seen

in (5.54), only the 1 = 0 case for rl(z,b;O) is nontrivial." The

Riccati equation (6.48) need be integrated only with rl(z,b;O) as

initial condition. Thus we need find only ~l(Yj,b;O) at various

levels Yj' (since !1(Yj,b;1) = Q, 1 = l, ••• ,n) and we see also that

~2(Yj,b;1) : Q, 1 = O, ••• ,n; in the case of a matte lower

boundary. (ii) The medium X[z,~l constitutes the homogeneous region

below the boundary plane at level z. The initial matrices !p(z,m;l)

needed here are described in (10.8) and (10.9), and in the

discussion below (10.9).
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As we cycle through steps (1)-(4) of this l-mode loop, we save the

matrices !(Yj,x;l), !(x'Yj;l), !l(Yj,b;l) and !2(Yj,b;l) for each Yj and 1

value. At this point we now know the standard reflectance and transmittance

operators for each y. level, from x to z, where output is desired.
J

The invariant imbedding rule (6.35) written for the three levels (a,x,b),

and which incorporates all modes at once, is

Note that Slnce the boundary surfaces X[a,x] and X[z,b] are involved, ~ and T

are in general different for the p = 1 (cosine) and p = 2 (sine) cases.

However, there is no light incident from below on the bottom boundary, that

is, A+(b) = 0; and we are left with just
-p -

or

= A-(a) T (a,x) [I - R (x,b) R (x,a)]-l ,-p -p - -p -p

Here we have used (6.33) to write the complete transmittance in terms of the

standard transmittance and reflectance operators. Since !p(a,x) and !p(x,a)

refer to the upper surface boundary, we can write the last equation as

= A-(a) t (a,x) [I - R (x,b) r (x,a)]-l •
-p -p - -p -p (7.3)

Since (7.3) is written for levels (a,x,b) and involves the anisotropic surface

X[a,x], this equation of necessity involves all t-modes and does not decouple

as does the corresponding equation (6.35), when interpreted. as written for
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levels (x,y,z) in the water column. R (x,b) 1S an m(n+l) x m(n+l) block­-p

diagonal matrix composed of the mxm matrices !p(x,b;l), as in (6.24). Since

the dimensions of the matrices in (7.3) are quite large, finding the indicated

inverse could be numerically troublesome. However, the matrices are sparse

and their elements are bounded, so we can expect that the approximation

[I - R (x,b) r (x,a)]-l = I +
- -p -p -

J

L
j=l

[R (x,b) r (x,a)]i
-p -p

(7.4)

should give an acceptably accurate inverse with only a few terms in the sum.

In practice, J = 3 or 4 gives quite good results. The computer code handling

of (7.3) and (7.4) is discussed in §12b, below.

A brief comment on (6.55) and (7.3) is perhaps justified; both equations

give !;(x), but in apparently different forms. Equation (6.55) is a boundary

condition relating the final solution amplitudes !;(x) to !;(a) and !;(x),

whereas (7.3) relates !;(x) to !;(a) only. At this step of the solution

procedure, !;(x) is not yet known, so (7.3) is the only available means of

obtaining !;(x). The two forms of !;(x) are however equivalent, as is easily

shown by substituting the form of A;(x) from step 5 below into (6.55) in order

to obtain (7.3). The powers of j in the expansion (7.4) can in fact &e

interpreted physically as the higher order scattering contributions to the

total solution. The zero order term of (7.3), A-(a) t (a,x), is just the-p -p

direct beam, or unscattered, contribution of A-(a) to A-(x). Values of J = 3-p -p

or 4 used in (7.4) represent 6th and 8th order scattering, respectively.

(5) Compute !;(x) for p = 1,2 from (7.3) and (7.4).

The invariant imbedding equation (6.34) now written for (a,x,b) is

+ + -A (x) = A (b) T (b,x,a} + A (a) R (a,x,b) ,
-p -p -p -p-p
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which, since ~;(b) = Q, reduces to

where ~p(a,x,b) has been written out using its definition (6.30), and !p(a,x)

and ~p(x,a) have been written in their specific boundary value forms. But

from (7.3), we see that this last equation is just

+A (x) =
-p

(J .5a)

and since ~p(x,b) is block diagonal, this equation decouples to

The next step of the solution is then

(J.5b)

(6) Compute ~;(x;t) for p = 1,2 and for each t-mode, using (7.Sb).

At this stage of the solution we have the upward and downward amplitudes

just below the water surface, at y =x, and the effects of the anisotropic

surface have been fully accounted for. We can now find the amplitudes within

the water column, x < y ~ z, using the invariant imbedding relations written

for levels (x~y,b). From (6.31) we have

which, Since ~;(b;t) = 0, reduces to (cf. 6.33)
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= A-(x;t) T(x,y;t)[I - R (y,b;t) R (y,x,;t)]-l
-p - - -p -p

(7.6)

for t = O, ••• ,n.

Since levels (x,y,b) involve only the isotropic water and the isotropic lower

boundary, the I-modes decouple and this form of the imbed rule can be

evaluated separately for each t-mode. The T and R matrices in (7.6) are known

from the Riccati equation integrations. Thus we are ready to

(7) Compute ~;(Yj;t) for p = 1,2, using (7.6), for each interior y

level, Y2,Y3'···'YYOUT = z, where final output is desired, and for

each t-mode.

The invariant imbedding rule (6.28) now written for levels (x,y,b) is

+ + -A (y;t) = A (b;t) T (b,y,x;t) + A (x;l) R (x,y,b;t) ,
-p -p -p -p-p

which, since ~;(b;t) = ~, reduces to (cf. 6.30)

A+(y;t) = A-(x;l) T(x,y;t)[I - R (y,b;t) R (y,x;t)]-l R (y,b;l)
-p -p - - -p -p -p

or, by (7.6), to

0.7)

for t = O, ••• ,n.

The next step is then

(8) Compute A+(YJ";t) for p = 1,2 using (7.7), for each interior y level,-p

Y2'Y3' ••• 'YYOUT = z, where final output is desired, and for each

t-mode.
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incident amplitudes ...
A- (a; I) from 7a(2)

upper boundary
spectral arrays
i(3o x), etc from 7a(4)

lower boundary
spectral arrays
t(z, b; I) from 7a(3)

inherent optical
properties a (YI) and -
P±(Y\; r, u/I) from
7a(5)

r1- 0 I
t

compute e(YI; t) and ~ (Y\; t)
for all Yl using (5.20b) - (5.20e)

+
obtain rp(z, b; I)

+
integrate Riccati eqns
(6.43) and (6.44) in a
downward sweep

t
integrate Riccati eq.
(6.48) in an upward
sweep

+
I I-I + I I

NO
is I> n1

YES

TO STEP 5
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FROM STEP 4

~
compute ~(x) for all
I-modes simulatneously.
using (7.3) and (7A)

t
compute g(x; I) using (7.5b)

t
compute ~(YI; I) for each
YI and I. using (7.6)

+
compute A; (y,; I) for each
y, and I. using (7.7)

t
compute A;(a) for all
I-modes simultaneously.
using (6.56)

+
compute radiances
N±(y; u. y) at all
levels y - a. x. ...• Yl' ••.• z
using (5.3)

(5)

(7)

(8)

(9)

(10)

Figure 7.--Flow chart for the ten-step solution procedure described in §7b.
The incident radiance amplitudes, air-water surface spectral arrays,
bottom boundary spectral arrays, and inherent optical properties of the
water column are computed as in §7a and are assumed known.
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We now have the upward and downward amplitudes at all desired levels in

the water column, x = Yl,Y2'···'Yj'···'YYOUT = z. The only remaining step is

to compute the upward amplitudes at the water surface. This is done using the

appropriate upper surface boundary condition:

(9) Compute ~;(a) for p = 1,2 using (6.56):

The amplitudes ~~(y), i.e., A~(Y;U;l), for u = 1, ••• ,m; and 1 = O, ••• ,n

are now known for all desired depths a, x = Yl,Y2""'Yj,""YYOUT = z. The

only remaining step is to reconstitute the radiance field from these

amplitudes:

+(10) Compute N-(y;u,v), for (u,v) over the respective hemispheres, from

(5.3), at all required depths Y = a, x = Yl, Y2' ••• 'Yj' ••• 'YYOUT = z.

The solution is now complete. The above steps are graphically summarized

in Fig. 7.
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8. DERIVED QUANTITIES

There are a number of interesting quantities which can be computed from

the quad-averaged radiances of the present Natural Hydrosol Model. Among

these are the various irradiances, irradiance reflectances, distribution

functions, K-functions, backward and forward scattering functions, and

eccentricities. Also, various checks on the present numerical radiance model

itself can be made. In particular we can make certain that our solution

radiances satisfy the radiative transfer equation. Moreover, graphical output

of the radiance distribution can be displayed as functions of depth y, polar

angle 9, and azimuthal angle ., for various choices of wavelength of

photons. In this section we list a number of derived quantities, show how

they can be computed from the model output, and explain their significance to

hydrologic optics applications.

a. Balancing the Radiative Transfer Equation

A complex numerical model and the associated computer code are subject to

many types of error. Simply removing all typographical errors from thousands

of lines of code is a major task. As shown in §12, various tricks are used to

store sparse or symmetric arrays, thus creating possibilities for errors in

array indexing. Moreover, the various numerical algorithms may introduce

subtle errors. For example, algorithms for integrating the Riccati

differential equations may introduce errors due to taking too large a step 6y

when performing the upward and downward integration sweeps. Matrix

inversions, or their approximations like (7.4), are another source of purely

numerical error. Therefore, once the solution radiances have been obtained,

the first order of business should be to see that they actually do satisfy the

radiative transfer equation.
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The quad-averaged radiative transfer equation split into separate

equations for the upward and downward components as in (5.2), and rearranged

for a null check, becomes

,
!

+
dN (y;u,v) _ N+(y;u,v) + w(y)

~u dy
~ ~ + + IL L N (y;r,s) p (y;r,s u,v)
r s

(8.1)

+ w(y) LLN-(y;r,s) p-(y;r,slu,v) = 0 ,
r s

for Quv in =+, and

_~ dN (y;u,v) _ N-(y;u,v) + w(y)
u dy

~ ~ + - IL L N (y;r,s) p (y;r,s u,v)
r s

(8.2)

+ w(y) LLN-(y;r,s) p+(y;r,slu,v) = 0 ,
r s

for Quv in _. Recall from (5.2) that by convention ~u > 0 in both (8.1) and

(8.2). The y-derivatives in (8.1) and (8.2) at level Yj can be approximated

by centered differences:

+
d~(y.;u,v)

J
dy

+ +
~(y. l;u,v) - ~(y. l;u,v)

J+ J- (8.3)

For an accurate approximation, the three depths (y. y y. ) should beJ-l' j' J+l

closely spaced optical depths. If the y-levels are too widely spaced, the

approximation (8.3) can give an inaccurate result for the derivative, and thus

a poor balance for the radiative transfer equation, even though the radiances

themselves are quite accurate. When the left hand sides of (8.1) and (8.2)

are evaluated using the solution radiances, the terms will not sum to zero as

indicated, owing to computer roundoff error, if for no other reason. However,
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we expect the net value of the left sides of (8.1) and (8.2) to be small

relative to the individual terms on those sides. We would be in possession of

a good balance if the net values of the left sides of (8.1) and (8.2) are two

to three orders of magnitude smaller than the individual terms comprising

those sides.

Unfortunately, a good balance of the radiative transfer equation does not

guarantee the correctness of the solution radiances. For example, the

radiances can be in error by a constant factor without affecting the radiative

transfer equation. But more subtly, it must be remembered that the solution

radiances are solutions consistent with the computed quad-averaged phase

functions and boundary reflectance and transmittance arrays. If these

quantities are inaccurately evaluated, then the radiances will not be a good

approximation to the true radiances in nature. Evaluation of the quad-

averaged phase function from a given continuous phase function via the

numerical integration of (3.11) is particularly touchy because of the highly

peaked angular dependence of phase functions. This integration is discussed

further in §ll.

b. Irradiances

We have by definition the hemispherical scalar irradiances

+II ~(y;~,~)dg , a ~ x ~ y ~ z ~ b.

-±

These are usually measured by spherical radiant flux collecting surfaces

exposed to the appropriate upper or lower hemisphere of directions of photon

flow. This equation is easily discretized by using (3.4) to replace the

continuous radiance function by its step function form, as was often done in

§3. The result is
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m-l 2n
L L

u=l v=l

+
tr(y;u,v) Quv

+
+ tr(y;m,·) 11

m
(8.4)

An even simpler form is obtained in terms of the radiance amplitudes on using

the representation (5.3). Since the quad solid angles Quv are independent of

v, (8.4) can be reduced to

m

L
u=l

+
A7(y;u;O) Au

u
(8.5)

Note that only the 1 = 0 mode cosine amplitudes contribute to the scalar

irradiance. The total scalar irradiance is defined as

(8.6)

By inserting a cosine directionality factor lui into the equation defining the

scalar irradiances, we obtain the irradiances

- J y S z S b

These are usually measured by flat plate radiant flux collectors exposed to

the appropriate upper or lower hemisphere. Simple derivations lead to the

quad-averaged forms
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~l 2n + +
H±(y) = L L ~(y;u,v) I~ul n + ~(y;m,·) I~ml Q

u=l v=l uv m

which reduces to

m +
H±(y) = 2w L A~(y;u;O) I~ul 6~

u=l u

(8.7)

(8.8)

Note once again that only the 1 = 0 mode contributes to the irradiance. Hence

both scalar irradiances h±(y) and ~orizontal irradiances H±(y) can be

determined by using only the transport theory for zero mode amplitudes (cf.

(5.23), and all statements in §6 for the special case 1 = 0).

A check on the four computed irradiances is given by the divergence

relation for the light field (cf. H.O., Vol. I, p. 62):

Recall that we are working with optical depth y; hence the volume absorption

function takes the form l-w(y). Equation (8.9) can be computed as

[H+(Yj+l) - H_(Yj+l») - [H+(Yj_l) - H_(Yj_l») =

Yj+l - Yj-l
[1 - w(y.»)[h+(y.) +-h (y.») ,

J J - J

(8.10)

where (Yj-l'Yj'Yj+l) are three closely spaced optical depths, with the same

caveat on derivative evaluation as was made for (8.3).

The divergence relation is useful in estimating the local heating rate of

the near-surface water layers in a lake or sea. In this sense it has

potentially important applications to climate prediction, by incorp~rating

these estimates in coupled global circulation models for the atmosphere and

oceans of the world.
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c. Apparent Optical Properties

Once the irradiances H±(y) and the scalar irradiances h±(y) have been

obtained, we can easily compute various apparenc opcical propercies arising in

the two-flow irradiance model of light in natural waters. Some of them are

(cf. H.O., Vol. V, pp. 115-126):*

(1) The distribution functions,

h±(y)

- H±(y) •
(8.11)

(2) The K-functions for irradiance,

(3) The k-functions for hemispherical scalar irradiance,

(4) The reflectance functions for irradiance,

(8.12)

(8.13 )

(8.14)

The NHM can be used to determine the conditions on sun and skylight geometry,

and size of w(y) that tend to make D±(y), K±(y), and R±(y) essentially

* The notation continues to be formed by computer programming needs (see
footnote to (5.3». Ordinarily we would write "D(y,±), h(y,±), H(y,±)",
etc. In the last analysis, however, it is the concept that matters, not
how it is clothed.
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independent of depth. This will have consequences for the validity of the

two-flow model for irradiance fields in natural hydrosols. For example, the

constancy of D±(y) with depth y is an important assumption of the two-flow

irradiance model.

d. Backward and Forward Scattering Functions

The backward scattering, or backscatter, function for the two-flow

irradiance model is defined by (cf. H.O., Vol. V, pp. 10-11)

which can be discretized 1n the usual manner to become

where we define

(8.15)

1 \ \ \ \ + -- h ( ) L L Q L L N-(y;r,s) p (r,slu,v) •
± Y u v uv r s

(8.15a)

Here s(y) is the volume total scattering function of (2.6). £b(y;±) is the

eccentricity function for the backscatter function and generally lies between

o and 1. Note that only the p- phase function appears in (8.15), since ~. and

~ are always in opposite hemispheres. As always, sums over quads are

evaluated as 1n (3.2). In the same fashion, the forward scattering function

for the two-flow irradiance model is defined by
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1 I I +_ doer) doer') lr(y',_r') a(y·,_r"'~)'
H±(y):± i:± i ~ ~ ~

which becomes

f+(y) =!ill- LL0 LL~(y;r,s) p+(r,slu,v)._ H+(y) uv
_ U v r s

where we define

(S.16)

1 t t t t + +- () L L D L L N-(y;r,s) p (r,slu,v) •
h± y u v uv r s

(S.16b)

£f(y;±) is the eccencricicy funccion for forward scattering and generally lies

between 0 and 1. Here only p+ appears, since ~' and ~ are always in the same

hemisphere. A check on these calculations is provided by

and

(S.17)

(8.17a)

which follow from the quad-averaged form (11.5) of the normalization property

There is a close relative of b±(y) that is of particular interest to the

two-flow model for irradiance (cf. Preisendorfer and Mobley, 19S4, Eq. (12»

and that is the mean backscatter coefficient defined by writing
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(S.lS)

It may be the case that, in some media under natural lighting conditions,

b+(y) is nearly equal to b_(y). This will be the case if &b(y;+) • &b(y;-).

When this is so one writes "b(y)" for this common value of b±(y). The present

NHM can explore the likelihood of this possibility. Whenever the NHM verifies

that, to good working order, b+(y) • b_(y), then the procedures of

Preisendorfer and Mobley (19S4) can be used to find the volume absorption

function a(y) and the mean backscatter function b(y) and hence b±(y) of a

natural hydrosol from measurements of the irradiance quartet [h±(y), H±(y)].

When it is the case that b+(y) * b_(y) and when the ratio b+(y)/b_(y) is

unacceptably far from 1, then it may be possible to establish an empirical

link between b+(y) and b_(y) using the NHM.

e. Horizontal Radiances; Horizontal Equilibrium Radiance

The partitioning of the unit sphere : into quads does not have a band of

quads centered at ~ = 0, i.e., on the horizon where 8 = 90°. However, it 1S

often of interest to have the horizontal radiance N(y;O,.) in tabulated

displays. The radiative transfer equation (2.S) with ~ = 0 gives the desired

radiance. Thus, for ~ such that ~ = ~.~ = 0 (cf. Fig. 1), we have

(S.19)
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Nq(y;O,.) is known as the horizontal equilibrium radiance, since as one

advances underwater in a horizontal direction ~ = (0,.), Nq(y;O,.) does not

change in a plane-parallel setting. In the atmosphere, one would call

Nq(y;O,.) the "horizon brightness".

The quad-averaged form of Nq(y;O,.) does not exist for the reason

mentioned above. However, the general quad-averaged form of (8.19) does

exist:

+r(y;u,v) _
q

w(y) LLN(r,s) p(y;r,slu,v)
r s

(8.20)

for Quv in :±' respectively. The quad-averaged approximation to Nq(y;O,.) is

therefore

N (y;O,v)
q

+ -_ ~[N (y;l,v) + N (y;l,v)] (8.21)

for v = 1, ••• ,2n and x ~ y ~ z.

f. Diffuse Radiances

The radiance N±(y;u,v) is the total radiance, which is the observable sum

of the directly transmitted, or unscattered, radiance N~(y;u,v) and the

diffuse,* or scattered, radiance N;(y;u,v). Since near the surface of the

hydrosol the direct beams from sun and sky are usually many orders of

magnitude stronger than the diffuse light, it is often desirable to separate

the direct and diffuse radiances, especially for simple analytical models or

for descriptive graphical output.

* When we drop the ±+superscripts, then N;(y;u,v) is traditionally written as
"N*(y;u,v)", and No(y;u,v) as "NO(y;u,v)".
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The radiance from the sun incident on the water surface is by convention

entirely composed of a direct beam, N-(a;r,s) = N~(a;r,s), since we consider

atmospheric scattering as bringing to us radiant flux whose scattering order

index can be set to zero.. Thus, we can have direct beams N;(a;r,s) from any

number of quads Qrs. After light enters the water, upward and downward

diffuse radiances are generated as described by the scattering term in the

radiative transfer equation and by reflection of the downward direct beam back

from the bottom boundary. The upward radiance in the present model is

composed entirely of scattered light, i.e., N+(y;u,v) = N:(y;u,v), since there

are no incident light sources at the lower boundary. The incident direct

beam, N;(a;r,s), is transmitted through the upper surface via (3.17) in the

form

N~(x;u,v) = 22N~(a;r,s) t(a,x;r,slu,v)
r s

(since there is no upward direct beam N~(x;u,v». The direct beam is then

transmitted to optical depth y by a simple exponential law of decrease,

(8.22)

I

l

which is also obeyed by the associated amplitudes A;p(y;U;l). The argument of

the exponential, (y-x)/l~ul, is the optical path length measured along the

path of the direct beam descending from level x to level y. Using the total

radiances from the solution of the numerical model, and the direct beam

radiances from (8.22), we can find by definition the downward diffuse radiance

• This is based on the principle of relative scattering order. See
Preisendorfer (1965, p. 78).
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and the upward diffuse radiance

+ +N*(y;u,v) = N (y;u,v) •

g. Path Function, Equilibrium Radiance

(8.23)

In the discussion of (2.2) we noted the importance of the scattered

radiance term. It is of interest to use the solution of the NHM to plot this

term as a function of direction ~ and depth y. Specifically, we are

interested in the path function (in standard, radiometric, non-Fortran

notation):

or in the quad-averaged approximation:

= s(y) LL N(y;r,s) p(y;r,slu,v) ­
r s

Q in =uv

a(y) N (y;u,v)
q

(8.24)

(8.25)

where we implicitly define the equilibrium radiance Nq(y;u,v) for general quad

direction (u,v) (cf. (8.19».

An important simple model of the light field can be built from N*(y;~)

or, equivalently, the equilibrium radiance Nq(y;u,v) if the latter decreases

nearly exponentially with depth y (cf. H.D., Vol. I, p. 81).

154



§8

h. K-Function for Radiance, Canonical Equation of Transfer

Another quantity of interest in the study of light fields in natural

hydrosols is the K-function for radiance (cf. a.o., Vol. V, pp. 125-126):

~ & E, x ~ Y ~ z

or in quad-averaged form,

(8.26a)

-1
K(y;u,v) = ( )N y;u,v

Quv in E, x ~ Y ~ z

dN(y;u,v)
dy

(8.26b)

An important phenomenon in infinitely deep homogeneous hydrosols is

referred to by the asy.ptotic radiance hypothesis, in which the radiance

distribution below a certain depth is held to decrease exponentially in size

without change of shape. Thus for y > Yo, in the hypothesis it is assumed

that

(8.27)

At such depths y below Yo, it follows from (8.26a) that K(y;~) is very nearly

some constant

k Ia.
III
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for all ~ in:. (Recall that y is dimensionless optical depth; hence k= has

units m- 1 .) The NHM can be used to explore this phenomenon. In particular,

given conditions on surface winds, sky and sun geometry, and values of

scattering-attenuation ratio w(y), Yo can be determined in (S.27) and k=

evaluated. Such knowledge is of importance to the practical aspects of

hydrologic optics (cf. H.O., Vol. V, §lO.7 and §lO.S).

We note in passing that K(y;u,v) in (S.26b) allows us to reformulate the

quad-averaged equation of transfer (3.12) into the form

N(y;u,v)
N (y;u,v)

= q
1 + ~ K(y;u,v) ,

u
(S.29)

which is very useful in exploring asymptotic radiance distributions (cf. H.O.,

Vol. V, p. 243, Eq. (16». Eq. (S.29) is the canonical form of the equation

of transfer.

i. The Radiance-Irradiance Reflectance

The ratio rN(y) defined at any depth y, a S x S y S z S b, by

. (S.30)

is sometimes of use in the remote sensing of seas and lakes (Austin, 1980).

In such exercises, it is of interest to estimate the upward radiance N+(y;m,o)

of the photons within the medium (so that x < y) or at the surface of the

hydrosol, (so that y = a) knowing only the downward irradiance H_(y) there.

If some idea of the size of the ratio rN(y) also exists, then

N+(y;m,.) = rN(y) H_(y) is estimable. The present Natural Hydrosol Model can

yield estimates of rN(y) over all depths y under a wide variety of lighting

and wind conditions on the hydrosol surface.
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j. The Upward Irradiance-Radiance Ratio

Another ratio of current use in the remote sensing of lakes and seas 1S

the Upward Irradiance-Radiance Ratio Q(y) defined by

Q(y) - +N (y;m,o)
(8.31)

This ratio 1S also of interest to in situ measurements of the light field.

With current technology it is simpler to measure N+(y;m,o) than H+(y). Hence

knowledge of Q(y) enables an estimate of H+(y) = Q(y) N+(y;m,o) to be made if

N+(y;m,·) 1S known. The Natural Hydrosol Model can provide representative

values of Q(y) for various lighting conditions and natural hydrosols.

Observe that the two ratios rN(y) an~ Q(y) are related to the downward

reflectance function R_(y) = H+(y)/H_(y) by

(8.31)

Hence knowledge of any two of these three factors determines the third.

k. Contrast Transmittance of the Air-Water Surface

When visual searches are made from above the hydrosol for submerged

objects, a key determinant of the visibility of the object is the optical

state of the air-water surface. If the surface is agitated by capillary waves

and the sky light is brightly reflected in the surface, the visual signal is

not too readily transmitted through the surface to the searching eye. The

contrast transmittance T is an essential property of the air-water surface and

its lighting environment when gauging the visibility of submerged objects (cf.

157



§8

H.O., Vol. I, p. 96 and H.O., Vol. VI, p. 42). The form of T for vertically

upward photon flow is given by

NOt/n 2

T - (NOt!n2) + N r
o

where in the context of the Natural Hydrosol Model we have written

NOt/n 2 _ N+(x;m,o) t(x,a;m,olm,o)

(8.32)

and (8.33)

Nor - LLN-(a;r,s) r(a,x;r,slm,o)
r s

Here N+(x;m,o) is the upward quad-averaged radiance at level x just below the

air-water surface, and t(x,a;m,olm,o) is the quad-averaged vertically upward

radiance transmittance for the air-water surface (recall the notation

convention in (3.2». Nor is the average vertically upward reflected sky and

sun light in the air-water surface, while NOt/n 2 is the radiance transmitted

upward through the surface. Observe that the smaller Nor is, relative to

NOt/n2, the closer T will be to 1, and hence the better the chance of seeing a

submerged object.

158



§9

9. COMPUTATION OF THE AIR-WATER SURFACE REFLECTANCE AND TRANSMITTANCE FUNCTIONS

We consider next the details of construction of the air-water surface

boundary reflectance and transmittance functions. These functions are

essential to determining realistic light fields within the water column, and

it is now time to discuss how the needed quad-averaged reflectance and

transmittance arrays are obtained in practice.

The defining equation for the quad-averaged reflectance and transmittance

arrays is (3.19):

f(r,slu,v) 1
- Q

uv
II d~'d,' f(~',,';~,,)

Qrs

r(a,x;~',,';~,,), or r(x,a;~',,';~,,), and f(r,slu,v) denotes the

corresponding quad-averaged quantity t(a,x;r,slu,v), etc. If the point

reflectances and transmittances f(~',,';~,,) are known in analytic form, then

(9.1) can be analytically or numerically integrated to find the associated

quad-averaged quantities. This procedure was illustrated in §3g for the case

of a matte reflectance. For the anisotropic upper boundary, however, the

analytic form of f(~',,';~,,) is not available except for the case of "a calm,

level sea surface, for which the point reflectance can be related to the

Fresnel reflectance formula. For the general case of a wind-ruffled sea

surface, no adequate analytic treatment of the optical properties of the sea

surface has yet been made.
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a. A Ray-Tracing Model

However, a model does exist for the numerical computation of the needed

optical properties. This model (Preisendorfer and Mobley, 1985 and 1986) uses

Monte Carlo simulation to trace individual unpolarized light rays through

their interactions with the wave facets of a simulated sea surface. The

possibility of multiple scattering of light rays and of shadowing of waves by

other waves is included, and the results are obtained as a function of wind

speed. In this section we will show how the ray-tracing model can be used to

compute the quad-averaged quantity f(r,slu,v). Only a cursory description of

the model will be made; the details can be found in the above references.

The ray-tracing model works as follows.

(1) A finite region of the mean water surface is resolved by a hexagonal

grid of triangles, as shown in Fig. 8. At each triangle vertex the sea

surface elevation is defined, so that the waves are represented by a set of

triangular facets. These facets are contained in the hexagonal domain (the

cylindrical region of space) defined by the hexagonal grid. Four such facets

are shown in Fig. 8. The sea surface elevations are determined by randomly

drawing the elevations from a normal distribution of zero mean and variance

0 2 • This variance 0 2 is a function of the wind speed (see discussion below

(3.22», and is so constructed that the resulting wave facets obey the same

wave-slope wind-speed statistics as the actual sea surface. Drawing an

elevation at each triangle vertex of the hexagonal grid generates one

realization of the random sea surface.

(2) After a particular surface realization has been generated in stage

(1), a light ray of unpolarized unit radiant flux 1S aimed toward the surface

from any chosen direction. Figure 8 shows such a ray entering the hexagonal

domain at point A. Every such initial ray eventually strikes a surface wave
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facet, as at B. In general, each encounter of a ray with a wave facet

generates both a reflected and refracted daughter ray, whose directions are

determined by the law of reflection and Snell's law, respectively. The

radiant flux contents of these daughter rays are determined by Fresnel's

formula. The daughter rays may undergo further encounters with other wave

facets. As illustrated in Fig. 8, the first refracted ray at B, heading

downward through the water, leaves the hexagonal domain at D without further

scattering. The first reflected ray at B, however, intercepts another facet

at C, generating two more rays. The reflected ray starting from C leaves the

domain at E. The refracted ray starting from C encounters yet another facet

at F and undergoes a total internal reflection before leaving the domain at

G. Thus the initial ray finally results in one reflected and two refracted

rays emerging from the hexagonal domain.

By tracing thousands of rays through their interactions with thousands of

realized surfaces, a statistically stable pattern of reflected and transmitted

rays can be established for a given wind speed and incident ray direction.

The radiant fluxes of the daughter rays can be tallied in order to compute

estimates of various optical properties of the random sea surface. The errors

in these estimates, due to statistical fluctuations in the Monte Carlo

simulations, can be made as small as desired by performing a sufficiently

large number of simulations.

The previous applications (in the above two cited references) of this

ray-tracing model have been to the calculation of the irradiance reflectance,

or albedo, of the sea surface, and to the simulation of sea surface glitter

patterns. However, the ray-tracing technique is ideally suited to the

computation of the quad-averaged rand t arrays needed in the present Natural

Hydrosol Model. We can proceed as follows.
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b. Radiant-Flux Transfer Functions

Let us consider a Monte Carlo experiment in which 5 air-water surface

realizations are generated. For each surface realization w, w = 1,2, ••• ,5,

one unpolarized parent ray is aimed toward the surface along a randomly chosen

direction in some selected input quad Qrs. Let ~;s denote such a ray. This

ray interacts with the wth surface realization, as illustrated in Fig. 8, and

generates K(~;S'W) final daughter rays emerging from the hexagonal domain

(K = 3 in Fig. 8). The parent ray ~;s is assigned a unit amount of

unpolarized radiant flux, P = 1. At each interaction of a ray with a wave

facet, the radiant flux of the incident ray is apportioned to the daughter

rays according to Fresnel's formula. Thus when the parent ray intercepts a

wave facet, the reflected daughter ray is assigned a radiant flux of magnitude

Pri' where ri is the computed Fresnel reflectance, and the transmitted ray is

assigned a flux of P(l-ri). If the reflected daughter ray then intercepts

another wave facet, as in Fig. 8, the reflected ray receives a flux Prir2 and

the transmitted ray receives Pri(1-r2), where r2 is the Fresnel reflectance

for the second ray-facet intersection. In this way it is possible to build up

arbitrarily long products of Fresnel reflectances and transmittances •. Let

IT(~;s'~j(~;s'w» be the product of the Fresnel reflectances and transmittances

of all the daughter rays along a single unbroken path through space which

connects the parent ray ~;s with the jth final daughter ray ~j(t;s'w) emerging

from the hexagonal domain. The daughter rays ~j' j = 1,2, ••• ,K, as the

notation indicates, of course depend on the direction ~'s of the initial ray-r

and upon the wave facet orientations of the wth random surface realization.

The Fresnel product is dimensionless and satisfies 0 < IT(~~s;~j(~;s'w» $ 1.

(The product IT is 1 only in the case of ~;s incident on the surface from the
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water side and undergoing a total internal reflection to generate one final

daughter ray ~).

Now define a radiant-flux transfer function p_. by

1 S IC

P (r,slu,v) - S L L ITO;' ,t.(t' ,w» X (~.(~ ,Ill» , (9.1a)-. w=1 j=1 ~s -J ~s uv J s

when Qrs in .. and Quv in =•--

where Qrs in =_ and Quv in =.. As in (3.4), Xuv(~j) = 1 if ~j is in quad Quv '

and Xuv(~j) = 0 otherwise. The "-" 1n p_. denotes downward incidence

(Qrs in =-) and the "." denotes upward reflection (Quv in =.). The sum over j

adds up the IC Fresnel products for all those generated ray paths in space

around a single surface realization which connect the input quad Qrs and the

output quad Quv ; this result is then averaged over the ensemble of S surface

realizations. P_.(r,slu,v) is therefore a sample estimate of the fraction of

the radiant flux incident down on the sea surface toward Qrs that is reflected

up into Quv • This fraction p_. can be associated with a unit area of the mean

sea surface and 1S therefore an albedo (irradiance reflectance) of the random

sea surface for radiant flux from Qrs in =_ to Quv 1n =.. Three other

transfer functions can be defined analogously to (9.1a), viz.:

P__(r,slu,v) when Qrs in - and Quv in - (9.lb)

P (r,slu,v) when Qrs in - and Quv in - (9.1e>.- •
and

P••(r,slu,v) when Q 1n - and Q in ::. (9.ld)rs • uv

Since the flux P = I of each parent ray ~~s 1S apportioned without loss

to the daughter rays, it is easy to see that
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LLP_+(r,slu,v) + LLP__(r,s!u,v) = 1, for every Q in - (9.2)rs -u v u v

Quv in =+ Quv in -
and

LLP (r,slu,v) + LLP (r,slu,v) = 1, for every Q in (9.3)+- ++ rs -+
u v U v

Quv in - ~v in =+-
These equations merely state that radiant flux incident on the water surface

is either reflected by the surface or transmitted through the surface without

loss. A careful algebraic recording of the flux contents of the daughter rays

shows that (9.2) and (9.3) are actually algebraic identities. We also note

that the albedo (or irradiance reflectance) of the sea surface for flux

incident toward Qrs is given by

r_(r,s) - LLP_+(r,slu,v) •
u v

Here the summation is over the hemisphere =+. Defining the associated

irradiance transmittance t_(r,s) as

t (r,s) - LL P__(r,slu,v) ,
u v

where the summation is over =_, we can express (9.2) as

for every Q 1n_rs

A similar statement holds for the upward flux case in (9.3).
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The four radiant flux transfer functions defined by (9.1), and computed

by the ray-tracing model, form the core of the four quad-averaged rand t

functions for radiance, as will now be seen.

c. Radiance Reflectance and Irradiance Reflectance

The upward (+) and downward (-) irradiances at any depth yare given by

(8.7):

r r •H±(y) = tr(y;u,v) IlJ In , a S x S y S z S bu uvu v
or

H±(y) - r r H±(y;u,v),
u v

where we have defined

•_ tr(y;u,v)llJ In , for a S x S y S z S b •u uv (9.4)

Evaluating the downward irradiance at y = a, contributed solely by flux in

quad Qrs' we can write the incident radiant flux per unit horizontal area of

the sea surface (the irradiance) as

The upward irradiance H.(a;u,v) generated when the sea surface reflects this

incident irradiance is
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since, as we have seen, P_+(r,slu,v) by construction is the irradiance

reflectance connecting Qrs and Quv • Using (9.4) this last equation can be

written

or

+N (a;u,v)
- t-+( r , s Iu, v) 11.I r Inr~

= N (a;r,s) r.:-'g •
I l.Iu I uv

(9.5)

Now we recall the upper surface boundary condition (3.18):

r s r s

This equation of course holds even if only one particular input quad Qrs is

illuminated and all others are dark, as we have postulated for the case of

(9.5). In this case, (3.18) reduces to

(9.6)

Since the incident quad-averaged radiances are arbitrary, comparing (9.5) and

(9.6) immediately yields (9.7a), below. Equation (9.7a) gives us the

connection between the quad-averaged radiance reflectance r(a,x;r,slu,v) and

the quad-averaged irradiance reflectance P_+(r,s!u,v) computed by ray-

tracing. Corresponding analyses for the other terms of the boundary equations

(3.17) and (3.18) give the results in (9.7b,c,d):
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r(a,x;r,slu,v) P_+(r,slu,v)
ll!r1nrs

=
~'l!u uv

t(a,x;r,slu,v) P (r,slu,v)
ll!r1nrs

=
~'l!u uv

r(x,a;r,slu,v) P+_(r,slu,v)
ll!r1nrs

=
~'l!u uv

t(x,a;r,slu,v) = P++(r,slu,v)
ll!r1nrs
~.l!u uv

(9.7a)

(9.7c)

The two transmittances (9.7b,d) include the m2 effect on radiance pencils

crossing the air-water boundary, where m is the index of refraction. This

follows on noting that, for narrow pencils of photons, we have*

m~l!ana = m~l!wnw' where the subscripts denote photons in air or water. We note

that the quad-averaged rand t functions of (9.7) are non-dimensional, as

required. Figure 9 summarizes the ray-tracing computations.

d. Irradiance Balance at the Surface

A requirement for the quad-averaged radiance reflectances and

transmittances is that they conserve energy at the air-water surface. The

irradiance balance at the surface for downward incident radiant flux i's

expressed as

* See, e.g., Preisendorfer (1965, p. 37). Note also that the present radiance
transfer functions are compatible with the irradiance transfer functions
derived in Preisendorfer and Mobley (1985, pp. 48-50).
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initialization: select quad partition of ~.

wind speed. number of surface realizations. etc.,
I generate a random surface realization

t
select a quad Q rs
in the first quadrant of:=: (d. F.ig. 3),
choose a parent ray ( from

a random direction in On

t
trace all daughter rays to completion

t
record the initial quad Q m final quad Ow.
and radiant flux for each final daughter ray

t
NO has a parent ray been shot from each quad Q rs

in the first quadrant of :=: ~

t YES
YES

is another surface realization desired~

t NO

tally the recorded ray-tracinJ results

using (9.1). to get P±±(r. slu. v),
compute the quad-averaged
rand t arrays using (9.7)

Figure 9.--Flow chart of the ray-tracing model used to compute the quad-averaged
upper boundary reflectance and transmittance arrays.
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The left side of (9.8) is the downward irradiance incident on the water

surface from all directions above the surface. The first term on the right

side of (9.8) is the upward irradiance at the surface induced by the incident

downward radiance only, and the second term is the downward irradiance just

below the surface also induced only by the incident downward radiance. Thus

(9.8) states that the energy received from the sky alone by the surface 1S

either reflected back to the sky or transmitted through to the water column.

The quad-averaged form of (9.8) is

u v u v

We will now show that (9.9) is an identity. By virtue of (9.6), N+(a;u,v) can

be rewritten in terms of N-(a;r,s), with a similar relation also possible for

N-(x;u,v). If only one arbitrary input quad Qrs of the unit sphere = is

illuminated, (9.9) then becomes

+ I I N-(a;r,s) t(a,x;r,slu,v)l~ 10 ,u uvu v
or

1 =~ I I r(a,x;r,slu,v)l~ In
I~rlnrs u v u uv

+~ I I t(a,x;r,slu,v)l~ In •
l~rlUrs u v u uv

(9.10)

Substituting from (9.7a,b) for the quad-averaged reflectance and transmittance

reduces (9.10) to (9.2), and an identity is obtained. Hence in the setting of

quad-averaged radiative transfer, (9.9) is an identity. A corresponding
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result is obtained for energy incident on the surface from below. Thus the

ray-by-ray, or local, conservation of energy in the setting of the quad-

averaged radiance reflectances and transmittances, guarantees the hemisphere-

wide conservation of energy at the air-water boundary.

e. A Check on the Ray-Tracing Hodel

A direct check on r(a,x;r,slu,v) can be made for the case of a specular

surface, i.e •.when the wind speed is zero and the water surface is level. In

this case the continuous reflectance function r(a,x;~',~';~,~) depends only on

the polar angle e' = COS-l(~'), since the angle of reflection e equals the

angle of incidence e' and there is azimuthal symmetry. The Fresnel

reflectance formula for unpolarized radiant flux is

(9.11)

where e' = coS-l(~'.~) = coS-l(~.~) = e, and the angle of the transmitted

light is

(m- 1 sine') •
w

The direction ~ of a reflected beam is given 1n terms of the incident beam ~'

by

(9.12)

From (9.11) and (9.12), we can express the continuous reflectance function as
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(9.13 )

where 6 is the Dirac delta function. The delta functions select the allowed

direction (~,,) of the reflected ray, given the direction (~',,') of the

incident ray.

Substituting (9.13) into the defining equation (3.19) for r(a,x;r,slu,v)

gives

r(a,x;r,slu,v) = 01 II d~d, II d~'d,' r(a,x;~')6(~'+~)6(,'-,) ,
uv Quv Qrs

which can be rearranged to become

r(a,x;r,slu,v) = 1 I d~auv 6~
u

r(a,x;~' )

The integrals are zero unless A,s coincides with 6,v' i~e. unless s = v; and

unless A~u and 6~r are corresponding ~-bands in opposite hemispheres (which is

by definition the case for a reflectance function), i.e. unless r = u. The

last equation thus reduces to

6, 6 6

I v r-u s-vr(a,x;r,s u,v) =----~Q~--~--

uv
d~ r(a,x;~) ,

or upon setting r = u and s = v, and evaluating the Kronecker delta symbols,

we have for every Qrs in E_,

r(a,x;r,slr,s) = A~ I d~ r(a,x;~) =
r A1-1.

r
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The integral over 9 in (9.14) can be numerically evaluated using (9.11) in the

integrand. The values of r(a,x;r,slr,s) obtained from (9.14) then give a

direct check on the values obtained from ray-tracing with zero win4 speed. A

similar check can be made for the specular r(x,a;r,slr,s) values. Checks on

the transmittance functions for the specular case are not as simple, because

incident rays in one quad Qrs can be transmitted into two or more quads Quv '

as a result of refraction changing the direction of the incident and final

rays.

Comparison of the results from (9.7a) and (9.14) also gives a lower bound

on the number of rays which need to be traced in order to achieve an accurate

estimate of r(a,x;r,slu,v).
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10. THE REFLECTANCE OF THE LOWER BOUNDARY ABOVE AN INFINITELY DEEP,
HOMOGENEOUS LAYER

In the assumptions governing the Natural Hydrosol Model (§la) we have

allowed for two possible types of lower boundary of the hydrosol: either the

physical bottom of an optically shallow water body, or a plane below which the

water body is homogeneous and infinitely deep. The physical bottom, in the

form of a matte reflecting surface for example, is considered in (5.53). In

this section we consider the remaining case: we shall specify the

construction of the matrix r (z,b;l) in (5.52) for the case where X[z,b] is an-p

infinitely deep homogeneous medium, so that b = m. The detailed presentation

of the requisite theory, called the eigenmatrix method, leading to !p(z,m;1)

would be out of place in the present study, since the eigenmatrix method forms

an alternate and independent approach to the problem of computing the light

fields in natural hydrosols. However, there is one result of the theory which

we find convenient to adopt in the present NRM, namely the form of !p(z,m;1)

given by the eigenmatrix method. We shall present only the minimum directions

needed to implement the construction of !p(z,m;&). A detailed description of

the eigenmatrix theory can be found in Preisendorfer (1988).

Consider an infinitely deep hydrosol X[z,m] whose local reflectance

matrix E(y;l) and local transmittance matrix i(y;1), as defined in §5, are

independent of depth y in X[z,~]. There are two cases to consider:

(i) The case of 1 = O. i(y;O) and ~(y;O) are given by (5.21). These

matrices are mxm.

(ii) The case of t = l, ••• ,n. i(y;t) and E(y;t) are given by (5.24).

These matrices are (m-l)x(m-l).

These two distinct cases are necessary in the present context because we must

form an invertible matrix, namely s+, below, in order to define r (z,~;l).
- p

Recall that we "padded" !(y;t) and i(y;t) in (5.29) to achieve a unified set
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of formulas. This unification is satisfactory everywhere in this work except

here, since the padding produces a" singular !+ matrix. We must momentarily

use the stripped-down matrices of (5.21) and (5.24) to find ~+(1) in (10.7).

Begin by defining the system matrix !(t) for each case:

K(O) is 2mx2m

K(t) 1S 2(m-l)x2(m-l)

case (0

case (ii)

where (cf. (6.8» in general, for the appropriate case at hand:

1 = O, ••• ,n 00.1>

Observe that we have dropped reference to depth y, as K(l) is now independent

of depth.

Next, form and numerically solve the eigenvector problem

1 = O, ••• ,n (10.2)

Here ~(1) is a 2qx2q eigenmatrix, while the eigenvalues are in

~(1) = diag[~+(l),~-(l)] and where, in turn, ~±(1) = diag[kT(l), ••• ,kq ). Here

q = m or (m-l), as the case may be.

It can be shown that 8(1) may be written in block matrix form

[

+
8 (1)

!(1) = _
8 (1)

00.3)

+where ~(1) are qxq matrices defined as follows. Thus, suppose the

eigenvector subroutine returns E(l) in the form of a set of 2qxl eigenvectors
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(2qx2q) (10.4)

and where (with "T" denoting matrix transpose) we have, for each J = 1, ••• ,2q:

e.(l) _ [e.(l;l), ••• ,e.(q;l), e.(q+l;1), ••• ,e.(2q;1)]T.
-J J J J J

Partition ~j(l) into two subvectors

_ [e.(l;l), ••• ,e.(q;l)]T
J J

, J = 1, ••• ,2q

Then the g±(1) in (10.3) are defined as

(10.5 )

(10.6)

(qxq) 00.7)

The required reflectance r (z,m;l) is then given by the following two cases:-p

case (i): For 1 = 0,

and

case (ii): For 1 = 1, ••• ,n

and
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Therefore when we are integrating the Riccati equations t-mode by t-mode,

as described in §7b, if we desire to have an optically infinitely deep

homogeneous medium.below the lower boundary, we must set up and solve the

eigenvalue problem (10.2) for each I-mode, in order to obtain the required

!p(z,~;I) from (10.8) or (10.9). These !p(z,~;t) are then used as the initial

conditions for the upward integration sweep of (6.48), as described in

§7.b.4. At this point just prior to the sweep it is permissible to fill out

the !p(z,b;l) matrices in (10.9), to become once again mxm, by adding zeros to

make their mth rows and mth columns.

We note that, just as for the matte bottom (recall (5.50), (5.51) and

(5.53», we have !l(z,~;l) = !2(Z,~;1), 1 = 1, ••• ,n-l. (This equality does

not hold when 1 = 0 or 1 = n since we have defined !2(Z,~;I) to be zero in

these cases, consistent with our notationally convenient definition of

+
~2(y;1) = 0 for 1 = 0 and 1 = n.) However, unlike the matte bottom case,

rl(z,~;I) is nontrivial for 1 > 0; therefore !l(Yj,~;l) must be obtained for

all 1 = O, ••• ,n by integration of (6.48) with !l(z,~;l) as the initial

condition. (Recall the discussion in §7b4.) But Since both fp(Z,~;l),

1 = 1, ••• ,n-l and equation (6.48) are independent of p = 1 or 2, it is

necessary to actually integrate (6.48) only for the case of p = 1; the needed
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11. COMPUTATION OF THE QUAD-AVERAGED PHASE FUNCTION

Given the continuous, geometric phase function p(y;~',.';~,.), the quad-

averaged. phase function p(y;r,slu,v) can be computed by a numerical

integration of the defining equation (3.11):

(ll.l)

The continuous function p(y;~',.';~,.) = p(y;,) (cf. (2.5» for a fixed

depth y may be available as an analytic function of , derived from scattering

theory, or it may be obtained from measurements at a discrete set of , values,

for example by a spline fit to the measured values. Since p(y;,) for natural

waters is an extremely peaked function of , near, = 0, great care must be

taken in the evaluation of (11.1).

From the discussion of the symmetry of the phase function in §3d, we know

that p(y;~',.';~,.) depends not on .' and. separately, but only on .'-.

through cos(.'-.), and that p(y;r,slu,v) therefore depends on Is-vi. Thus it

1S not necessary to integrate (11.1) for all possible pairs of quads Qrs and

Quv in order to obtain all the possible values of p(y;r,slu,v). It is

sufficient to fix Qrs at Qrl and then to evaluate (11.1) over the hemispheres

containing Quv defined and for the range v = 1,2, ••• ,n+l. This is the

discrete counterpart to setting .' = 0 and allowing. to range over 0 to W 1n

order to generate all possible values of cos(.'-.). Equation (11.1) thus can

be written

p(y;r,llu,v) = 1
nuv
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In order to evaluate (11.2), each quad Quv 1S subdivided into a grid of n~ by

n, subquads of size 6~u = ~~u/n~ by 6,v = ~'/n,. If Quv is a polar cap,

u = m, then 6,v = 2w/n., so that the entire cap is subdivided into sectors.

Corresponding subdivisions are made for Qrs. We then evaluate (11.2) as a

summation over these subquads:

p(y;r,llu,v) = a1

uv

n
L~

i=l
(11.3)

Here (~i"j) is at the center of the (i,j) subquad of quv' and (~k"~) is at

the center of the (k,l) subquad of Qrl. The argument of the phase function is

then " defined by

(11.4)

Note that even though we have set s = 1, we must still integrate .' in (11.2)

over the range ~,~ of the quad Qr l centered at " = o.

The more subquads in Qr1 and Quv ' that is the larger n~ and n., the more

accurate 1S the numerical estimate of p(y;r,llu,v). Moreover, there is no

requirement that all quads have the same number of subquads. Thus when Qr1

and Quv are the same or adjacent quads, so that the forward scattering angles

(i.e. , near 0) are picked up in the integration, we can use more subquads 1n

Qr1 and Quv in order to adequately resolve the highly peaked behavior of

p(y;cos~) near cos, = 1. The number of subquads needed to achieve the

required accuracy in p(y;r,llu,v) also depends on the quad parameters m and

n. If m and n are small, so that the quads Qr1 and Quv are large, then the

phase function can vary significantly as the directions (~' "~I) and (~,,)

range over the large quads. In this case we need many subdivisions in order
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to pick up the variations 1n p. However, if m and n are large, so that Qrl

and Quv are small, then p varies less as (~',~') and (~,~) range over the

small quads Qrl and Quv • In this case we do not need as many subquads.

In the evaluation of (11.2), Qrl and Quv can be in the same hemispheres,

i.e., Qrl in =± and Quv in =±' or in opposite hemispheres, i.e. Qr1 in =± and

Quv in :.. From the symmetry relation (5.1), we see that when Qrl and Quv are

in the same hemisphere, Eq. (11.2) yields p+(y;r,slu,v); when Qrl and Quv are

in opposite hemispheres we get p-(y;r,s/u,v).

a. Checks on the Quad-Averaged Phase Function

From (2.7) we know that the phase function must satisfy

1 21t
f f p(y;~',~';~,.) d~d~ = 1

-1 0

for any depth y and direction <'~',.') in E. This equation is discretized in

the usual manner by using (3.20) to write the continuous phase function

p(y;~',.';~,~) as a linear combination of discrete phase functions; the result

is

0
1 LLp(y;r,slu,v) a uvrs u v

= 1 LL + I -0
1 LL - Ia p (y;r,s u,v)a + p (y,r,s u,v)auv uvrs u v rs u v

= 1 (11.5)

for all depths y and quads Qrs. In the first form of (11.5) the sum is over

all Quv in E. The hemispherical summation ranges of the (u,v) in the expanded

form of (11.5) are fixed once Qrs is fixed (recall (3.2) and (5.1». For

example, if Qrs is in =+, then in LL p+, (u,v) is summed over =+ while
u v
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This equation can give a check on how
u v

accurately we have performed the integrations of (11.2). Conversely (11.5)

can be used to define p+(y;r,slr,s) in highly forward scattering media, after

all other terms have been computed,* as will be discussed in paragraph b,

below.

As an illustration of these results, consider the case of spherically

symmetric scattering, for which

1=-4w '
(11.6)

for all (~t,~t), (~,~) in _. With (11.6) in (11.1) we get just

nrs
= 4w

for all quads Qrs and Quv ' The check (11.5) then gives

1
nrs

11
rs . 2 .. 4w

u v
11uv = 1 ,

as required.

b. Special Computation of the Forward Scatter Phase Function p+(y;r,slr,s)

Equation (11.5) can playa role even more important than that of checking

the numerical accuracy of (11.3). In particular, (11.5) can be used to

compute the quad-averaged phase function for forward scattering, thus

eliminating the need for knowledge of p(y;~) at ~ = 0 and reducing the

* In this way we can cut the Gordian knot of the forward scattering problem in
phenomenological approaches to radiative transfer. See Preisendorfer
(1965, p. 55).
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numerical difficulties which arise from the extremely peaked nature of p(y;,)

for very small ~ values.

To justify the following reformulation, we note the following rules of

thumb, which are based on extensive testing of the model with realistic phase

functions. For partitions of the unit sphere such as those illustrated in

Fig. 4, quad sub-divisions given by n~ = n. = 4 give accurate results for

quads which are not adjacent or identical (i.e., for those quads for which

~ ~ 10°), in the sense that further increasing n~ or n. does not significantly

change the computed values of p±(y;r,llu,v). If adjacent quads are subdivided

with ten times the resolution used for non-adjacent quads, i.e. with

n~ = n. = 40, then the associated values of p±(y;r,llu,v) are also accurate,

and the balance (11.5) holds to within a few percent. If a balance of (11.5)

is required to within, say, 1 part in 1000, then it is necessary to make

extremely fine subdivisions of the forward scattering quads whenever Qr l and

Quv coincide. The computations for the forward scattering quads alone thus

take much more computer time than the computations for all other quads

combined.

Since the forward scattering values p+(y;r,llr,l) are clearly the last

values to achieve numerical accuracy, it is reasonable to compute all other

values p±(y;r,llu,v) via (11.3) and then to use (11.5) to obtain

p+(y;r,l/r,l):

= 1 _ 1
Q

r1 u v

+
p (y;r,llu,v)

(11.7)
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Note that when (11.7) is employed to obtain the forward scatter values,

the subquad directions (~i'.j) and (~k,.i) of (11.3) and (11.4) never

coincide, and therefore we never require a value of p(y;+) for + = O. Indeed,

there is always some angle ~o, determined by the quad partitioning and the

quad subdivisions, such that p(y;,) is not required for 0 S • < ~o. For quad

partitions as in Fig. 4 and for n~ = n. = 40 subdivisions for adjacent quads,

+0 = 0.02°. The smallest angles. for which phase functions have been

empirically measured are about 0.1°. Analytic extrapolation can be used to

extend p(y;.) to the required '0 value.

The discrete resolution of the Natural Hydrosol Hodel effectively frees

the numerical model of any uncertainty owing to the unknown behavior of p(y;~)

for 0 S , ~ ~o, provided that an independent estimate of the total scattering

s is available.* If s must be obtained by numerical integration of the

defining equation (2.6), then knowledge of a(y;~) is also required for

o S ~, < ~o, even though this information is not needed for the discretization

of the phase function. It can only be hoped that as computers become larger,

thus permitting smaller quads and hence making .0 smaller, that theory or

experiment will also extend our knowledge of a(y;~) to the required smaller ~o

values.

* For example, the volume attenuation function a(y) is measureable
with a beam transmissometer. The volume absorption function a(y) can be
determined from irradiance measurements via the divergence relation (8.9)
rewritten as a(y) = a[h (y) + h_(y)]_l ~[H+(y)-H_(y)]. The volume total
scattering function s(y) is then obtainea from s(y) = a(y) - a(y). Here we
are assuming that the beam transmissometer has been carefully constructed
so as to correctly account for the forward scattering of photons. If this
is not the case, then the quantity s is just as elusive as p(y;O). See
H.D. Vol. VI, sec. 13.5.
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12. COMPUTER CONSIDERATIONS

The original code for the Natural Hydrosol Model was written (beginning

in 1980) for a CDC 6600 computer. Storage on this machine was quite limited,

and every effort was made to minimize the use of in-core memory, often at the

expense of performing extra calculations. The most recent rewrite of the code

(in 1986) was made so that it would run on a CDC 205 vector computer with

virtual memory. Since available storage is essentially unlimited on a virtual

memory machine, the special array packing and indexing routines used 1n the

original code are no longer necessary. However, these features of the

original code have been retained in the current version, in order to minimize

the rewriting and debugging effort. Almost no effort has been made to rewrite

the code so that it can take advantage of the vector processing on a pipeline

computer; it remains essentially a scalar code. This section briefly

describes the structure of the code, and documents the array storage and

indexing techniques.

a. Computational Flow Structure

The various computations described in §7 to §11 are grouped into five

separate programs, which are run in sequence to obtain the solution of a given

problem. The first three programs compute the surface boundary reflectance

and transmittance functions. The fourth program solves for the radiance

amplitudes at all depths, and the fifth program then reconstitutes the

radiances and analyzes the results. The specific tasks of these programs are

charted in Fig. 10 and are described as follows.

Program I. This program does the ray-tracing described in §9a and charted in

Fig. 9. To initialize the program we first select the quad resolution

184

J

1•f
~

i

I
t

I
I

j
I

I
i
1

1



Figure lO.--Flow chart of the entire Natural Hydrosol Model solution procedure.
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parameters m and n and a scheme for partitioning the unit sphere into the

chosen number of quads, as described in §7a.l. We then select the desired

wind speed at the water surface and the initial number of surface realizations

to be made. The program then repeatedly generates a random surface

realization, randomly selects a direction in Qrs' and sends a parent ray

toward Qrs and the realized surface. All the reflected and refracted daughter

rays are traced to completion, and the quads receiving the final daughter rays

are determined. One parent ray is sent toward each quad Qrs in the first

quadrant (of the wind-based system shown in Fig. 1) for each surface

realization, until the desired number of surface realizations has been made.

For each (parent ray)-(daughter ray) pair, the program records the values of

r,s,u,v, and the radiant flux of the daughter ray. These ray-tracing

computations form a significant part of the entire work count of the NHM.

Program II. This program tallies the ray information from program I and

computes the four quad-averaged reflectance and transmittance arrays uSing

(9.1a-d) and (9.7a-d). The individual elements of the f(r,slu,v) arrays will

approach their final values at differing rates as more and more rays are

tabulated. For a given input quad Qrs' the output quads Quv which are "near

the specular (still water) reflection or refraction directions of the parent

rays in Qrs will receive far more reflected or transmitted daughter rays than

those quads which are in directions far from the specular directions. Thus

after only a few hundred surface realizations, some elements of f(r,slu,v) may

have achieved their final values with great accuracy, whereas other elements

may not have had a single ray path connect the particular Qrs and Quv quads.

However, those elements which are largest in magnitude dominate the behavior

of the light field in the sea, so it is not necessary to know all matrix
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elements to the same degree of accuracy. The user of the NHM is thus faced

with making a qualitative decision regarding the desired accuracy of the

elements of the rand t arrays. The larger matrix elements can and must be

determined with great accuracy, but the smaller matrix elements, which are

many orders of magnitude smaller than the larger elements, cannot be

accurately estimated unless a relatively large number of rays is traced.

Programs I and II can be run repeatedly to generate new batches of rays

and to incorporate these new rays into a running, accumulating calculation of

the rand t arrays. When the larger matrix elements have reached their final

values, the rand t matrices can be deemed sufficiently accurate for the

problem at hand, and the solution in the body of the hydrosol can proceed.

How many rays need to be traced in order to reach this point depends on wind

speed and quad partitioning and must, therefore, be determined by the

researcher on a case-by-case basis.

Program III. This program computes the four spectral reflectance and

transmittance arrays for the upper boundary, using (5.3lc), (5.32), (5.34),

(5.36) and the quad-averaged arrays from program II. At this point the air­

water surface boundary conditions are known, and we can proceed with the

solution for amplitudes.

Program IV. This program performs the remaining initialization steps of

(7a.3)-(7a.5) and then assembles the solution amplitudes as described 1n

§7b. The internal structure of Program IV is essentially that shown in

Fig. 7. This program is the other main consumer of computer power in the NHM,

owing to the discretization of the phase function.
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Program V. This program first synthesizes the radiances from the amplitudes

found in program IV. Then the results are analyzed and derived quantities are

computed, as detailed in §8. Multiple runs of program V can be made for a

given set of output from program IV. For example, one run can be made to

check the balance of the radiative transfer equation, another run to compute

the irradiances and other derived quantities, and then a run to generate

graphical output, etc.

We note again, as discussed in §7a, that the expensive computations for

the quad-averaged upper boundary rand t arrays need be done only once for a

given wind speed and quad resolution. Likewise, the expensive discretization

of the phase function is a one-time computation for a given phase function.

The actual solution of the radiative transfer equation in programs IV and V is

relatively inexpensive. Therefore, holding the wind speed and phase function

fixed, it is possible to make many runs of programs IV and V in order to study

the effects of varying the incident radiance distribution, the scattering-to­

absorbtion ratio s/a = w/(l-w), the bottom boundary type, etc.

b. Array Storage

In the NHM there are several occurrences of large sparse or symmetric

matrices. Consider, for exampie, the quad-averaged upper boundary reflectance

and transmittance arrays s(r,slu,v). These four-index arrays are stored (for

reasons of FORTRAN limitations at the time the code was originally written) as

two-dimensional arrays according to the layout of Table 3. As seen in

Table 3, each row of the m(2n) x m(2n) array references a particular input

quad Qrs' and each column references a particular output quad Quv ' The

symmetries of these arrays as shown in (3.24) give the arrays the block

structure
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s = [~-~._~J ,
[8 : A]

where A and 8 are ron x ron blocks. (Note, for example, in Table 3 that

s(1,n+111,n+1) = s(1,111,1) by (3.24c) and s(1,111,n+1) = s(1,n+111,1) by

(3.24b).) Thus it is necessary to store only one-half of !, say the

"top-half" [A 81. When an array element in the "bottom-half" [8 A] of s is

needed, simple indexing calculations can be used to obtain the corresponding

element from the stored top-half.

We note that the ray tracing of program 1 fills all m(2n) columns

ncomprising the elements of rows 1,2, ••• ,m(~1) of Table 3 as Qrs sweeps over

the first quadrant of : (as defined by the wind-based coordinate system of

Fig. 1), and all Quv throughout: receive reflected and transmitted daughter

rays. The remaining rows m(rl>+l, ••• ,mn of the "top-half" of s are then

defined by symmetry.

We also note that since the polar caps have no azimuthal dependence, a

parent light ray going toward anywhere in the polar cap Qrs =Qm and a

daughter ray going to the non-polar quad Quv can be assigned the storage

location s(m,llu,v). Locations s(m,2Iu,v), ••• ,s(m,nlu,v) then remain

unused. Likewise, a parent ray going toward a non-polar quad Qrs and a

daughter ray going to the polar cap Quv = Qm can be assigned to s(r,slm,l);

then s(r,slm,2), ••• ,s(r,slm,n) are unused. All light rays connecting one

polar cap to the other are assigned to location s(m,llm,l). With the

exception of this special storage for elements involving polar caps, the

four-index matrix element s(r,slu,v) is stored at location (1,J) of the two-

dimensional array s of Table 3, where
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I = r + m( s-1)

02.1)

J = u + m(v-l) •

I and J follow FORTRAN conventions with I labeling the rows from top to bottom

in Table 3 and with J labeling the columns from left to right. Since only the

top half of the full array is stored, the (I,J) location given by (12.1) may

need modification:

if I ~ mn, element (I,J) is stored at location (I,J)

if I > mn and J ~ mn, element (1,J) is stored at (I - mn, J + mn) (12.2)

if I > mn and J > mo, element (1,J) is stored at (I - mn, J - mn).

The values of (r,s,u,v) corresponding to location (1,J) are given by

r = 1mod m ' with r - m when l mod m = 0

s = 1 + ~:~ ,

02.3)

u = J mod m ' with u - m when J mod m = 0

v = 1 + ~:~ .

Here [xl is defined as the largest integer less than or equal to x.

The associated spectral upper boundary reflectance and transmittance

functions sp(r,klu,1) have a matrix structure like that shown in (5.41) and

(5.43) and in Tables 1 and 2. There is no need to store the mxm blocks of

zeros, which occur when !p(kI1) has (k + 1) odd. Thus a factor of two Ln

storage can be saved by reducing the full m(n+l) x m(n+l) array sp to
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s (0\0) s (0\2) s (014) s (Oln)-p -p -p -p

sOlO s (13) sOlS) s Oln)-p -p -p -p
s = S (210) S (212) S (2In)

02.4)
-p -p -p -p

s (nIO) s (nI2) s (nln)-p -p .-p

The exact form of the nth row and nth column is determined by our choice of n

even.

Special matrix manipulation routines are easily written to handle the

matrix operations, such as those of eqs. (6.55) or (7.3), which involve these

compress~d arrays. The four-index matrix element sp(r,klu,l) is stored at

location (I,J) of the two-dimensional matrix of (12.4), where

I = mk + r

02.5 )

J = ml + u - mh'-OJ}.
with [xl as the largest integer less than or equal to x. Conversely we can

retrieve (r,k,u,l) from (I,J) via

r = I mod m

k = [~J
02.6)

u = J+m[~JM mod m

l = ~+m~~~ •
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As previously discussed (§3d), the symmetries of the phase functions

p±(y;r,slu,v) make possible a considerable savings in computer storage.

Recall that in evaluating (11.3) we set s = 1 (with ,l : 0), so that as v

ranged from 1 to n, I's-'vl = I'i-'vl ranged from 0 to w. Moreover, for any

arbitrary pair of angles 's and 'v' with s = 1, ••• ,2n and v = 1, ••• ,2n so that

OS's' 'v s 2~, the included angle I's-'vl between 's and 'v lies in the

range 0 ~ I's-'vl S w. Therefore the general isotropic phase functions

p±(y;r,slu,v) can be obtained from the computed arrays. The arrays

p±(y;r,slu,v) are stored as three-dimensional arrays indexed by (I,J,K) where

I = r

u if r = m

u+mls-vl if Is-vi ~ nand u * m
J =

u+m(n-Is-vl d) if Is-vi > n and u * mmo n
m if u = m

(12.7)

K = the depth index, with Yi,Y2' ••• 'Yi' ••• 'YYOp as in Fig. 6.

Since J runs from 1 to m(n+1) as s and v run from 1 to 2n, the isotropic phase

functions can be stored in arrays of size m x m(n+1) x YOP. This is "a

considerable sav1ngs as compared to the size m(2n) x m(2n) x YOP required if

the isotropy of the phase function is not explicitly used.

193



§13

13. REFERENCES

References marked with a * are available from
National Technical Information Service,

u.S. Dept. of Commerce, 5285 Port Royal Road,
Springfield, VA 22161

Ambarzumian, V.A., 1943. Diffuse reflection of light by a foggy medium.

Compt. Rend. (Doklady) Acad. Sci. U.R.S.S., 38, 229.

Austin, R.W., 1980. Gulf of Mexico, ocean-color surface-truth measurements.

Boundary-Layer Neteorol., 18, 269-285.

Chandrasekhar, S., 1950. Radiative Transfer. Oxford.

Coddington, E.A., and N. Levinson, 1955. Theory of Ordinary Differential

Equations. McGraw-Hill, New Yor~.

H.O. See Preisendorfer, R.W., 1976.

Jeans, J.H., 1917. The equations of radiative transfer of energy. Non. Not.

Roy. Astron. Soc., 78, 28.

Preisendorfer, R.W., 1958. Invariant imbedding relation for the principles of

invariance. Proc. Natl. Acad. Sci., 44, 320.

Preisendorfer, R.W., 1961. Generalized invariant imbedding relation. Proc.

Natl. Acad. Sci., 47, 591.

Preisendorfer, R.W., 1965. Radiative Transfer on Discrete Spaces. Pergamon

Press, New York.

*Preisendorfer, R.W., 1973. Classic Canal Theory. Hawaii Institute of

Geophysics HIG-73-14 (NOAA-JTRE-83). (NTIS I COM-74-10875/4).

*Preisendorfer, R.W., 1975. Mu1timode long surface waves in two-part

basins. Hawaii Institute of Geophysics HIG-75-4 (NOAA-JTRE-125) (NTIS #

COM-75-10903/3).

*Preisendorfer, R.W., 1976. Hydrologic Optics. Pacific Marine Environmental

Laboratory, ERL/NOAA, Honolulu, HI [A six volume set: Vol. I,

IntrOduction, NTIS # PB-259793/8ST; Vol. II, Foundations, NTIS #

194



§13

PB-259794/6ST; Vol. III, Solutions, NTIS # PB-259795/3ST; Vol. IV,

Imbeddings, NTIS # PB-259796/1ST; Vol. V, Properties, NTIS #

PB-259797/9ST; Vol. VI, Surfaces, NTIS # PB-268704/4ST.

*Preisendorfer, R.W., 1977. Transport Theory of Long Surface Waves III.

Analytics. Hawaii Institute of Geophysics HIG-77-7 (NAOA-JTRE-188).

(NTIS # PB85-136489).

Preisendorfer, R.W., 1988. Eigenmatrix representations of radiance

distributions in layered natural waters with wind-roughened surfaces.

NOAA Tech. Memo. ERL PMEL-76, 93 pp.

Preisendorfer, R.W. and C.D. Mobley, 1984. Direct and inverse irradiance

models in hydrologic optics. Limno1. Oceanogr., 29, 903-929.

*Preisendorfer, R.W., and C.D. Mobley, 1985. Unpolarized Irradiance

Reflectances and Glitter Patterns of Random Capillary Waves on Lakes and

Seas, by Monte Carlo Simulation. NOAA Tech. Memo. ERL PMEL-63. NTIS #

PB86-123577.

Preisendorfer, R.W. and C.D. Mobley, 1986. Albedos and Glitter Patterns of a

Wind-Roughened Sea Surface. J. Phys. Oceanogr., 16, 1293-1316.

195




