
NOAA Technical Memorandum ERL PMEL-1S

A NUMERICAL INVESTIGATION OF THE BERING SEA CIRCULATION

USING A LINEAR HOMOGENEOUS MODEL

Y.-J.Han
J. A. Galt

Pacific Marine Environmental Laboratory
Seattle, Washington
June 1979

UNITED STATES
DEPARTMENT OF COMMERCE

Janita M. Kr.ps. S.crltlry

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

Richard A. Frank. Administrator

Envllonmental Research
LaboratOries

Wilmot N. Hess, Director

--- ---- -- .-. -----------_._- - - - -------- ---~--,--------'-------





CONTENTS

Abstract

1. INTRODUCTION

2. THE MATHEMATICAL MODEL AND BOUNDARY CONDITIONS

2.1 The Model

Page
1

1

2

2

2.2 Surface Wind Stress and Open Boundary Conditions 5

2.3 Numerical Procedures 21

3. RESULTS

4. SUMMARY AND SUGGESTIONS

5. REFERENCES

iii

25

34

35





A NUMERICAL INVESTIGATION OF THE BERING SEA

CIRCULATION USING A LINEAR HOMOGENEOUS MODEL

Y.-J. Han l
J. A. Galt

Pacific Marine Environmental Laboratory

A linear diagnostic model was constructed to simulate the
Bering Sea circulation. Monthly mean wind stresses along with
lateral water mass exchanges were used as model-forcing functions.
The numerical solutions obtained for the case of annual mean wind
stress generally agreed with an existing view about the cyclonic
circulation of the seawater. The solutions obtained for each
12-month p~riod, however, revealed significant seasonal
differences in both magnitudes and flow patterns. Additional
controlled experiments indicated that the winter circulation
regime was strongly influenced by wind s~resses as well as
lateral water mass exchanges, whereas the summer circulation
regime was basically controlled by the latter. The model results
also showed that the circulation is strongly bathymetry-dependent.

1. INTRODUCTI ON

There is currently a significant focus of scientific interest on the
Bering Sea. This area has always been of particular concern to investi­
gators supporting fisheries research in both the United States Jand Japan.
More recently a large-scale environmental assessment program sponsored by the
Outer Continental Shelf Office of the Bureau of Land Management has concen­
trated attention on potential oil development areas in Bristol Bay. This
study contains a number of components covering many scientific disciplines
which require supportive ,irculation information. Within the immediate
future, planned expansion of the OCS study will extend the investigations to
the north, including most of the eastern continental shelf area as far as
NortonSpund and through the Bering Strait. In addition to these studies, a
second large-scale study, PROBES (Productivity and Resources of the
Bering Shelf), is being planned, which will concentrate on the trophic level
exchange in the incredibly rich fisheries located along the shelf break;
this ecologically based study will also require circulation information.

lpresent affiliation: Department of Atmospheric Sciences, Oregon State
Unive'rsity, Corvallis, Oregon, 97331



Due largely to technical difficulties in oceanographic observations, our
present knowledge of the Bering Sea circulation is fragmentary. The
presently available observational data reveals only uncertain knowledge of
the surface current velocities and very little about the deep basin circu­
lation. Recently Arsen'ev (1967), Hughes et aZ. (1972), and Takenoutiet aZ.
(1972) compiled rather extensive field data and proposed a number of alter­
native current schemes. Although they all shared an existing view about the
cyclonic circulation of the seawaters, they disagreed in all the other
respects: the number, location, size, and even the direction of rotation of
gyres depicted.

In the present study we attempted to explore fundamental physical
processes of the sea using an oceanic general circulation model. A number of
oceanic general circulation models have already been developed and have
successfully simulated many of the observed large-scale features of the ocean
currents. We have begun our study by adopting one such model (Semtner, 1974)
in a s"impl ified form~

Gurikova et aZ. (1964) carried out a numerical study of the Bering Sea
circulation using a linear diagnostic model. They assumed a flat-bottomed,
laterally closed basin, and thus investigated only a wide-driven circulation.
The model results, however, confirmed the presence of a cyclonic circulation
of the seawaters.

Lately Bacon (1973) applied the barotropic model of Galt (1973) to the
Bering Sea, and examined a typical seasonal response of the western deep
basic circulation. He was also able to identify, by making a series of
controlled experiments, some of the important effects such as wind stress,
lateral boundary forcing, and bathymetry.

The Bering Sea studies above are essentially two-dimensional and do not
take into account the thermohaline component of the circulation. It would
seem that any serious attempt to simulate a realistic circulation must
eventually include the thermohaline effect. Accordingly, our main effort has
been to model the Bering Sea in a three-dimensional way. This study is still
in progress and will soon be published in Part II of this series of technical
reports. Meanwhile we have constructed and tested a two-dimensional diag­
nostic model as an initial step toward the three-dimensional modeling efforts.
We have applied this simple model to the Bering Sea; this report reviews the
model and its results. Section 2 contains a brief discussion of the mathemat­
ical model and the numerical procedure, together with the model boundary
conditions. The results and their implications are discussed in sections 3
and 4.

2. THE MATHEMATICAL MODEL AND BOUNDARY CONDITIONS

2.1 The Model

The equations of motion for horizontal non-accelerated flow with a
constant vertical eddy coefficient are:

•
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The hydrostatic equation and the mass continuity equations are:

lQ. -- g- paz 0

_--,1_ ~ + 1 a ( 0 ) + aw - 0
a cos~ aA a cos~ a¢ v c s~ az -
In these equations spherical coordinates are used, with A, ~, and z

representing longitude, latitude, and height. The fluid is contained
between the surface z = n and the bottom z = -H(A,~). The model specifies
two horizontal velocities and pressure. The model assumes the fluid is
homogeneous; thus the density p is a constant (p = 1).

o 0

The boundary conditions are:

au _ A. av _ ~

K PO az - TO' Kpo az - TO

and W= ( u ~ + ~~) at z = n
a cos~ aA a a~

Kp l!! = T A. av - ~
p az b' KPo az - Tb

(1)

(2)

( 3)

(4)

(5)

and W= ( u aH + v aH) at z = -H(A,~)- a cos~ aI aaT ~

In Equations (5) and (6) n is the free surface elevation; H is the
depth of the sea; and T~, Tb are the bottom stress components. Assuming
that n/H« 1, we impose the boundarYcondltion(5) at z-= O. Then the
momentum equations (1) and (2) are vertically averaged to yield:

-fv = aP~o~~ ~i + ~ (T~ - Ru),

fu = - £.£.9..~ +! h~ - Rv)a aA H 0

where

3
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1 IeU = ff Po udz
-H

°
V = ~ I Po vdz

-H

(9)

(10)

In Equations (7) and (8) the component bottom stresses are taken as Ru
and Rv where R is the coefficient of friction (R - 0.02 m/s). Integration
of the continuity equation (4) with boundary conditions (5) and (6)
yields:

1 a (1°) 1 a ( I ° )a eos~ aI udz + a cos~ ~ cos~ vdz = 0
-H -H

Equation (11) simply states that the vertically integrated flow is
horizontally nondivergent, which guarantees the existence of a transport
stream function wsuch that

(11 )

- 1 /0 d __1 _1 ad,u = iT po U Z = ~
n a H a~

-H

V- = Hl 1° vdz - 1 1 It
po - ff a cos~ aA

-H

Substituting Equations (12) and (13) into (7) and (8), and applying the
curlz operator defined by

1 aP2 a
curlZ<ql' q) = a cos~ [ar- - ~ (ql cos ~)]

2
and simplifying by eliminating a factor of l/(a cos), we get:

4
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•

(15)

Equation (15) is an inhomogeneous, linear, elliptic, second-order
partial differe~tfdl equation for the stream function~. For a given
bathymetry H(A, ~) and a prescribed surface stress distribution LA (A, ~)

o
and L~(A' ~), the stream function ~ can be obtained by inverting the second
order differential operator. It is necessary to specify boundary
conditions for this inversion. If the domain is singly connected, an
arbitrary value can be specified as the value of the stream function on the
boundary in general. However, the domain of ~ will be a multiple-connected
region whose boundary consists of a primary continent and several islands.
On the chosen continent, ~ can be held constant, but on the islands ~ must be
obtained as a part of the total solution. In order to obtain the ~ on the
islands, we use the method of "hole relaxation" by Takano (1974). Since the
surface elevation n is a single-valued function, a line integral of Vn
around the coastline of each island should vanish. By applying this
condition in integrating Equations (7) and (8) around each island, the
following equation is obtained to predict the~. on the island:

~ (L~ +~H ~) a cos ~ dA + ~ (L: - H aRcos~ ~) ad~ = 0 (16)

In the above, the fact that ~ is spatially constant along the coastline
eliminates any contribution from the Coriolis terms.

We solve Equations (15) and (16) simultaneously by the "successive
over-relaxation method." It should be mentioned, however, that the highest
order terms in Equation (15) involve a small friction parameter R, and thus
special care must be taken to maintain stability of the numerical methods.
This plus the numerical procedure for solving Equations (15) and (16) will
be discussed in section 2.3.

2.2 Surface Wind Stress and Open Boundary Conditions

Wind stress can be estimated by conventional drag law methods if the
surface wind is known. Unfortunately, wind measurements over the Bering Sea
are very sparse in space and time, since they generally come from a handful
of ship stations. Therefore, for the numerical models, wind stress is
computed from surface pressure data. First, monthly mean pressure data
provided by the National Climate Center were interpolated quadratically from
a 5° x 5° grid mesh onto the model grid mesh of 2° (long.) x 1° (lat.). The
interpolated pressure data were then used to estimate the geostrophic wind
velocity, and the wind velocity at anemometer height was obtained by multi­
plying the geostrophic wind speed by a factor y and changing the geostrophic
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wind direction by angle a (the constant y is .07; a is 19°). Strictly
speaking, one should use synoptic maps in estimating wind stress because ~e

variable part of the pressure could increase the wind stress estimate through
the non-linearity of the drag law. In fact, the studies by Aagaard (1970)
and Fissel et al. (1977) strongly suggest that the stress computed from the
monthly mean pressure could be easily underestimated by a factor of 2 or 3.
On the basis of this study, we multiplied the monthly mean stress by 3.0 for
the model calculation.

The annual mean wind stress was computed by averaging 12 months of wind
stress data. This is shown in Figure 1. The computed monthly mean wind
stress patterns for January through December are shown in Figures 2-13. The
January map shows a typical winter pattern characterized by the north­
easterly stress associated with a strong high-pressure center over Siberia and
low-pressure center over the North Pacific Ocean. The stress pattern in
August, on the other hand, shows a very weak stress over most of the sea and
somewhat stronger southwesterly stress over the southeast part of the bastn.
In general, the wind forcing in summer is weaker by one order of magnitude
than in winter. This significantly large winter-to-summer change in the wind
stress might lead to large annual signals in the resulting currents. Recent
work by Kinder et al. (1975) has suggested that variations in the wind stress
may result in planetary wave patterns that control the current structure
along the Bering Sea shelf break. Although the present model does not.
include any such wave dynamics in its steady state formulations, the time­
dependent problem is of considerable theoretical interest. For this reason
the complete annual cycle by months has been included. To the authors I

knowledge the analysis of these monthly mean pressure data to yield sequential
stress patterns is not available elsewhere; we hope that this effort will help
stimulate productive consideration of the more complete time-dependent
problem. In addition to stress fields, the model requires boundary conditions.

At the open boundaries of the grid, estimates of vertically integrated
transports were required. The model has four open boundaries along the
Aleutian-Commander Island Arc; Kamchatka Strait, Commander-Near Strait,
Central Aleutian Pass and Western Aleutian Pass. The Bering Strait also
modeled as an open boundary. The widths and depths of the open boundaries are
adjusted to match the observed bathymetry within the limits imposed by grid
resolutions. Integrated volume transport values on the open sections are
chosen from various estimates presently available. It should be mentioned
however, that at the present stage there are many uncertainties in transport
estimates at the various passes.

The chosen values of (annual mean) transports are given in Table 1. A
net transport of 18 sv (1 sv =106 m's/s,) outward through the Kamchatka Stra i t
is in close agreement with an estimate of 18.4 sv by Arsen'ev (1967) and
summer values (20 sv) by Hughes et al. (1974). A net transport of 14 sv
inward across the Commander-Near Strait, taken from Arsen1ev (1967) is
greater than an estimate (10 sv) by Favorite (1974) but less than Hughes
et al. (25 sv). The total inflows through the Western and Central Aleutian
are based on the estimates made by Arsen'ev (1967). For the Bering Strait,
the total transport (1 sv) outward was chosen from the estimate (1.1 sv) by
Arsen' ev (1967).
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Table 1. Mass transport at open boundaries

*Kamchat.ka Strait -18 sv

*Commander-Near Strait ±14 sv

Western Aleutian Pass +4 sv

Central Aleutian Pass +1 sv

Bering Strait -1 sv

* - Outward

± Inward

20



2.3 Numerical Procedures

The basic equations (15) and (16) for the volume flux stream function ~

are solved numerically by finite-difference methods. The Bering Sea domain
is approximated by a collection of rectangles, each having horizontal
dimensions corresponding to increments ~A and ~~ in longitude and latitude.
The boundary grid is chosen so as to best approximate the coastline (Fig. 14).

We write the basic equation (15) in a compact form using Cartesian
coordinates:

( 17)

where A, B, and ~ are functions of bottom slope, planetary vorticity
gradient, and the wind stress distribution.

Let the nodes (Fig. 15) be labeled x = i, x + d = i + 1, x - d = i - 1,
y = j, y + d = j + 1, y - d = j - 1. Then at the nodes (i,j), Equation (17)
has the definite difference form:

B+ -2d (~. . 1 -~. . 1) = ~. .l,J+ l,J- l,J

Solving for ~i;j leads to

4 -.R~ . . = (.-B.. + ~) ~·+l . + (IL + 2Bd)~· ·+1 + (lL - ~d)~· 1 .d2 l,J d2 2d 1 ,J d2 l,J d2 LU 1 - ,J

( 18)

R B+ (- - 7)Td)~· . 1 ­d2 £00 l,J- i ,j (19 )

Thus ~ is defined at each grid point in terms of ~ at four neighboring grid
points, each weighted by a factor related to the grid size, depth, bottom
slope and wind stress.

Approximating the differential equation (17) by the finite difference
equation (19), we obtain a system of linear algebraic equations. One
efficient method of solving this type of equation is that of IIsuccessive
over-relaxation. II For solution convergence, however, the matrix of
Equation (19) must be diagonally dominant, i.e., the sum of the off-diagon~

elements in any row of the coefficient matrix must be less than or equal to
the diagonal element in that row. The condition to be met here is:

lL+~ + lL+~ +
d2 2d d2 LU

This condition will be met if:

R A
~ - 2d
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configuration and the finite difference approxima­
Contours of depth are superimposed.
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2R
A ~d'

B ~~.

(21)

(22)

Thus, three factors are critical in obtaining a converging solution: bottom
slope, friction coefficient, and grid size. Clearly conditions (21) and (22)
can always be satisfied by making d small enough. In practice, however, the
number of iterations and the storage requirements increase as d decreases.

Sarkisian (1976) recognized this difficulty and proposed an alternative:
the "method of directional differences. 1I We used this method for the present
study. The essence of the method is quite simple. Depending on the sign of
the coefficients, forward or backward finite differences are used for the
first-order derivatives in such a way that diagonal terms possess the
maximum weights. For instance, in Equation (17), foll~wing Sarkisian's
notation, we substitute the derivative with respect to x by the directional
difference relation in the following way:

d(E.!.) = 011/1·+1 . + (1-2 01) 1/1 .. + (01-1) 1/1. 1 .ax 1 ,J 1,J 1- ,J

where 01 = 1 for A.. < 01,J

01 = 1 for A· . > 01,J

Simil arly,

d(2.t) = 021/1· ·+1 +( 1 - 202)1/1 .. + (02 - 1)1/1 .. 1ay 1,J 1 ,J 1 ,J-

(23)

(24)

where 02 = 0 for B.. < 0
1 ,J

02 = 1 for B. . > 01,J

If we write the finite-difference analog of the sum A~ + B~, then

1/Ii ,j has the coefficient [iA i ,j I + IB i ,j I] in this sum. Thus the diagonal
predominance is present in the system of algebraic equations obtained,
independent of the signs of the coefficients A and B. The Laplace operator
is written as in Equation (18). Then we obtain the following difference
approximation of Equation (17):

24
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The computation of the stream function on islands remains to be
discussed. Rather than construct a finite difference version of Equation (16)
directly, we use an indirect approach which is based on a finite-difference
form of Stokes theorem [see Semtner (1974)J. This theorem applies to any
area A covered by a collection of rectangles and having a perimeter P of
rectangle edges. If arbitrary values of two fields ql and q2 are defined at
the corners of rectangles, the following can be shown to hold:

-x -y
= L: (q1 I:1X + q2 I:1Y) ( 26)

p
-y ql(X) + ql(x+d)

where q1 =--....,.2...----

-y ql(y) + ql(y+d)
=--~----ql 2

To compute the value of the island stream function, a line integral of
Equations (7) and (8) is required. The curl of those equations is already
available in Equation (25). By virtue of the Stokes theorem above, we can
equivalently take the area sum of Equation (25). (We can arbitrarily set
the values of stress to be zero at the interior corners of rectangles on the
margin of the area.) The resulting area sum gives an algebraic relation
between the value of ~ for an island and all the values of ~ immediately
surrounding the island. This relation is solved simultaneously with
Equation (25) at each grid point in the Bering Sea domain.

3. RESULTS

Solutions were obtained first for the case of annual mean wind stress
(Fig. 1) and mean mass flux conditions (Table 1) specified at the open
passes. Solutions for each 12-rr.onth period were also obtained. but due
to the lack of data, monthly variations of the lateral boundary mass
fluxes were not taken into account; an annual mean flux condition was used in
the calculations.

With the annual mean wind stress from the general direction of northeast,
contours of the stream function for the whole Bering Sea (Fig. 16) show a
strong cyclonic gyre in the western half of the basin, and a somewhat
complicated but much weaker flow (less than 2 sv) in the eastern shelf
region. More specifically, the Pacific Ocean waters entering through the
open passes along the Aleutian Islands chain first move eastward along the
Aleutians, and then turn northwestward along the shelf break to form a
broad cross-basin flow. A little south of Cape Navarin this cross-basin
current branches into~wo parts: the main part flows southwest and the
second part flows toward the Bering Strait. The southwest-bound current
moving parallel to Koryak Coast and Shirshov Ridge finally flows through the
Kamchatka Strait into the Pacific Ocean.
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Figure 16. Annual mean mass transport stream functions. Contour inter-
vals are 2 s.v. ( ) and 0.2 s.v. (---).
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The mass transport vectors computed from Equation (12) and Equation (13)
for the annual mean case are shown in Figure 17. To show a clearer picture
of the circulation pattern in the deep basin, that portion was magnified and
is shown in Figure 18. The flow pattern, of course, is consistent with the
stream function field described above. It must be remembered, however, that
the transport velocity vectors do not characterize the motion of the water
particles but give only a picture of the overall water transport in the
whole vertical column of the layer. In other words, the actual current
pattern at a certain level could be substantially different from the transport
pattern. Nonetheless, the results obtained are of definite importance for
establishing the nature of the mean circulation of the sea.

To illustrate the monthly average characteristics of the total current,
transport stream functions for January through December were calculated.
Judging from these maps, the average, long-term current in the deep basin is
basically cyclonic, which agrees with the annual mean case. There are,
however, significant differences in both magnitudes and flow patterns between
the winter regime and the summer regime.

In the winter season, the flow in the deep basin is characterized by
three strong cyclonic subgyres. These subgyres are established in November
and retained through the winter months (November-March) reaching a maximum
strength in February (Fig. 19). The strong cross-basin transport along the
shelf break is another characteristic of the winter regime. It extends from
the southeast corner of the basin to the south of Cape Navarin. The flow in
the shelf region appears to be quite complicated; it even shows an anti­
cyclonic gyre in the Gulf of Anadyr. Unfortunately, due to a wide coverage of
pack ice over the shelf in winter, there are no field data available to
verify the model results. We might conjecture at most that the flow under
the ice sheet probably resembles the model result, but this is not certain.

The transition to summer is characterized by weakening of both the sub­
gyres in the deep basin and the cross-basin transport along the shelf break.
The subgyres completely disappear in May and reappear in October. The
pattern for August is seen in Figure 20. The deep basin circulation becomes
weaker and tends to confine itself in the vicinity of the source-sink region
as the season progresses. The seasonal differences of the flow regime in the
present study must be attributed to seasonal variation of the wind stress
since the model assumed a fixed-mass-flux boundary condition. This was
further investigated in a series of controlled experiments; one with wind
forcing only (Fig. 21), and the other with a source-sink only (Fig. 22).
Evidently, the summer circulation closely resembles the one with the
source-sink only. This might indicate that the circulation in summer is
primarily driven by the mass source-sink specified along the boundary mainly
due to the absence of strong wind. On the other hand, the closed gyres of
the deep basin in winter are direct consequences of wind forcing, which
showed up clearly in the experiment with wind forcing only.
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Figure 19. February mean mass transport stream function.
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4. SUMMARY AND SUGGESTIONS

The present diagnostic study attempts to establish a basis for a three­
dimensional prognostic modeling of the Bering Sea. The model performances
are very encouraging; a simple model such as this can be valuable for
exploring some fundamental physical processes in the Bering Sea. The results
obtained generally agree with the existing flow features as inferred from the
climatological hydrographic data. Seasonal characteristics of the model
flow, however, are yet to be verified with the observational data.

Furthermore, the present study provides us with invaluable information
on the range of model parameters such as bottom topography, wi~d stress, etc.
This information has already been used in our initial calibration of a
three-dimensional model.

Based on the analysis of the present study, we propose a few
suggestions:

1) A numerical model with a finer grid resolution is needed to handle
the narrow passage along the Aleutian chain and to adequately resolve the
bottom topography of the sea. There is a strong indication that the model
flow depends upon the prescribed boundary-mass-flux conditions and upon the
details of bottom topography. Doubling the present grid resolution
(100 x 100 km) should improve the results significantly.

2) A more accurate estimate of wind stress over the Bering Sea is
certainly necessary. The present study indicates a sensitivity of flow
features to both the intensity and the pattern of driving stress. For
example, seasonal characteristics of the model flow are entirely due to
seasonal variation of the imposed wind stresses. Reliable synoptic pressure
maps are required in order to eliminate the use of stress multipliers with
mean pressure maps. (This has been under investigation and will be reported
elsewhere. )

The effect of seasonal variation of boundary mass flux on the sea
circulation must be taken into account in future studies. The controlled
experiment shows that the summer flow regime is very similar to that with the
boundary mass forcing only, thus indicating the importance of boundary
conditions in determining the summer regime. Future fieldwork directed
toward measuring lateral boundary conditions will improve simulation of the
interior flow.

3) Finally, the two-dimensionality of the present model (probably the
weakest point of the model) allows only vertically averaged mass circu­
lations. These results, however, are difficult to verify with field data
obtained at a fixed level because there is usually a rapid variation of
magnitude and direction of the flow with depth in the real sea.

In order to simulate more realistic circulation in the Bering Sea,
three-dimensional modeling based on complete equations is necessary.
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