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A GENERAL MODEL OF THE OCEAN MIXED LAYER
USING A TWO-COMPONENT TURBULENT KINETIC ENERGY

BUDGET WITH MEAN TURBULENT FIELD CLOSURE

Roland W. Garwood, Jr.

A non-stationary, one-dimensional bulk model of a mixed layer
bounded by a free surface above and a stable nonturbulent region
below is derived. The vertical and horizontal components of turbu­
lent kinetic energy are determined implicitly, along with layer
depth, mean momentum, and mean buoyancy. Both layer growth by en­
trainment and layer retreat in the event of a collapse of the ver­
tical motions due to buoyant damping and dissipation are predicted.
Specific features of the turbulent energy budget include mean tur­
bulent field model ing of the dissipation term, the energy redistri­
bution terms, and the term for the convergence of buoyancy flux at
the stable interface (making possible entrainment). An entrainment
hypothesis dependent upon the relative distribution of turbulent
energy between horizontal and vertical components permits a more
general application of the model and presents a plausible mechanism
for layer retreat with increasing stability. A limiting dissipation
time scale in conjunction with this entrainment equation results in
a realistic cyclical steady-state for annual evolution of the upper­
ocean density field. Several hypothetical examples are solved, and
a real case is approximated to demonstrate this response. Of par­
ticular significance is the modulation of longer-period trends 'by
the diurnal-period heating/cooling cycle.

1. INTRODUCTION

1.1 Purpose of the Study

The objective of this study is the formulation of a unified mathematical
model of the one-dimensional, nonstationary oceanic turbulent boundary layer.
In particular,'this model should help explain and predict the development in
time of the seasonal pycnocline.

Interest in the ocean mixed layer stems from both theoretical and prac­
tical considerations. Thermal energy and mechanical energy received from the
atmosphere not only control the local dynamics, but the layer itself modu­
lates the flux of this energy to the deeper water masses. Conversely, flux
of heat back to the atmospheric boundary layer has an important influence
upon the climate and its fluctuations. Figure 1 depicts the mechanical
energy budget for the ocean mixed layer.
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In addition to climatological and ocean circulation studies, other
applications of a practical model of the mixed layer include investigations
of advection and turbulent dilution of dissolved or suspended concentrations
of matter such as pollutants and nutrients. Prediction of entrainment of the
deeper, nutrient-rich water into the mixed layer has particular pertinence to
the estimation of primary productivity.

The need to further develop and attempt to improve the one-dimensional
mixed-layer model is evident. The failure of earlier models to consistently
explain the annual cycle of thermocline development is, for the most part,
not attributable to the assumption of one-dimensionality.

A refined treatment of the often neglected terms of the turbulent kin­
etic energy budget promises to improve the physical understanding of the
turbulent ocean boundary layer and make possible the creation of a better­
performing model.

A detailed review of the literature associated with mixed-layer modeling
is undertaken in Chapter II, but Table 1 summarizes the major historical
contributions to the understanding of the physics of the mixed layer.

The works of primary concern here are those dealing explicitly with
equations for the production, alteration, and destruction of turbulent kin­
etic energy within the mixed layer. Kraus and Turner (1967) were the first
to heed the turbulent kinetic energy budget in a one-dimensional mixed layer
model, utilizing the approximately decoupled state of the equations for the
thermal and mechanical energies. By neglect of the frictional generation of
heat, the vertically integrated heat equation becomes a relationship for the
conservation of potential energy. However, viscous dissipation cannot be
neglected in the turbulent energy budget, and Geisler and Kraus (1969) as
well as Miropol'skiy (1970) and Denman (1973) added it to the basic model.
Niiler (1975) showed that in addition to the equations for thermal (poten­
tial) and turbulent (kinetic) energy, an equation for the mean kinetic energy
should properly be incorporated because entrainment converts some of the mean
flow energy into turbulent energy, over and above the parameterized wind­
stress production.

Further questions remain and limit the general applications of these
earlier models:

a. The viscous dissipation of turbulent energy has been parameterized
as a fixed fraction of the wind-stress production and hence is a function of
the surface friction velocity u*. Dissipation may be related to the integral
velocity scale of the turbulence, but this scale is not always proportional
to u*. Surface heat (buoyancy) flux and entrainment fluxes can contribute
significantly to the turbulent intensity.

b. Entrainment may also be considered a function of the ambient turbu-
lence parameters. Instabilities leading to entrainment are probably induced •
by horizontal turbulent velocities locally at the bottom of the mixed layer,
so the entrainment rate doesn't necessarily correspond to an integral con-
straint upon the total turbulent energy budget.

3



Ta.ble. 1. SwnmaJLy 06 H..L6:toJUc.a.i ContJUbution6

Date

1905

1935

1948

Author(s)

Ekman

Rossby and
Montgomery

Munk and
Anderson

Contribution

Constant eddy viscosity solution to steady-state momentum
equation: Ekman ~l; "depth of frictional influence";
suggested h ~ Wllsin-~ •

Improved current measurements to demonstrate h ~ u*/f
(Rossby number ~ constant).

Simultaneous solution of steady-state heat and momentum equa­
tions using eddy mixing coefficients variable with Richardson
number.

1960 Kitaigorodsky Using dimensional analysis, suggested that h
length scale.

L, the' Obukhov

1961

1967

1969

1970

1973

1974

Kraus and
Rooth

Kraus and
Turner

Geisler
and Kraus

Miropol'skiy;
Denman

Pollard, Rhines
and Thompson

Ni i ler

Penetration of solar radiation to depth makes steady-state
possible for heat equation because of surface heat loss by
conduction, evaporation, and long wave radiation; unstable
density profile above compensation depth (hc ) is source of
turbulent kinetic energy produced by convection.

Included mechanical stirring (parameterized in terms of wind
stress) as well as convective production as important source
of turbulence for mixing: turbulent kinetic energy equation
and heat equation form two-equation model in two unknowns--T,
h; non-steady-state solutions and "retreating" (h) possible;
viscous dissipation neglected.

First "slab" model in which momentum equation is solved to­
_gether with turbulent energy equation and heat equation; layer
assumed homogeneous in T and U, V and hence moves as a slab;
assumed buoyancy flux is fixed portion of mechanical produc­
tion--essentially same as Kraus and Turner; applied model to
atmosphere with subsidence.

Assumed dissipation a fixed fraction of mechanical production;
remaining turbulent kinetic energy goes to buoyancy flux down­
wards including entrainment; essentially same as Kraus and
Turner.

Slab model applied to ocean mixed layers; used total mechan­
ical energy equation (rather than turbulent equation) plus
momentum and heat equations; h, T, U, V--all functions of
time. Ignored effects of turbulent energy budget altogether.

Re-emphasized the need to use the turbulent kinetic energy
budget apart from the total mechanical energy budget; divided
region into three sub-regions with no mechanical production
in most of the mixed layer. Included turbulent kinetic
energy'produced by entrainment of zero-velocity water into
moving slab, but surface mechanical production minus dissi­
pation still parameterized in terms of u~. Dissipation is
not affected by the additional entrainment production, pos­
sibly causing a too-large entrainment rate.

4



c. The use of the total turbulent energy equation and consequently the
neglect of energy redistribution among components also results in a somewhat
inconsistent method of predicting layer "retreat." The consideration of
separate budgets for the horizontal and vertical turbulent energy components
will permit a more consistent interpretation of both entraining and retreat­
ing mixed layers.

In this paper, ad hoc mean turbulent field modeling of the terms in the
turbulent kinetic energy equations permits the inclusion of these often
salient effects in a generalized one-dimensional model of the ocean mixed
layer.

2. CHARACTERISTICS OF THE OCEAN MIXED LAYER

The ocean mixed layer is defined as that fully-turbulent region of the
upper ocean bounded on top by the sea-air interface. The wind and intermit­
tent upward buoyancy flux attributable to surface cooling are the primary
sources of mechanical energy for the mixing.

The most distinctive feature of this layer and what really defines its
extent is its relatively high intensity of continuous, three-dimensional
turbulent motion. Vertical turbulent fluxes within the mixed layer can be so
much greater than vertical fluxes in the underlying stable water column that
the dynamics of the layer are essentially decoupled from the underlying
region. (Of course the dynamics of the underlying water masses are probably
very dependent upon the mixed layer.)

Typically, an actively entraining mixed layer is bounded on th~ bottom
by a sharp density discontinuity separating the layer from a stable, essen­
tially nonturbulent thermocline. Minimal stress at the bottom together with
high turbulence intensity results in an approximate vertical uniformity in
mean velocity and density. This ostensible homogeneity is the root of the
term "sl ab," often used to describe the layer. On the other hand, only small
gradients in these mean variables give rise to large turbulent fluxes. There­
fore, even the slight non-homogeneity is highly important in the physics of
the region and should not be neglectea at the outset.

The nearly zero-flux state of the underlying thermocline causes the
bottom boundary condition of the mixed layer to act almost as a slip condi­
tion on the mean velocity. This in turn creates a trap for inertial motion.

Deepening of the mixed layer is accomplished by entrainment of the more­
dense underlying water into the turbulent region above. This process entails
a potential energy increase and cannot take place without an energy source-­
the turbulent kinetic energy of the mixed layer above.

A simplified picture of the region is shown in Figure 2. There is an
appealing practical aspect to the judicious use of the assumption of vertical
homogeneity. This assumption permits the use of the vertically integrated

5
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momentum and heat (buoyancy) equations, thus avoiding the turbulent flux (of
momentum and buoyancy) closure problem altogether.

The depth of the oceanic wind-mixed surface layer is typically on the
order of ten to a hundred meters. The horizontal scale size is that of the
radius of the circle of inertia--seldom larger than a few kilometers in tem­
perate latitudes. These two dominant scale sizes are usually significantly
smaller than the horizontal scale sizes of the driving meteorological distur­
bances, water mass features, and distance to lateral boundaries. Therefore,
the approximation of local horizontal homogeneity for all mean variables is
usually accurate and is a basic assumption of this work. The local conse­
quence of some lateral inhomogeneity can be parameterized without qualita­
tively undermining such a one-dimensional model. For example, a divergence
of the horizontal current field results in a nonzero vertical mean velocity
which in itself can be assumed locally uniform in the horizontal. A minor
rate of loss (compared with the surface flux) of mean momentum by lateral
and/or downward radiation of inertial motion may be parameterized also with­
out compromising the dominant processes.

Substantial barotropic and baroclinic features in the mean fields can
be linearly superimposed. The mean fields of concern are therefore the hori­
zontally homogeneous components of the total fields. In particular, the

6



momentum equation has the geostrophic component subtracted out, eliminating
any lateral pressure gradient.

1.3 Fundamental Principles and Equations

The underlying principles employed in studying the mixed layer are the
combined conservations of mass, momentum, thermal energy, and mechanical
energy.

The conservation of momentum and the condition of incompressibility are
reflected by the Navier-Stokes equations of motion, invoking the Boussinesq
approximation:

au. au.
'+ '" -'+Po~ Po uj ax.

J

--.J.",
'" ap au.

Po E. ·kS"LU k +" - (po - ,,)g 0'.3 = l.l ''J J aX,. aX.aX.
J J

au.,
ax. = 0 .,

(1.1 )

(1. 2)

Because frictional generation of heat is negligible compared with typi­
cal magnitudes for the divergence of heat flux, the conservation of thermal
energy is decoupled from the mechanical energy budget, and the first law of
thermodynamics for an incompressible fluid gives the heat equation.

(1. 3)

The conservation of salt mass is of the same form, but it lacks a term
analogous to the radiation absorption term, Q.

(1.4 )

A simplified but sufficiently accurate equation of state for local
and reasonably short-term application in the mixed layer is given by

(1.5 )
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where Po = p(eo,so) is a representative but arbitrary density at the time
and location of consideration. The coefficients (8) and (a) are assumed to
remain constant.

Taking the scalar product of (ui) with the respective terms of equation
(1.1), the mechanical energy equation is formed,

where the buoyancy (0) is given by

-:v (po-p)o = g
Po

'"V
u·1v

'"V4.v
a u·

1
ax.ax. '

J J
(1. 6)

(1. 7)

Assuming horizontal homogeneity of mean variables, where the horizontal mean
is defined by

x X

en (z,t) = lim L 1212
f(x,y,z,t) dxdy ,

x~ x2 -x -x
2"" 2""

and separating all variables into mean and fluctuating components gives

Ug + U(z,t) + u(x,y,z,t)

{ui } = Vg + V(z,t) + v(x,y,z,t)

o + w(x,y,z,t)

e = T(z,t) + e(x,y,z,t)

p = \ Pg + p(x,y,z,t)
,
I

0 B(z,t) + b(x,y,z,t)
I

= I

I.
Strictly speaking, the total fluctuating part of each variable includes

a component directly attributable to surface and internal wave motion. This
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component has been removed from the fields depicted above. The virtually
irrotational wave velocities are assumed noninteractive except as an external
source or sink of turbulent energy due to the net contr"ibutions of breaking
surface waves and radiating internal waves.

In practice, a time mean is employed in data analysis rather than even
the horizontal mean. Ideally, the averaging time should be short compared
with the time necessary for significant changes in the mean fields but long
compared with the integral time scale of the turbulence.

--;;::;- 1
B(z,t) = (0) ~ 6t Ddt, for example.

In making the Boussinesq approximation, the hydrostatic component of
pressure has already been eliminated. The renlaining mean pressure is assumed
to be geostrophic:

(1. 8a)

(1. 8b)

Subtracting the geostrophic equations from the total momentum equation
and dropping the negligible viscous terms, the equations for the mean momen­
tum become in complex notation (for the sake of brevity)

aC _ ifC acwar-- -az

where C = U + i V and c = u + i v.

(1. 9)

Using equations (1.3), (1.4), (1.5), and (1.7) and again neglecting
molecular fluxes, a buoyancy equation is formed:

(1.10 ) -

9



Equation (1.11) is the mean buoyancy equation.

(1.11)

The use of a buoyancy equation reflecting the combined conservations of
thermal energy and dissolved material is not only more general than a heat
equation alone, but it makes more obvious the coupling with the mechanical
energy budget.

Using the decomposition into mean and fluctuating parts and taking the
mean of equation (1.6) yields the mean equation for the total mechanical
energy. Where E = u.u. = u2 + v2 + w2 ,

1 1

+~az

~]ax.
J

(1.12 )

The viscous diffusion and viscous dissipation of the mean kinetic energy are
negligible and have been dropped in equation (1.12).

The turbulent kinetic energy equation is formed by subtracting the
scalar produce of (Ui) and equation (1.9) from equation (1.12).

1 aE a [~E~ [- aU - avJ r-] []- - + - W 1:- + - + uw - + vw - = bw - £2 at az Po 2 az az . (1. 13)

The budgets for the individual components of turbulent energy are
formed in the same manner from equation (1.1) by setting i = 1,2,3 without
summation:

(1.14a)

(1.14b)

10



1 aw2 _
2" ar- - bw

a
az (

w
3

+ ~)
2 Po

+ ~ aw + Q2 UW - £3 •
Po az (1.14c)

Notice that the orientation of the horizontal axes is (x) positive to the
east and (y) positive to the north~ The rate of viscous dissipation
E = v aUiaui/axjaxj beha~es like (E/, E ) and the small size of the dissipation
time constant (lE ~ hill[) compared with the time scale of the meteorological
forcing causes the intensity of the turbulence to track along in a quasi­
steady state with a continually changing net rate of production. Hence the
time rate of change of turbulent kinetic energy is usually much smaller than
the other terms of (1.13) and thus may be neglected. Because viscous dissi­
pation of energy occurs primarily in the range of wave numbers that exhibit
local isotropy (the equilibrium range), dissipation (E) is divided equally
among the component budgets (1.14 a-c).

The second term in equation (1.13) is the divergence of the turbulent
flux of kinetic energy. Over the whole mixed layer, it probably accounts for
a net gain of energy. Wind-wave interactions at the surface result in some
net downward flux, primarily from breaking surface waves. If the Brunt­
Vaisala frequency (N) of the adjacent underlying stable water column is suf­
ficiently large so as to be comparable with the frequency of the integral
scale of the turbulence, turbulent energy may be lost to the generation of
internal waves. One of the most significant aspects of this term is that
locally, at the bottom of the layer during occasions of entrainment, a net
convergence of flux of energy is necessary to maintain the downward buoyancy
flux for a deepening mixed layer.

The third term, the rate of mechanical production, is perhaps the
dominant source of turbulent kinetic energy. It is the rate of conversion of
mean to turbulent kinetic energy by the turbulent flux of momentum down­
gradient.

The last term on the left, the buoyancy flux, locally within the mixed
layer can be either a sink or a source. Usually, however, the mixed region
is slightly stable overall, and this term represents the rate of increase of
potential energy by fluxing buoyancy downward. During instances of large
buoyancy flux up across the surface, this term can become an important source
as in the case of strong convective cooling in the autumn.

The summation of separate component equations yields (1.13), but one
term that is very important in mixed layer dynamics sums to zero and there­
fore appears only in the component budgets (1.14 a-c). This term is the
correlation between pressure and rate of strain, plpo aua/axa . Since it sums
to zero ~ continuity, it causes only a redistribution of energy among UT,
VL, and w .

The individual turbulent energy budgets also have redistribution terms
due to rotation of the Earth, but these shall be neglected because of the
usually short integral time scale in comparison with one day. Perhaps this

11
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effect does become significant in some of the very deep convective mixed
layers that are not limited in growth by a permanent pycnocline.

Application of the vertical homogeneity assumption to the momentum and
buoyancy equations (1.9) and (1.11) gives relationships for the turbulent
fluxes in terms of the boundary conditions (specified externally) alone: "

cw (z) = cw (0) (l + ~) + ~C (K) ~ ~ (1.15 )

bw (z) = bw (0) (1 + ~) + K[ 0]dh 13 ~
AB dt - ~LQdz - PoCp

af Qdz.
z

(1.16)

The integral of (1.16) over the mi xed 1ayer gi ves the net buoyant dampi ng for
the whole layer.

f
a

- hbw dz = 2"
-h-o

-PTfO [~- 10
QdJ

P -h-o z
dz •

(1.17)

Integrating the turbulent kinetic energy equations from z = (-h-o) to
z = a gives

1 d (-2" dt <E>h)

a

1 (-au - av - )= -uw -- - vw -- + bw - E: dzaZ a~

-h-o
- w(t + L)] + ~J .

Po Po
-h-o

o
(1.18 )

10 (- au n au )- uw - + .I:- - dzaz Po ax
-h-o

12

-~] - ~
o

/
-h-o

e: dz

(1.19a)



o ]- aV av wv 2 1f (- vw - + L - ) dz - ---;or- -­
az Po ay Co 3

-h-o o
f

o
£ dz

-h-o
(1.19b)

1 d JO - Law w2 L] Wn ] 1-2 dt «w2 >h) = (bw + - ) dz - w(-- + ) + ~ - -
Po az 2 P Po h ~ 3-h-o 0 - -u

o

(1.19c)

The surface boundary conditions are prescribed functions of time:

- uw (0)
LX (t)

=
Po

= VW (0) =
Ly (t)

Po

- bw (0) = g [a sw (O,t) - a ew (O,t)] .

(1. 20a)

(1.20b)

(1.21 )

Also to be prescribed in deriving the system is the radiation absorption
function, Q (z,t).

The boundary conditions at the bottom of the mixed layer, z = -h, will,
on the other hand, conform to the developing situation. To derive these
conditions, the equations (1.9) and (1.11) are integrated over the entrain­
ment zone from z = (-h-o) to z = (-h):

J
-h

lim au dh dho/h + 0 at dz = [U (-h) - U (-h-o)] dt = ~U dt •
-h-o

13
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J
-hlim

olh +0 f V dz = 0 .

-h-o

-h

J -auw dz = - uw (-h) .az
-h-o

Therefore

-,

dh- uw (-h) = AU dt ' and similarly

notation,

- vw (-h) = AV dh
dt or in complex

Also,

- cw (-h) = AC dhdt

- () dh- bw -h = AB dt

(1. 22)

(1.23)

where AC = AU + iAV and AB are the respective jumps in the values of the
mean variables across the density interface separating the mixed layer from
the nonturbulent region below. The discontinuity need not be a perfect one
(0 = 0) for the boundary conditions (1.22) and (1.23) to be valid. A suffi­
cient condition is for the fluxes of momentum and buoyancy from the mixed
layer into the interface zone, resulting in a lowering of the vertical pos­
ition of the zone, to be much larger than that portion of the fluxes con­
tributing to changes in the momentum and buoyancy profiles of the moving
interface zone itself.

Integrating equations (1.9) and (1.11) from (z = -h - 0) to (z = 0)
provides a form of the equations that includes the effects of the entrainment
stress and entrainment buoyancy flux of (1.22) and (1.23).

h d<C> + AC dh A = - if<C>h - cw (0)
dt dt

14
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and
o

h d<B> + t.B dh A =~ J Q dz - bw (0)
dt dt POC p -h-o

(1. 25)

where the Heaviside unit step function, A, is dependent upon (dh/dt).

A [~~J =

dh
1 for dt > 0

o f dh < 0or df-

(1. 26)

and < > denotes a vertical mean for the mixed layer:

o

<C> = h~o J C dz, etc.
-h-o

1.4 Course of Action in Attacking the Problem

To lay a foundation and present a perspective of the problem at hand,
the literature treating models of the surface mixed layer is reviewed rela­
tive to the basic principles and general equations laid down in the previous
sections. This approach organizes the historical work in terms of the funda­
mentals, and it provides the stepping stones for the development of this
research.

The turbulent kinetic energy budget is examined closely. The role of
the previously neglected redistribution terms is assessed. All of the terms
are modeled by use of mean-turbulent-field techniques, permitting the even­
tual implicit solution for the turbulent energy content of the mixed layer.

The final preparatory work needed to complete the model is treated in a
chapter on entrainment. This includes the derivation of an equation relating
the rate of entrainment (dh/dt) to the other variables.

The final numerical method of solution of the nonstationary, non-linear
set of equations permits the solution of hypothetical cases as well as the
simulation of field observations. The numerical model requires as input the
initial conditions of density and current and the surface boundary flux of
buoyancy (heat and/or sal inity) and surface wind stress as functions of time.
Model out~uts include the mean density profile, the turbulent kinetic energy,
and the mlxed-layer depth, all as functions of time.

15



2. REVIEW OF THE LITERATURE

2.1 Ekman Depth of Frictional Resistance

V. Walfrid Ekman (1905) originated the concept of a "depth of frictional
resistance" for the upper section of a wind-stressed ocean. This depth (d)
comes from the mathematical solution to the steady state horizontal momentum
equation, (1.9), in which the Reynolds stress is related to the mean shear by
a constant eddy viscosity (K).

where

dC _at - - ifC dCW
az (1. 9)

and

Then

dC- cw = K az .

d2Co = - ifC + K - •
dz 2

(2.1)

If the boundary conditions are

- cw (0) = u~ + i 0

and - cw (_00) = 0 ,

the solution is

C(z)
u~

[

• (7TZ 7T)
S1n d + 4" ]

dZ
• 7TZ 7T

- 1 cos ( d + 4") e (2.2)

where (2.3)

At the depth (z = - d) the direction of the flow is opposite to the surface
current and the magnitude has been reduced to (e- 7T ) times the surface magni­
tude.

Classical thought has suggested that any surface layer mixed by the
action of the wind should have a depth that is of the same order as Cd).

16
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Using a quadratic law relating windspeed (W) to surface stress

and an empirical relation from observations,

Ie (0)1 = 0.0127 W
Isin cfl

(2.4)

(2.5)

Ekman derived a formula for (d) as a function of wind speed and latitude (cfl):

d = 7.5 sec-1 __~W~
Isin cfl

(2.6)

2.2. Rossby Number

Rossby and Montgomery (1935) pointed out that the depth (h) of a surface
drift current layer and Ekman's depth of frictional resistance (d) are not
necessarily comparable: the depth (h) has a definite physical meaning, but
(d) desi~nates only the theoretical rate of exponential decay for a system
obeying (2.1).

Rossby and Montgomery derived the formula (h « W/sin cfl) or, equivalently

where the constant of proportionality is the Rossby number, Ro = u /hf. They
then presented measurements demonstrating the greater validity of (2.7) in
comparison with (2.6.)

It should be recognized, however, that Ekman's result differs from that
of Rossby and Montgomery only because of the use of the relation (2.5.) If
instead of applying this empirical constraint, the eddy viscosity (K) is
modeled in terms of l'ike1y turbulent length and velocity scales (K ~ u*h) and
is assumed to be constant with depth, then .(d = 2n2u*/f) and the quadratic
stress law gives

W
d « (sin cfl)n •

17
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So, in spite of suggesting a distinction between the mixed layer depth
and the depth of frictional resistance, Rossby and Montgomery obtained a
result perhaps more comparable with that of Ekman than with the real situ­
ation. This was the case because both derivations considered only the momen­
tum budget, neglecting the effects ,Jf buoyancy and mechanical energy upon the
vertical fluxes of buoyancy and momentum within this turbulent oceanic
boundary layer.

2.3 Eddy Transfer Coefficients in a Steady-State Problem

Munk and Anderson (1948) first combined the two problems of density
structure and current structure into a unified theory on a steady-state
thermocline. Like Ekman, they proposed an eddy viscosity (Kill) plus an eddy
conductivity (Kh), but these parameters were made variable with the local
gradient Richardson number (Ri).

Ri =
(aB/az) (2.9)
(aU/az )2

This model therefore included some of the effects of the turbulent energy
budget.

~,H = KO
Ri) nm,H (2.10)(l + Cm,H

This function for the eddy viscosity and eddy conductivity was chosen because
of its asymptotic behavior for small and large values of (Ri):

..
i

".

lim
Ri ~ 0

K = KO, coefficient for no density gradient"m,H

lim ~,H = 0, for extreme stability.
Ri -+ 00

Because Munk and Anderson assumed steady state and did not recognize the
presence of a sharp interface marking a boundary between the fully-turbulent
mixed layer and the essentially quiescent stable region below, their results
still resembled Ekman's original solution more than they do the physical
real ity.

2.4 Obukhov Length Scale

The more recent efforts in modeling the oceanic mixed layer started with
a one-dimensional steady-state study by Kitaigorodsky (1960). Assuming that
the ocean surface mixed layer was analogous to the constant-flux atmospheric

18
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surface layer (as in Businger et al., 1971), Kitaigorodsky concluded by
dimensional analysis that the mixed layer depth must be proportional to the
Obukhov length, L.

For Kitaigorodsky's assumptions, the momentum and buoyancy equations,
(1.9) and (1.11), reduce to

dCW = 0az

and dbw = 0
dZ

.

(2.11)

(2.12)

The radiation absorption, Q, was assumed to be confined to the immediate
surface layers. Taking the x-direction to be in the direction of the wind,
the solutions to equations (2.11) and (2.12) are

- cw = constant - u~

and

where (u~) and (u*b*) are the downward surface fluxes of momentum and buoy­
ancy.

If the depth of the surface mixed layer (h) is dependent only upon the
two parameters (u*) and (b*), then

2

F{J cw(O)/ }= F {~} = 0, or
hsglew(o)1 h b*

h = H* L (2.13)

and H* is a constant of proportionality.

If the coriolis force is a significant component of the mean momentum
budget, then (2.11) is replaced by

where L = uUb*

dCW = _ ifC .
dZ

19
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Adding the coriolis parameter (f = 2n sin ~) to the dimensional analysis
makes H* variable.

(2.16)

with a second dimensionless product (b*/u*f).

Using data from the NORPAC expedition, Kitaigorodsky found that equation
(2.13) with a constant H* was insufficient for cases varying over more than
twenty degrees of latitude (see Fig. 3).

Using Kitaigorodsky's data, it should be noticed that the Rossby number
(Ro) based upon the layer depth and (u*),

fh
Ro = u* ' (2.17)

is less variant than H* = h/L for the same data. This can be seen in Figures
3 and 4.
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There is a basic flaw in this model arlslng from the assumption that the
ocean mixed layer is analogous to the "constant-flux" atmospheric surface
layer. The ocean, in all probability, does have a surface layer over which
fluxes are approximately constant and a quasi-steady state does exist. How­
ever, the depth of such a layer would be limited to at most the upper ten
percent of the vertical extent of the entire mixed layer. With a constant
heat flux at the surface, the mixed layer temperature and depth cannot both
remain unchanged.

2.5 Compensation Depth for Shortwave Radiation

Kraus and Rooth (l961) also conceived a steady-state model based pri­
marily upon the buoyancy equation. In their model however, steady state was
made feasible by balancing the short wave radiation input Q(z) with a net
surface heat loss, poCpew(O»o, by means of evaporation, conduction, and
infrared radiation. Acompensation depth (hc) is the depth at which a bal­
ance is struck between the surface heat loss, poCpew(O), and the total radi­
ation absorbed in the layer above,

If

(0 Q d z
J- h
r c

Q = y Qo eYz

and if buoyancy is a function of temperature alone, then (1.11) becomes in
steady state

(2.19)

The depth (z = - hc ) is that level at which the turbulent flux ew goes to
zero, with a stable temperature profile below and an unstable one above.
Therefore in the region (0 > z > - hc ) turbulent kinetic energy can be con­
vectively produced since here

bw = 8g ew > 0 .
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Integrating (2.19) from (z = - hc ) to (z = 0) and using (2.18) gives

(2.20)

Figure 5 is a schematic portrayal of the Kraus and Rooth concept. If

- 8w = KH ~~ , KH ~ constant in z , (2.21)

then (hc ) is also the depth of maximum temperature.

Using the eddy conductivity closure posed by (2.21), Kraus and Rooth
examined the structure of the temperature field from the surface down through
the mixed layer and across the interface, and its variation with changes in
(Q) and the boundary conditions. Their solutions are only qualitatively
useful because not only is (Kh) unknown, but,also it is assumed to be con­
stant--even across the density interface.

I I I

f f II I I
z I I I z

I I I
0 --- T J J 9w

solar radiation conduction, evap-
through surface oration and infra-

red radiation

°0 > Pocp 9wlOl

-hc --------

he = )'-11n I °0 l
00 - Pocp 9w(ol

h ~ he

00 yz
9wlzl=9wIOl- pc ll-e l

o p

L

FiguJte. 5. E66e.c..t 06 the. c.ompe.Yl.6a.Uon de.tJth, he., M.6wning .6te.adfj .6:tate. a.nd
Q = yQoeYz •
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With regard to the depth of the mixed layer (h), all they could really
say was it must reach some depth greater than (he)' "Dependent upon the
intensity of the convective and wind drive turbulence, this convective regime
may penetrate more or less deeply beyond the level (hc )."

They visualized a steady-state layer depth as being possible only by
requiring upwelling (W>o) of sufficient magnitude to maintain the vertical
position of the entraining interface.

2.6 Prototype Turbulent-Energy-Budget Model: Kraus and Turner

Recognizing the limitations in application of the Kraus and Rooth
model--no provision for a possible downward surface heat flux, no account of
mechanical production of turbulent kinetic energy, and the steady-state
constraint--Kraus and Turner (1967) further improved and generalized this
kind of one-dimensional model. Their model was the first instance in which
it was recognized that the budgets for thermal and mechanical energies could
be considered separately. This is valid because the dissipative rate of
heating (PO/J'E) is several orders of magnitude smaller than either Q(z) or
IpoC p aew/azl. Therefore, their model consisted of two separate equations-­
the heat equation and a mechanical energy equation in which the net effect of
the work of the wind on the sea surface and the viscous dissipation within
the mixed layer are parameterized. This use of a mechanical energy equation
together with the buoyancy (heat) equation and the boundary condition (1.23),

-- () dh- bw -h = ~B dt ' (1. 23)

(2.22)

gave for the first time a clos~d set of equations whose solution provided
h(t).

If buoyancy is a function of temperature alone and constant in the mixed
layer, equation (1.25) is applicable. Using the radiation absorption func­
tion (2.18) it becomes

d<T> dh Qo -yh--
h crt + ~T dt A = -C- (1 - e ) - ew (0) .

Po P

The turbulent kinetic energy equation, integrated from the top of the en­
trainment zone (z = - h) to the surface ;s

f a
G - D = -89 ew dz

-h
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where 1
0 aU.

- 1G = - U.W - dz
-h 1 az

is the total rate of mechanical production and

D = (0 E:dz
J-h

is the total rate of dissipation within the mixed layer. Neither of these
parameters "in the Kraus-Turner model is an implicit variable, and each must
be specified externally. The heat equation that leads to (2.22) is also used
to eliminate ew from (2.23) by integrating between z and 0:

(O(d<T> + aew _ JL..-.) dz ~ = a , orJ z dt az~ PoC p

(2.24)

Integrating ew (z) as prescribed by (2.24) from (z = h) to (z = 0) gives

fO _ 1 h2 d<T> [Q~ -aW(Ol]
Qo [1 -Yh]ew dz -2 ~-

h +
YPoCp

e . (2.25)
Po'v p-h

Neglecting e-yh , equations (2.22), (2.23) and (2.25) can be used to give
another equation (2.26), which together with 1£.22) constitutes a closed
system in h(t) and <T> (t) where G, D, Qo and ew(O) are prescribed functions
of time at most.

h2 d<T> -Th ~ A = G - D Qo
2 ~ + lJ. dt -=-[3-g'::"" + P-

o
C-p-y . (2.26)

An important contribution by Kraus and Turner was the conceptualization
of a model for which a stationary or even retreating mixed layer depth is
possible. In such a case where
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equations (2.22) and (2.26) are still applicable because of the presence of
the Heaviside unit step function. Setting (h = hr ) in the case of a retreat­
ing or steady mixed layer depth, these equations reduce to (2.22a) and
(2. 26a).

d<T> Qo -yhrhr (ff""" = PC (l - e ) - ew (0).
o p

(2.22a)

(2 .26a)

Neglecting short-wave radiation that escapes the mixed region and eliminating
(d<T>/dt) between (2.22a) and (2.26a) gives

h = 2(G - D)
r 8g (Q0 - ew (0) )

(2.27}

Whenever the surface boundary conditions and/or solar radiation adjust
to make (hr < h) the mixed layer will "retreat. 1I Of course, the region does
not unmix, in accordance with the second law of thermodynamics. The net rate
of production of turbulent kinetic energy, G-D, is insufficient to balance
the rate of increase of potential energy,

al - 89 ew dz,
-h

required to mix the region all the way to the density interface. Conse­
quently, as the region warms (notice that d<T>/dt can be only positive at
this time), a new density interface is established at z = - hr.

Kraus and Turner model G in terms of the friction velocity:

(2.28)

Not knowing the importance of the viscous rate of dissipation,
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o
D = f E:dz,

-h

they simply neglect it. They find, however, that their model predicts a too­
large value for (h), and that the dissipation should possibly be included.

Turner (1969) felt that there was a problem with (2.28) as well. From
examination of observations of sudden wind speed increase and ensuing mixed
layer deepening, he deduced that "a substantial fraction of the part of the
work done by the wind which goes into the drift current is eventually used
to deepen the surface layer. II This statement reflects the need for a more
comprehensive model, particularly for unsteady situations. Such a model
should reflect the input of energy into the mean velocity profile and the
time delay needed to shift some of this energy to turbulence.

Again with regard to the Kraus and Turner model, the setting of (D = 0)
so that

- 8g

o

~
8w dz = G (2.29 )

places an unreal istic constraint upon the buoyancy term: it becomes depen­
dent only upon the mechanical production. The error in this is most obvious
when there is strong surface cooling and

o(- f 8w dz)
-h

is less than zero.

Kraus and Turner also neglect the effect of entrainment in their turbu­
lent kinetic energy budget, equation (2.23).

In spite of these deficiencies, this model was a big step in the right
direction in its consideration of the turbulent energy budget in recognition
of the energy source for mixing and entraining.

2.7 Adding Dissipation

Miropol'skiy (1970) and later Denman (1973a) assume that dissipation is
a fixed fraction of the shear production, equation (2.30).

D = 0" G
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where 8~ is an empirical parameter to be determined from observations. This
gives, instead of (2.29), the equation (2.31):

- 13g J
o

ew dz =

-h
(2.31)

This does not solve the dissipation problem because 8~ cannot have a constant
value. In essence, dissipation must be allowed to adjust to the total situ­
ation as it evolves.

Miropol·skiy also assumed that G~ui, but a variation of an exercise he
uses to deduce this demonstrates perhaps the major source of error in a model
1i ke (2. 28) .

G - - f a (- aU -uw az + vw
-h

av) dzaz .

If auw/az = - fV and avw/az = fU, then

[- uw V- uw V]
a

G = 'V u3
*-h

In general, however,

auw = - fV aU andaz -at ,

av\'J = fU aV givingaz -at ,

f a L (U2 + V2)at 2 dz
-h

(2.32)

and thus indicating the importance of the mean kinetic energy and its distri­
bution within the mixed layer. As will be shown, even if the wind is steady
for long periods of time, the mean kinetic energy can change markedly on a
time scale corresponding to the inertial period.

Most recently, the trend in the literature has been to model the mixed --
layer as a vertically homogeneous moving slab with density and velocity
discontinuities at the entraining interface. Geisler and Kraus (1969) were
the first to use the slab approach in their model of the atmospheric boundary
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layer. This problem is almost completely analogous to the oceanic mixed
layer problem except that the atmospheric boundary layer is driven by a
horizontal pressure gradient rather than by a surface stress. A rigid sur­
face boundary rather than a free surface also results in a subtle but impor­
tant difference. Nevertheless, the basic setups of the two problems are the
same.

Simultaneous calculation of the mean velocity together with (h) and (T)
permits the implicit calculation of the mechanical production of turbulent
energy, an improvement upon the previous (u;) method.

The equations (2.33) and (2.34), reflecting the conservations of mean
momentum and mean buoyancy are essentially the same as (1.24) and (1.25).
The only real difference is that Geisler and Kraus assume a prescribed mean
subsidence (analogous to ocean upwelling) in their atmospheric boundary
layer. This non-zero vertical velocity (W) can result in a stationary mixed
layer depth even when entrainment is occurring. This then is a different
mechanism than that developed by Kraus and Rooth (1961) for obtaining a
constant (h).

r

h d~~> + liC (~~ - W) = - ifh «C> - Cg) - cw (0) •

h dar> + liT (~ - W) = - ew (0) •

(2.33)

(2.34 )

(2.35 )

In (2.33), (- ifC ) is the kinematic geostrophic pressure gradient, the
source of momentum. TRe kinematic surface stress, cw (0) is a momentum sink
in this case.

Geisler and Kraus seem to avoid the problem of dealing with the viscous
dissipation of turbulent kinetic energy by prescribing a fixed value for the
integrated flux Richardson number, RfI .

hfa bw dz
Rf I =j,--;Oh;---.::------~- - n, cons tant .

uw !ll.. + uw ~ dz
az az

This, however, is equivalent to Miropollskiy's method. From (2.31) and
(2.35),

n = 1 - o~ . (2.36)

Since (n) is always a fixed positive number, and with no radiation
absorption in the model, the buoyancy flux (heat flux) can only be downward.
-rherefore, this model like that of Kitaigorodsky is restricted in application
to only those cases where the mixed layer is stable throughout.
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2.8 Role of Mean Kinetic Energy

Pollard, Rhines and Thompson (1973) apply the slab approach to the
oceanic mixed layer, but they complete the entrainment problem with a differ­
ent mechanical energy requirement. The time rate of change of the total mean
mechanical energy, potential plus kinetic, of the slab is set equal to the
rate of work by the wind on the mean flow:

aPE aKE [ - -Jat + at = - U uw - V uw
z=O

(2.37)

This is the same as (1.12) integrated from (z = - h - 0) to the surface if
viscous dissipation is neglected and (U) and (V) are constant in (z) within
the mixed layer. The turbulent buoyancy flux (bw) gives the potential
energy change using equation (1.11):

aPE _
at - -

o

f bw dz = .!. h2 ~ + h ~B ~2 at at .
-h

Neglecting the time rate of change of the turbulent kinetic energy,

If radiative heating is ignored, (2.37) reduces to

Ri = h~B = 1 .
U2 + V2

Pollard, Rhines and Thompson assume that (2.37) applies as long as

1
0

• rr (z = 0) • [- U uw - V uw ] 0

(2.37a)

is positive. As soon as this rate of work by the wind becomes negative,
"energy flow to increase (h) ceases and since the water cannot unmix, (h)
must be constant ... ". Therefore, mixed layer deepening would occur only up
until one-half of an inertial period following the onset of a steady wind
stress. This result is demonstrated by setting cw (0) = - u~ and
~C = <C> in equation (1.24), giving

d«~~h) + if «C>h) = u~ .
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The particular solution is <U> + i <V> = (iu;/fh)(e- ift -1). Hence ~·U (z
= 0) goes to zero when <U> vanishes at time t = w/f.

In this model, energy for entrainment is derived directly from the mean
flow. A separate budget for turbulent energy is not considered. That is to
say, the intensity of the turbulence is not considered to have an active role ~

in the mechanism of entrainment in this model.

In a three-layer model of the ocean mixed layer, Niiler (1974) combined
elements of Pollard et al. and Kraus and Turner (1967) in that both turbulent
kinetic energy and the mean kinetic energy are considered to be important in
the mechanism that determines rate of entrainment. Figure 6 is a diagram of
the vertical temperature and velocity structures in this model. The turbu­
lently active region was divided into three subregions: (i) a constant-flux
surface layer, (ii) the major part of the whole region, and (iii) the en­
trainment zone, lying just above a "qu iescent abyss. II

The momentum and buoyancy equations used by Niiler are virtually the
same as the "s l ab" equations (1.24) and (1.25) if B = B(T) only.

,---------_._---_._-------------------------,

t Q

o

-d'

z

-­T

-u T

"Perturbation Energy
Production Zone"

Mixed Layer

-h

-h-8

"Perturbation Energy
Production Zone"

- - - P E
"Quiescent Abyss": 8w = uw =vw =w( Po +2") =0

i
~

Figwz.e. 6. Ide.aLtze.d pie-twz.e. 06 oc.ean m-Lxe.d la-yell. (N..ulell., 1974).
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h d<C> + A t:,. C dh = ifh <C> '- cw (0)
dt dt

h d~r> = A t:,. T~ = - aw (0).

(2.38 )

(2.39)

Radiation absorption was assumed to occur entirely in the uppermost
layer and was therefore included in aw (0). The additional term (F/po) is
a IIdamping li force for inertial motions

(2.40 )

within the mixed layer and presumably is related to the IIldissipation ' of
mean motions as well as the radiation flux of momentum from the bottom of the
mixed layer. II Pollard and Millard (1970) considered such a term as well, but
one that was linear and thus resulting in an exponential damping. The time
constant (LI) ranged from four to twenty-five inertial periods, depending
upon the size of the inertial circle relative to the horizontal scale of the
forcing wind system.

Chpo
LI = -F- .

If the mean velocity below the density interface is zero and the mean
temperature below the interface is given by T(z < - h) = fTZ, then the fluxes
at (z = - h) reduce to

and

-cw (-h) = t:,.C ~~ = <C> ~~

- dh dh
- aw (-h) = t:,. T dt = «T> + fTh) dt .

(2.41)

(2.42)

Since T = <T> and C = <C> for the bulk of the mixed layer, the turbulent
fluxes are linear functions in (z):

- cw (z) = - cw (0) - f [cw (0) + <C> ~~J . (2.43)

- aw (z) = - aw (0) - f raw (0) + «T> + fTh) ~J. (2.44)

The relative importance of the terms of the turbulent kinetic energy budget
(1.13), was hypothesized to vary with subregion.
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(1.13)

"
I
I

(2 .45a)
o > z > - d"

-h > z > - h - IS

The rate of mechanical production, -uiw aUi/az, was assumed to be non-zero
only in the surface and entrainment subreglons. In these two regions of
small vertical extent, the buoyant damping was considered by Niiler to be
insignificant. Thus the balance is between mechanical production, turbulent
and pressure diffusion, and dissipation, equation (2.45a):

;z [w (~ +~ uw ;~ + vw ;~ + < = 0 for

In this model aU/az = aV/az = 0 within the central part of the mixed region,
and hence mechanical production is necessarily assumed to be zero. There­
fore, here the buoyant damping and viscous dissipation are balanced by
diffusion from the two adjacent production layers, giving equation (2.45b) .

.L [we 2E + L )] - bw + £ = 0 for {- d">z> - h} (2.45b)
az Po

Integrating equations (2.45a) and (2.45b) vertically and combining them to
eliminate w(E/2 + p/po) at (z - - d") and (z = - h) gives

(
- aU - av)uw - + vw - dz -az az

(2.46)+ I <C> J2 dh = _
~ dt f

o
bw dz .

-h
In the manner of Kraus and Turner, Niiler parameterized the sum of the

first three terms of (2.46) in terms of the surface stress.

_ w(L + I) I -
Po 2 0 t-d

aU.
- 1
uiw dZ dz -

of < d z " rna u~ •
-d

(2.47) L
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Integrating (2.42) to give

oj bw dz = - Bg

-h

and using (2.47), equation (2.46) becomes

(2.48)

The system of equations (2.38), (2.39), and (2.48) is a closed set of equa­
tions in the three unknowns: - h, <T> and <C>.

This model more resembles that of Kraus and Turner than it does that
of Pollard et al because of the utilization of a parameterized turbulent
kinetic energy equation rather than a total mechanical energy equation.
The primary difference is the presence of the entrainment production term,
I<C>1 2/2·dh/dt, in (2.48) which necessitates the additional equation, the
integrated momentum equation (2.38).

One aspect of important consequence in Niiler1s model manifests the need
for an even more comprehensive term-by-term modeling of the turbulent kinetic
energy equation. This is the fact that the turbulent kinetic energy produced
by entrainment, I<C>2/2.dh/dt, must go entirely toward increasing the poten­
tial energy. Because of the parameterization, (2.47), dissipation is not
permitted to adjust to include either the direct effect of this particular
source, or the less obvious effects related to the entrainment or lack of
it.

The only solution to this predicament would seem to be to model dissi­
pation separately from any of the source terms, allowing it to adjust to
total turbulent intensity.

3. CLOSING THE PROBLEM

The equations (1.19a-c), (1.24), and (1.25) do not by themselves consti­
tute a closed system of equations for the mixed layer. Vertical integration
over the mixed layer simplified the equations but introduced yet another
unknown, the mixed layer depth (h).
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3.1 Net Viscous Dissipation in the Mixed Layer

J
o

E dz =

-h-o r-h-o

au. au., ,
'J -- dzax. ax.

J J

A dissipation time scale (T E ) is defined by E = <E>/T E •

For fully-turbulent geophysical flows having large Reynolds numbers,
viscous dissipation of the turbulence occurs primarily in the small eddies
that are locally isotropic. As explained by Tennekes and Lumley (1972), an
inviscid estimate of dissipation may be made by taking the rate at which
large eddies supply energy to small eddies (equal to the rate of dissipation)
to be proportional to the reciprocal of the time scale of the large eddies.
If the time scale of these large eddies is prgJlg.I:tional to the mixed layer
depth divided by the rms turbulent velocity ~ <t>, then an integral model for
dissipation in the mixed layer, independent of viscosity and the small scales
is

o
j( £ d z 0 m,<E>'/2 (3.1)

-h-o
where (ml) is a constant of proportionality. For those situations where
<E> ~ u~, equation (3.1) is the same as that used by Miropol 'skiy (1970) and
Denman l1973).

An important concept in modeling dissipation is that of local isotropy.
Turbulent kinetic energy generated at the largest scale (~h) is transferred
without much additional production or dissipative loss through the inertial
subrange to the larger and larger wave numbers (smaller eddies) by vortex
stretching. Dissipation is significant only at the lower end of this iner­
ti a1 subrange.

Because there is no preservation of the original orientation, the small
eddies of the inertial subrange are 1I1 ocall y isotropic. 1I Therefore, diss'j­
pation draws approximately equally from all three turbulent energy compon­
ents. Of course, the existence of an inertial subrange is dependent upon a
large Reynolds number, and this is certainly the case for the oceanic mixed
layer.

3.2 Net Effect of Redistribution of Turbulent Energy

R =
II r-h-o
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As previously discussed, R1 + R2 + R3 = 0, but Ra may be an important source
of sink term for the individual turbulent kinetic energy budgets.

Following the early lead of Rotta (1951), but in agreement with the
dominant term of the rational closure technique of Lumley and Khajeh-Nouri
(1974) ,

(3.2)

In addition to dimensional consistency, the concept leading to (3.2) is that
of a II return to isotropy.1I In other words, the correlation of pressure and
turbulent rate of strain tends to redistribute energy equally among the three
components.

3.3 Shear Production

(- aU - av)uw az + vw az dz (3.3)

where loCal is the lIexcessll surface mean velocity in the direction of the
wind stress. Notice that in this instance the inhomogeneity of the mean
velocity field cannot be neglected.

JO[!.- w(L + I) J- d z -
az Po 2

-h-o
m" u 3

3 *

where ui = Icw (0) I.
If local is proportional to (u*), then (3.3) may be combined with the param­
eterized net input from breaking waves less loss to radiating internal
wa ves:

G = r-h-o
[
-aU -aV a (wn WE] 3 Ilic I2 dh- uw - + vw - + - .:.:L + -) dz = m3u +~ - .dZ az dZ Po 2 * 2 dt (3.4 )

This is basically in concurrence with the work of Kraus and Turner, Denman,
and Niiler.
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3.4 Need For an Entrainment Equation

Using the suggested relationship (1.24), (1.25), and (3.2), equations
(1.14 a-c) become (3.5 a,b). The two horizontal component equations have
been added together t~ve an equation for horizontal turbulent kinetic
energy <q~> = <UT> + <v>, together with the equation for vertical turbulent
energy <w >:

(3. 5a)

(

1 d- - (h<w2»2 dt = ~ [bW (0) - ~B .Q!!. A - ~ Q--] + m2 £ «q2> - 2 <w2»2 dt P oC p

o

where Q' = - J (Q

-h-o

_ .ml _ 3/2
3 <E> ,

f
o

Qdz) dz and <E>= <q2> + <w2> .

Z

(3.5b)

If h (t) is unknown, equations (3.5a,b) together with (1.24) and (1.25)
are an incomplete system of four equations in five unknowns: h, <C>, <B>,
<q2>. An entrainment hypothesis will provide the fifth equation needed to
close the system.

4. ENTRAINMENT HYPOTHESIS

4.1 Entrainment in Earlier Mixed Layer Models

In this study the entrainment velocity, ue = dh/dt, will be modeled
expl icitly in terms of the other free parameters of the system. However, in
much of the literature treating models for the ocean mixed layer, (ue) is a
consequence of various assumed constraints placed upon the mechanical energy
budget for the layer as a whol~.

In the first really tenable model of the mixed layer that was capable of
simulating a growing mixed-layer, Kraus and Turner (1967) assumed that all
of the turbulent kinetic energy produced in the mixed layer goes to increase --
the potential energy of the system. After taking into account any surface
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buoyancy flux, the balance of the potential energy change went to entrain­
ment--mixing the requisite amount of underlying denser water uniformly
throughout the homogeneous mixed region.

Their resultant entrainment velocity is

2 (G - D) + wb(O)h +

(4.1)

where (G-D) is the net rate of mechanical production of turbulent kinetic
energy minus the rate of viscous dissipation for the whole layer. The
surface buoyancy flux wb(O) may either increase or decrease the entrainment
velocity, depending upon its sign. Again, not knowing how to deal with the
dissipation (D), Kraus and Turner ignored it. They set G = ui, so (4.1)
becomes

(4.1a)

where the solar heating function (Q~) and the surface buoyancy flux have been
combined in defining a buoyancy flux scale:

(4.2)

Geisler and Kraus (1969), Miropol ·skiy (1970), Denman (1973) and Niiler
(1974) all assumed that a fixed fraction of the mechanical production of the
turbulent kinetic energy would be di?sipated. Therefore, their resultant
entrainment rates are the same as (4.1a) except that some constant smaller
than 2.0 would precede ui.

Pollard, Rhines and Thompson (1973) did not explicitly consider the
turbulent part of the mechanical energy budget, and therefore a conceptually
different relationship results from their use of the total mechanical energy
equation:

(4.3)
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If (b* = 0) this reduces to Ri* = 1, or

h >~- liB .

The (~) sign was added to prevent the mixed layer from retreating when mean
kinetic energy is removed in the second half to the inertial cycle.

This approach at first seems to give a plausible result based upon the
stability of the mean flow. The problem is that the mixed layer is already
turbulent, and the system has an excess of turbulent kinetic energy, some of
which may be available for mixing at the interface, regardless of the value
of the overall Richardson number, Ri*. It is granted that Ri* may be con­
strained to having a value greater than some critical value by reason of a
mean flow instability, but the fact is that in the laboratory and in geophys­
ical cases, measurements indicate that entrainment occurs even though Ri* is
much larger than one.

The entrainment experiments with mean shear of Kato and Phillips (1969)
and Moore and Long (1971) (Figs. 7 and 8) show no direct relationship between
Ri* and a maximum layer depth. More importantly, Turner (1968) and others
have conducted experiments with growing mixed layers that had only turbulence
and no mean shear (Ri* = 00).

All of these laboratory results when examined together strongly imply
that the bulk Richardson number Ri* is not the parameter most relevant to
entrainment rate. Instead, a similar nondimensional number, using the tur­
bulent kinetic energy (E) rather than IlICI 2 , is suggested.

As shown by Niiler (1974), the mean kinetic energy can influence entrain­
ment rate by increasing (E) in a growing mixed layer. This in turn increases
the average position of the bottom of an oceanic mixed layer undergoing a
sequence of entrainment and retreat due to varying wind stress (u~) and heat­
ing/cooling (u*b*) cycles. Figure 9 therefore indicates some statistical de­
pendence upon the vertically-averaged Richardson number and hence Ri* as well.

4.2 Suggested Turbulent Mechanism

Benjamin (1963) shows that three basic types of instabilities are pos­
sible for a system where a flexible solid is coupled with a flowing fluid.
At the interface between the mixed layer and the denser water beneath, a so­
called class "A" instabil ity will arise if

II ~ 5jf[
where (k) is the wave number of the interfacial disturbance,
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and (~u) is the total velocity change across the interface.

From Lamb (1932), §232, a class "G" instability, the Kelvin-Helmholtz
instability, requires a higher (~U).

"J "J, !2iB
~u >V T-k- .

However, the class "A" instability is dependent upon energy dissipation in
the lower fluid, and this is likely to be small com ared with inferred
rates of convergence of energy flux, - alaz [w(p/po + E/2 l-h, at the inter­
face. For geophysical flows of this type having large Reynolds and P~clet
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numbers, the class "G" instability is therefore most likely to be the domin­
ant mechanism leading to observed rates of entrainment.

The specific mechanism that is envisioned in the destabilization of the
interface and the resulting entrainment is a "l ocal" Kel vin'-Helmholtz (K-H)
instability. The shear needed to trigger such an instability is provided by
the local turbulent eddies. The mean shear contributes to the instability
but cannot in itself generate a critical Richardson number. The mean gradi­
ent Richardson number

Ri = aB/az
(aU/az )2

(4.4)
...

would not be likely to achieve a critical value because the total instan­
taneous Richardson number,
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-
Ri = ab{az

T (au/az)2
(4.5)

is the relevant parameter. The minimum value of the envelope of RiT(t) at
the interface would determine the advent of any appreciable interface insta­
bi 1iti es.

The onset of the K-H instability and its exponential growth rate is pre­
dicted by linear two-dimensional wave theory. As individual wave packets
achieve a significant amplitude, the nonlinear and three-dimensional effects
of the turbulence field prevail by distorting the wave shapes and advecting
parts of the exposed cusps of denser water up into the mixed layer. There­
fore, only the initial stages of the instab"il ity are strictly of the K-H
type, where the induced suction at the crests of a perturbation wave on the
interface is large enough to overcome the restoring buoyancy force.

4.3 Relevant Parameters and a Dimension Analysis

Since the mechanical energy needed to continue this mixing process and
thus provide for a significant entrainment velocity must come from the
turbulent eddies, the rate of supply of turbulent kinetic energy, - a/az
[w(p/PQ + E/2)]_h' just above the interface should determine the value of
(ue) for a given buoyancy jump (6B) and mean velocity drop 16Cl across the
interface.

As Long (1974) summarizes experimental studies, the nondimensional
entrainment velocity W* is found to depend upon the first power of the
dimensionless parameter E* based upon the buoyancy jump across the interface,
the depth of the homogeneous layer (h), and the intensity of the turbulence
<E>. Where Long assumes <E> a u~,

* <E>E = h6B

* ue *and W = aE
.hE>

(4.6)

(4.7)

The relationship (4.7) to~ether with an integrated turbulent kinetic
energy equation to provide <E>(t) plus the mean buoyancy equation could be
used to close the problem.

The equation (4.7) is appealing because it depends strongly upon that
which is accomplishing the erosion of the interfa,e a the turbulent eddies
having a length scale (~h) and velocity scale (~ <E». However, its use
based only upon laboratory evidence raises some questions about what is
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really happening in the turbulent kinetic energy budget and why the mean
velocity jump 16CI does not appear to be important at a first glance.

Resorting to a dimensional analysis in which the relevant para~eters are

h, ue ' 6B, 16C/, and <E> gives

where

~ (W*, E*, Ri*) = 0 (4.8)

w* =

<E>
E* = h6B

and Ri* = h6B

16CI2

Here, the physical significance of (h) is its assumed proportionality to the
length scale of the turbulent motion respons"ible for the interface instabil­
ities.

Re-writing equation (4.8) so as to solve for (ue),

h6B )
16CI 2 •

(4 .8a)

The experimental relationship (4.7) suggests that Ri* may be of negli­
gible importance compared with E*. Other investigators besides Long, doing
different experiments have found varying relationships between w* and E* (See
Kantha, 1975).

The question of why W* would tend to be linearly related to E* in many
but not all cases may be answered by closely examining the turbulent kinetic
energy budget in the entrainment zone.
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4.4 Turbulent Kinetic Energy Budget at the Density Interface and
the Development of a Theoretical Equation for Turbulent

Entrainment in the Presence of Mean Shear

At (z = - h), at the top of the entrainment zone and within the fully­
turbulent mixing region, the turbulent kinetic energy equation is

[-aU - av]o = - uw - + vw-az az_h
(4.9)

(4.11)

(4.10)tiC Q!!.dt

At (z = - h), the turbulent fluxes are

cw ] -h = -

bw J-h = - AB ¥t- .and

The convergence of flux of turbulent energy at the interface is re­
sponsible for the entrainment buoyancy flux, bw(-h).

The problem is to esti~ate the time scale (Te) required to transport some of
the turbulent energy <E> to the vicinity of the entraining interface.

_~ [W(L + £)J - <E>
az Po 2 -h Te

The mixed layer depth (h) or a length scale proportional to (h) is the
distance over which turbulent energy must be transported by the vertical
component of turbulent velocity (w). Therefore, (Te) is taken to he pro­
portional to (h) divided by the rms vertical velocity scale, I ~2>, giving
the entrainment hypothesis, equation (4.12). This equation is a refinement
of what Tennekes (1973) has suggested. The difference is the use of
I <w2> <E> rather than <E>3/2.
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a [(L E) ] R><E>
az w Po + 2 -h = m4 h . (4.12)

Two possibilities are suggested for how the mean shear at the interface
should adjust. The first is according to a gradient-diffusion model having
an eddy viscosity scaling with the integral scales of the mixed-layer turbu­
lence. The mean shear becomes

ae _ cwaz = - ms
hi<W2"">

(4.13)

Then if local dissipation is negligible compared with the flux divergence at
the interface, equation (4.9), using (4.10) - (4.13), becomes

= 0 • (4.14)

For those cases where <WZ> is proportional to <E>, (4.14) can be reduced to
simply

*(w )2
*Ri

m§

* m4 * *
(w ) + -- E Ri = 0

m§
(4.15)

in non-dimensional form. Solving (4.15) for W* gives

*
W* = B..:!..- -

2m§

m4 * *
- -- E Ri

m§
or

where

* Ri * [ ]W - - 1 - 11-4</>*
2m§
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(4.17)

,
!,



If ~* < ~, the binomial expansion gives

11 - 4 ~* = 1 - 2 ~* - 2 ~*2 -4 ~*3 - . . . .

and therefore (4.16) may also be written as

w* = m4 E* (1 + ~* + 2 ~*2 + •••• ) • (4.16a)

For small ~*, (4.16a) rapidly converges and onl~the first term may be
needed. For more general applications, where <w > is not always proportional
to <E>, the equivalent solution to (4.14) is

dh m4~ <E>
at = hl1B (4.18)

A second possible way for the mean shear at the interface to adjust is
so as to maintain a gradient Richardson number of critical size, Rio. Then
in place of (4.13), the thickness of the interface (0) adjusts so that

where R" MB'o=wrz·

(4.19)

(4.20)

In this case, equation (4.9) becomes
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or
dh _
dt -

m~ ~ <E>
h~B

(4 .21a)

If Ri Q is a constant of order one, then (4.20) predicts, independent of the
entralnment equation (4.21a),

o 1
-h "'~

Ri
(4.22)

4.5 Comparison with Moore and Long (1971) Experiment

Figure 10 is a fit equation (4.16) to the results of Moore and Long
(1971). The constants (m4) and (m§) are determined by the best fit. Notice
that in this experiment (E*)-l happens to be proportional to Ri*. This is
probably due to the experimental method and has no general significance for
the ocean mixed layer. Also, w* can be interpreted only as a dimensionless
entrainment flux for this experiment because the experiment involves two
turbulent mixed layers, each entraining the other equally, resulting in a
motionless interface, giving

I,

10 1

1/(39.4E*)

~

10-
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-bw( -h) = -uw( -h)
w* =

flB I:E> flU I:E>

The lowest order term of (4.18) agrees with the general theory of Kraus
and Turner (1967) and the experiment of Kato and Phillips (1969) for those
instances where

The higher order terms of (4.18) contribute to the entrainment process
by a feedback mechanism that seems to explain the large-scale instability
observed by Moore and Long for small Ri*. Equation (4.18) predicts an
instability when Ri* s (Ri*)cr

where (4.23)

For the Moore-Long experiment, (E*/Ri*)cr = 0.105, or

(Ri*)cr = 9.55 h~~ . (4. 23a)

Although this instability seems to be possible in the laboratory, it is not
clear whether it can ever occur in the oceanic mixed layer because the ex­
pected turbulent entrainment attributable to the turbulent flux convergence
(4.12) alone is sufficient to increase (hflB) at a more rapid rate than Ri*
may decrease.

The instability observed tends to verify the gradient-diffusion hypo­
thesis, equation (4.13), at least for small Ri*. However, the constant -Rio
hypothesis, equation (4.19) seems to be a better fit for aU/az(-h) over most
of the range of E*. Figure 11 is a plot of the observed (o/h) versus the
values predicted by equation (4.22).

Of course, the side walls in flume experiments of this type prohibit
pushing the results too hard, but it is fairly clear that the Moore and Long
experiment as well as the others mentioned verify the lowest order term of
(4.18a) as well as (4.21a)--no matter how aC/az(-h) is modeled. Therefore
this shall be taken as the entrainment equation:
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4.6 Completed Model for Shallow Mixed Layers

Equations (1.24), (1.25), (3.5a,b ) and (4.24) constitute a closed set
of five equations in the five mixed-layer variables:

h d~i> = - 8C ~~ A - if <C>h - cw(O) (1.24 )

of Qdz - bw(O)

-h-o
(1.25 )

1 d 18CI2 dh ~ 2ml - 3/2
2 dt (h <QT» = m3 u3 +~ dt A - m2 / <E> «QT> - 2<W7» - --3-- <E> •

(3. 5a)

1 d ~- - (h <w»2 dt
h dh ml - 3/2

= - ~u*b* + 88 CIt A) + m2 I<E> «QT> - 2 <W7> ) - "3 <E> .

(3.5b)

dh _ m,+~ <E>
Of - h88
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In addition to Q (z,t), other specified (external) conditions are the surface
fluxes u*b* and cw(O).

Starting with initial conditions on <C>, <B>, <qL>, <WL>, and h, the
model is solved as an initial-value problem in time.

Also to be specified separately are the initial profiles of Band C
below the bottom of the mixed layer. These two variables contribute to ~C

and ~B, which are important for a deepening mixed layer:

~B = <B> B (-h -0)

~C = <C> - C (-h -0)

5. BEHAVIOR OF THE EQUATIONS

5.1 Nondimensional Form of the Turbulent Energy
and Entrainment Equations

(4.25)

(4.26)

Using the surface flux scales u* and b*, new dimensionless variables are
defined:

* u*b* h
H = (5.1 )

2m3 u*3

p* = h~B dh . (5.2)
2m3u*3 dt '

2/3ml <E> (5.3)E* .. = (-)

" m3
u~

m1 2/ 3
<WL> (5.4 )E*33 = (-)

m3
u~

H* is the ratio of buoyant damping (production) from surface heating (cool­
ing) to wind-stress production. p* is the ratio of energy lost by entrain­
ment (potential energy increase) to wind-stress production.

Invoking the quasi-steady state assumption for the turbulent energy
budget, the entrainment and turbulent energy equations become
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PI
p* = "2 E*i i IE* 33 ,

O = 1 + p* (E* 3E) ~* - £ (E* )3/2Ri* - P2 ii - 33 l't.~ii 3 ii '

(5.5)

(5.6)

and

where

o = - H* ~ p* + 02 (E*ii - 3E*33) IE*ii - ~ (E*ii) 3/2 , (5.7)

m4 m2
PI - ITi1 and P2 - ITi1 . (5.8) , (5.9 )

5.2 Determination of the Constants

The ratio m2/mi = P2 is equivalent to (18 lI/A) where (lI/A) is the
redistribution to dissipation length scale ratio of Mellor and Herring
(1973). From boundary layer data, they suggest

11
~ = 0.05 ± 0.01 .

Hence P2 is of order one and will be taken to be equal to one in this anal­
ysis

1811
P2 = -A- '" 1 . (5.10)

The ratio m4/mi = PI may be determined from the asymptotic case of pure
convection, H* + - ~ and Ri* =~. The equations yield

2

I'E* /E* ..33 11
(5.11)

where
E* 33 _ 1
---(1+ 2 )E* .. 3 ~

11
for large Ri*. (5.12)

The fraction (r) of turbulent energy converted to potential energy by entrain­
ment is found to be 0.036 ± 0.031 by Farmer (1975) from measurements under
the ice. Using P2 = 1 and r = 0.036, equation (5.11) gives (PI = 0.1).
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p* may now be solved as a function of H* and Ri*. Figure 12 shows p*
(H*) for Ri* = ~ and Ri* = 1.

The one remaining constant needed to complete the model is m3. This may
be determined from the Kato and Phillips results, Figure 7, together with
P*(H* = 0) from Figure 12.

This gives m3 = 55.

P*(o) = h~B dh (b = 0) = 0 0227dt * ..
21ll3 U*3

(5.13)

(5.14)

However, this value seems to be quite high for an oceanic mixed layer.
The conceptual model for the mixed layer developed earlier, equation (3.3),
implies that

-0.8

,
, 0.06,

Ri* c' ,j', 0.05

r " p*
~*=oo , Q~

'\,,
~.03

0.01

-0.2
H*

o
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where oC o is the excess surface and wind-drive current:

oC o = C (Z = 0) - <C> .

A more moderate value of m3 ~ 10 is expected. In the laboratory experiment,
the production was enhanced by the side-wall boundary layers, resulting in a
too-large value for m3.

There is another method of determining (m3) which is suggested by Fig­
ure 12. Rather than using neutral (H* = 0) stability situations (storm
situations are only approximately neutral by virtue of a large u*3 compared
with u*b*h ), cases of limiting strong stability where p* = a and h = hr
could be examined.

H*max = 0.4 = u*b*h so,
2m3u* 3

m3 = u*b*h (5.15)
0.8 u* 3

The effective buoyancy flux u*b*, given by equation (4.2) should properly be
determined by measuring Q(Z), and the mixed layer depth h = hr should be
ascertained to be in the "retreat mode": dh/dt:s O. This method remains to
be attempted.

5.3 Comparison With Earlier Models

The dotted straight line in Figure 12 is equivalent to the solution for
p* (H*) if equation (4.1a) is calibrated to behave properly for both the re­
treating (H* = H*max) and neutral (H* = 0) situations. The greatest differ­
ence between the two models then occurs as H* becomes increasingly negative.
This inability to calibrate the earlier model to both stable summer and
convective fall situations has been demonstrated by Thompson (1974).

Nearly equivalent to the Kraus-Turner type model for entrainment,
equation (4.1a), is Tennekes's model which suggests in effect that

p"
p* = --2

1
(E* .. )3/2

11
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rather than (5.5). In such a model, the total turbulent kinetic energy equa­
tion, the sum of (5.6) and (5.7) is used:

0= 1 - H* - (1 _ ~*) P*_(E .. *)3/2R, " • (5.17)

The redistribution term does not appear at all in (5.17) but this very term
is the source of an ambiguity as H* + H*max = 1. As H* gets larger, E*ii and
hence p* go to zero for the set of equations (5.16) and (5.17). If rather
than using (5.17), we consider the component equations together with (5.16),
no unique solution exists for H* when p* = O. Considering the budget for the
vertical component only reveals that (H*max) must be less than one and that
E*ii must be greater than zero when p* = O. This, however, violates (5.16).
The alternative equation (5.5) does not have this problem and it suggests a
more consistent mechanism for layer retreat.

As H* approaches its maximum value, more and more of the vertical com­
ponent of turbulence is damped. Notwithstanding the redistribution effect,
eventually redistribution cannot keep up with the combined losses due
to buoyant damping and viscous dissipation. Virtually all of the energetic
large-scale turbulent motion is two-dimensional, and the vertical flux of
turbulent ener9Y (-wE) into the interface ceases and therefore entrainment
stops. If (b*) is further increased (or u* decreased), (h) must retreat
since H* cannot exceed H*max ~ 0.4. Locally, at the base of the mixed layer,
this would correspond to the flux Richardson number (Rf) surpassing a criti­
cal magnitude (~ 0.2).

Summing up, a new mixed-layer bulk model has been proposed that suggests
that the energy redistr"ibution between vertical and horizontal components of
turbulence must be accounted for in a general model used to treat the entire
range of stability--from pure convection to layer retreat. The proportion of
vertical turbulent energy to total turbulent kinetic energy, E*33/E*ii of
Figure 13, varies most significantlY in the typical oceanic range of possi­
bilities, H* = 0.4 to ~ - 1.

Layer retreat is predicted to occur for a smaller value of stability
than is required with the earlier models because viscous dissipation remains
important as long as u* > O.

The model, as it stands, is incomplete. The above applies only to the
relatively shallow boundary layer associated with summer conditions. An
additional feature is required for year-round application of the model
because of the importance of the rotational time scale in the physics of deep
mixed layers.
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6. DEEP MIXED LAYERS: LIMIT TO MAXIMUM DEPTH

6.1 Limiting Dissipation Time Scale

The need for a constraint upon the maximum depth of the mixed layer has
been demonstrated. Niiler has pointed out that models of the Kraus-Turner
type will continue to deepen incessantly during each winter cooling period.
This is the unavoidable consequence of requiring some fraction of the net
production of turbulent energy to be allotted to increasing the potential
energy by means of entrainment.

Thompson (1974) also found this to be true. In doing a year-round
integration, the model required an unrealistic value for mean annual surface
heat flux yielding a net heat storage in order to achieve a realistic cycle.

Outside of the tropical latitudes and away from the continental shelves,
lateral advection and upwelling are insufficient to balance this heat stor­
age. The most noticeable failure of the model is at mid-latitude regions
having a permanent pycnocline.

The model for dissipation is still

<I>
E 'V ­

T
E

However, the dissipation time scale (T E) was previously (in equation 3.1)
governed by the depth of the mixed layer and the turbulent velocity scale,
giving a strictly convective time scale:

T
E

0: -- 'V
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As planetary rotation begins to rotate the mean shear profile, and hence
the geometrical aspects of the integral scale, there arises a new length
scale, associated with the coriolis time scale (f- 1 ).

Q,2 = I:E> f .

It is now increasingly clear from such studies as those by Arya and
Wyngaard (1975) and Sundararajan (1975) that the coriolis time scale (f-l)
plays an important role in the internal structure of the convective planetary
boundary layer or mixed layer. The concern here is more with the bulk pro­
perties of the region and less with the details within the mixed layer.
However, it is suggested that this time scale has an important role in the
overall turbulent energy budget above and beyond the turning and decay with
depth of the mean velocity in the classic Ekman spiral. In reality the two
effects are inseparable because of the link through local shear production.

Rather than to simply replace the convective scale (Q,l) by the rota­
tional scale (Q,2), the suggestion is to use Q,-l = Q,i 1 + Q,i 1, giving equation
(6.1),

(6.1)

Replacing (3.3) in the bulk (vertically integrated) formulation is equation
(6.2)

(6.2)

where

(6.3)

and, as before,

* = (~) 2/3 <E>E •.
" m3 u 2

*
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6.2 Nondimensional Solution to the Entrainment Function

Equations (5.6) and (5.7) will now change to reflect the new term, giv­
ing (6.4) and (6.5).

p* 2 ~o = 1 + Ri* - P2 ( E*ii - 3 E* 33) IE*i i - 3" E*i i (/E*i i + Ro -1 ) • ( 6•4)

o = - H* - p* + P2 (E* .. - 3 E*33)~ - ~ E* .. (~+ R~-I). (6.5)" " ,)" "

The entrainment equation, (5.5), remains unchanged.

PI
p* = -2 E* .. IE*33 •

"
*The solution to P is now a function of two variables, and is shown in

p* = p* (H*, RO-I)

(Figure 14).

(5.5)

Specifically, several aspects concerning this nondimensional solution
should be observed:

a. The solution for Ro- I = 0 is identical with the earlier solution
(Figure 12). This limit applies to both the case of shallow (h«u*/f) mixed
layer and the case of very low latitude, cf> « u*/lnlh.

b. For a retreating (p* = 0) mixed layer, hr is now a function of both
the Rossby number and the stability H*. Actually, hr is uniquely determined
by the product of these two parameters, making it a function of

A fairly good analytical approximation to this function is the hyperbolic
relationship (6.6):
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Entrainment
Buoyancy Flux

-bW(-h)h = p*

u;
Layer

Stability

-bW(O)h=H*
u 3
*

F-i..guJLe. 14. Ge.neJr..a.l..6 o.t!.Luon to e.ntJuUnme.nt and tuJLbu£.e.nt fUnetic. e.neJl.g if
e.qu.a.tiOn.6 •

* "(0.5 + H) (1.725 + RO-l) = 1.552 .

which can be put in terms of hrt giving equation (6.7).

1+ 2.76 1)
1.725 d" + 5L" -
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where d~'is proportional to the Ekman depth of frictional resistance and L~

is proportional to the Obukhov length scale.

The approximate solution for retreat, equation (6.7), has limiting
cases of d~ + 00 and L~ + 00 that are in agreement with the earlier works of
Kitaigorodsky (1960) and Rossby and Montgomery (1935).

(6.8)

(6.9)

Physically, the reason for the cessation of entrainment is ultimately
the same for the convective boundary layer whether or not there is signifi­
cant surface buoyancy flux. Dissipation that is approximately equa!!x divid­
ed among the three components of the turbulent kinetic energy (UT + v2 + WT)
causes <WT>to be consumed more rapidly than it can be replaced by the pres­
sure redistribution or "return to isotropy" effect. When this happens, the
vertical flux of all properties, including the turbulence itself, ceases at
the depth h = hr. Buoyant damping or production modifies the overall budget,
changing the relative value of hrf/u*, but dissipation plays the ultimate
role.

Buoyant production may be sufficiently strong (H* < -0.5) that dis­
s~ation cannot limit maximum mixed layer depth. Then the production of
<w > is too great to be overcome by dissipation with increasing depth.

c. A cyclical steady state is now possible. The surface buoyancy flux
may go through an annual cycle having no net heat storage and (h) will not
increase without bounds at the end of the cooling phase.

The simplest steady state is the neutral stability point represented by
the coordinates (R6- 1 , H*, p*) = (1.38,0.,0.). This is the situation for a
neutral boundary layer, (bw(O) = 0), where hr = 1.38 d~.

A simple cycle having a sinusoidal variation in bw(O) and a constant u*
is qualitatively depicted by Figure 15. This depicts the locus of coordin­
ates for (Ro-l, H*) as the cycle progresses through a heating (bw(O) < 0)
and then a cooling (bw(O) > 0) phase. The initial [0] and [4] points coin­
cide at the neutral steady-state point. Between [0] and [1] buoyancy flux is
directed downwards and is increasing, and the mixed layer retreats to its
minimum depth which occurs at [1]. Between [1] and [2] there is active
entrainment but the rate of entrainment is slow because of significant buoy­
ant damping in the stable mixed layer. This would correspond to the summer
warming period, culminating in maximum surface temperatures at about [2].
Cooling begins at [2] and reaches a maximum at [3]. Not until the end of the
period does the rate of entrainment become significant because the heating
period [0]- [2] causes a potential energy deficit in the system which must be
replaced before deep-ending may proceed rapidly. In the time period just
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after [3] erosion of the thennocl ine is enhanced by both increased system
potential energy and by buoyant production which remains strong even though
(bw) is decreasing.

Of course, the real oceanic system is not in an exactly repeating annual
cycle. However, year-to-year variations resulting in long-term changes in
heat storage can be predicted accurately only by a model that can simulate
the hypothetical cyclical steady-state. Any net annual buoyancy flux across
the surface that is balanced by advection is not of concern in studying the
mod~ in the one-dimensional form. In any case, a large seasonal variation
in bW(O)--and u*2--and the resultant cyclical response are dependent upon the
proper model response for the more simple situation.

6.3 Simple Hypothetical Cases Demonstrating the
Behavior of the Solution

6.3.1 Shallow or f ~ a (Ro » 1).

(1) Initial linear stratification

(a) bw = 0, u; = constant

The result is the same as that predicted by the Kraus-Turner type model
as well as by the Kato and Phillips experiment. See Figures 16 and 17.

dh u 3
dt a: K!B

giving

The reason these models are in agreement is that with b* = 0, u* is the only
turbulent velocity scale.

(b) Free convection: bw(O) = constant> 0, u; = O.

This situation is out of range for Figure 13 because H* + - 00. How­
ever, if the model equations are nondimensionalized on the buoyancy flux
velocity scale (u*b h)1/3, rather than on (u*), the problem may be solved.
In this case, h a: tY/2, which is also in agreement with the Kraus-Turner type
models.
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(c) Cyclical surface buoyancy flux: bw{O) ~ sin wt, u~ =
constant.

Figures 18 and 19 show the response of the mixed layer to a simple
hypothetical diurnal heating and cooling cycle. The magnitude of the heat
flux was chosen to be particularly large in order to accentuate the features
in a relatively short time span. The initial stratification is the same as
for the earlier neutral (bw{O) = O)run, 1°C/20m. The wind stress is also the
same, 0.2 dynes.

Over the five-day period there is an overall cooling trend because of
the entrainment process and lack of net surface heat flux. However, the
daily maximum surface temperature is greater than the initial surface tem­
perature for all five days.

Starting with the fourth day, there is larger retreat corresponding to
the decrease in the Obukhov length scale relative to the value of h. In
spite of midday retreat, the mixed layer more than recovers the temporarily
decreased vertical extent. Without eventual enhancement of dissipation,
deepening would continue without bound.

A comparison between Figures 18 and 16 demonstrates another important
difference, in addition to the presence of a strong diurnal layer temperature
change. Although there is no net surface buoyancy flux for either case, the
situation having the diurnal cycle has a distinctly slower average rate of
deepening. This holds even for the first three days when there is no re­
treat.

The explanation for this phenomenon lies in the nonlinearity of p* (H*)
(Fi gure 12).
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(d) General: U*2; 0, bw(O) ; 0

Since the earlier model projects a linear P*(H*), only two points (at
two values of H*) may be made to a~ee with this model. For example, if
summer "retreat" and the neutral (ow(O) = 0) cases are coincident in both
models, then the winter deepening rate will be greater for the earlier
model. This is the mathematical difference in the basic responses.
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The physical difference may best be seen from the Tennekes (1973) model
in which

]
- 3/2

- <E>-bw a: h
-h

and

-E 3/2 3 b h< > a: m u* - u* * .

This model is identical in response to the Kraus-Turner model and is suitabJe
for comparison here because it identifies the turbulent velocity scale 1<[;.
Then retreat (dh/dt < 0) can occur only when <E> + OJ

Tennekes did not intend for this fornlula to be extrapolated to the
strongly stable situation. Instead, he suggested it as an interpolation
between the neutral and free convection cases--the typical atmospheric
boundary layer range. Nevertheless, the above is equivalent to recent
oceanic applications of the Kraus-Turner type model. The particular problem
with applying this method to the stable, retreating mixed layer is that there
must still be significant turbulent energy «E> > 0) above z = - hr. Conse­
quently, the fraction of turbulent energy going to increase the potential
energy cannot be independent of stability, H*. This explains the curvature
of P*(H*) and the slower rate of damping for the hypothetical case with an
osci 11 ating surface buoyancy fl ux.
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(2) Cyclical surface buoyancy flux

No 1-D steady state is achievable because for f = 0, h can be limited
only by the Obukhov length scale, therefore requiring a net downward .
buoyancy flux (or heating). Then bw{O) could be balanced only by advection.
Gill and Niiler (1973) have shown that advection is insufficient for lati­
tudes greater than about 15°.

6.3.2 Convective planetary boundary layer with order one Rossby number

(I) Neutral steady state

With zero surface heat flux, a steady state is predicted (see Fig. 14 at
the limit h + 1.38 u*/f). Starting from an initial linear stratification and
h < u*/f, steady state would be approached only after a relatively long time.
This is not likely to be achieved in geophysical flows, except perhaps by the
atmospheric boundary layer during the polar winter. See Businger and Arya
(1974).

(2) Cyclical steady state

This situation has already been qualitatively described and illustrated
by Figure 15, but the relative importance of the rotational and surface
buoyancy flux scales needs to be estimated.

For the sake of studying the relative response of the mixed layer, all
cycles will be assumed to be repetitive (in steady state). A sinusoidal
surface buoyancy flux and a constant wind stress are used to drive the
model.

T =

bw{O) = - Ibw{O) I sin wt .

The layer response is found to be a function of the parameter B*, the
ratio of the buoyancy flux scale to the rotational scale. <

B* = IbW{O) I .
f u*2

(6.10)

Figure 20 shows the cycle of h(t), nondimensionalized on u*/f as a function
of B*.

For large B*, which is typical of the annual cycle for temperate oceanic
regions, the low minimum mixed layer depth at wt = ~/2 is attributable to the
strong influence of the buoyant damping corresponding to a small positive
Obukhov length scale.
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results in a hysteresis effect by retarding ,the entrainment process. This
phase lag in the heat storage naturally has important implications for the
interaction with the atmosphere for all cyclical time scales--from one day to
periods of climatological importance.

(3) Fluctuations in wind stress: storms

Fluctuations in the wind stress, particularly in the instance of storms,
are very important in the annual evolution of the mixed layer and the heat
storage of the upper ocean.

Running the model for a simulated annual heating/cooling cycle as
before, but adding periodic "storm" pulses of wind stress gives qualitatively
little apparent change in h{t). (see Fig. 22). However, the spikes in the
retreat side caused by the storms greatly enhance the storage of heat at
depth. The midsummer profile (Fig. 23) with the step-like remnants of
earlier storms, has an overall potential energy significantly greater than
would be the case with no storms. This, in turn, will tend to enhance the
eventual deepening, countering to some degree the hysteresis of the heat
storage in the annual cycle. The annual range of surface temperatures (see
Fig. 24) is less than it would be without storms because of the increased
heat storage at depth.
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6.4 Filtering Effect of the Storage of Turbulent Kinetic Energy

The hypothetical solutions shown in Figure 20 are all for periods
(2n/w) much longer then the integral time scale of the turbulence~ governed
by the dissipation time scale (T E). This made possible the assumption of
quasi-steady state so that the turbulent energy storage terms~ a/at <uiui>~

could be neglected in the solutions. However~ fluctuations in the surface
boundary conditions U*2 and bw(O) of sufficiently short period require the
consideration of these terms.

A very simple model~ which may be solved analytically~ provides the
answers to the question concerning the importance of this unsteadiness and
how it might be treated.

In the simple model only the two largest terms~ shear production and
dissipation~ are balanced by the time rate of change of the turbulent kinetic
energy.

- - u3

a~i> + ~E> = h* (l + a sin wt)
E

(6.11)

The prescribed shear production is a constant plus a sinusoidally-varying
component (a < 1). By defining dimensionless time~

T* = tiT E ~
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and turbulent energy,

(6.11) is transformed to (6.14),

h<E>'1'* - --
u3 T* E:

(6.13)

where

a'1'*
~ + '1'* = 1 + a sin W*T*,

W* = T w.E:

(6.14)

(6.15)

For (a = 0) the steady-state solution is simply '1'* = 1. For finite (a), the
complete solution, neglecting the initial transient, is

'1'* = 1 +( a ~ (sin W*T* - w* cos W*T*) •
w*2 + 1) (6.16)

There is a phase shift that increases with (w*), but the important aspect of
(6.16) is the relative magnitude of the response associated with the fluctu­
ating component. Figure 25 is a plot of this versus w*.

For w* < ~ 0.5 (slow fluctuation period compared with TE:)' the situation
of quasi-steady state is satisfied. Depending upon the Rossby number and H*,
this corresponds to a minimum fluctuation period of several hours up to about
a day.
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For faster fluctuation having a period less than about an hour, the
phase shift (lag) in the response approaches 90 0 and, most importantly, the
amplitude of the response is negligible. In other words, the high frequen­
cies are filtered out.

This becomes a possible cause of error in using observed winds to drive
a model having an integration time step smaller or comparable with TE • If
the quasi-steady state assumption is made to facilitate solution, but the
surface boundary conditions are not properly smoothed or filtered, an incor­
rect high-frequency response will not only be present but will bias the mean
trend.

6.5 Interaction Between Forcing Time Scales: Modulation of the
Longer-Period Trend in the Diurnal-Period

Heating/Cooling Cycle

As already shown in comparing Figure 18 with Figure 16, if H* is per­
turbed by a diurnal-period heating cycle, then the mean p* over the cycle
will be less than p* of the mean H*.

p* (H*) < p* TH*T . (6.17)

An atypical situation was used in Figure 18 to demonstrate the effect of
(6.17) during a relatively short time period. Over a year, however, the
consequences can be significant. This is shown by Figures 26-28--case "8."
Case "8" is the same as case "A," Figures 22-24, except for the superposition
of a diurnal cycle on top of the annual heating/cooling cycle.
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Throughout the year, the principal effect is the decrease in mixed layer
depth. The decrease in upper ocean potential energy, higher surface temper­
atures, and lower heat storage at depth are directly due to the modulation of
the longer-term entrainment rate.

The basic shapes of the two solutions to h(t) are similar. Without a
noticeable difference in phase, there is the possibility that the effect may
be absorbed in the constants of calibration. In other words, a one-day or
longer time step might be possible if computation speed were of the essence
in a numerical model.

6.6 Simulation of a Real Case

An experiment conducted by Halpern (1974) provides a unique record of
1-D mixed layer evolution in that wind, currents, and thermistor chain meas­
urements were made simultaneously at one location (47°N, 128°W) for the
period of a month. During this time one "strong" and several lesser storm
events occurred. Figures 29-33 show the model results.
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Here the 31-day records of temperature at 9.6 and 23.4 meters are com­
pared with the model prediction. The actual wind speeds are used to compute
u~ for the model, but surface buoyancy flux is rather crudely assumed to be
constant plus a constant-amplit~de diurnal component. Nevertheless, the
gross features of the record are reproduced:

(1) A weak storm on August 11 deepens the layer from 13 to 18
meters.

(2) A period of low winds from August 13 to August 19 resulted
in a retreating layer and warming at the 9.6-meter depth.
During this period the guessed-at surface heat flux gave a
too-shallow depth of retreat that can be seen in the August
16 temperature profile. Therefore the predicted temperature
at 9.6 meters is too low until the layer deepens suffi­
ciently on August 17.
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(3) The relatively strong storm of August 20 deepens the layer
to over 24 meters and the temperature at 9.6 meters drops
considerably. At this time the 23.4-meter thermistor for
the first time lies within the mixed layer and registers the
higher temperature.

(4) Subsequent warming and then cooling after August 30 is due
to another storm. This last storm is nearly as strong as
that of August 20 t but its work is not as obvious because
it starts with a relatively deep layer.

Figure 32 shows another possible model output--the mixed layer wind­
driven current. As shown by Figure 12 t the mean current at the base of the
mixed layer has only a small effect upon the turbulent energy budget (even
for Ri* ~ 1). The depth of the mixed layer t on the other hand t directly
influences the amplitude of C. Therefore t any surface current prediction
requires knowledge of h(t).
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6.7 Evaluation of Model Output

This simulation of a real case is not a strict test of the model. The
surface buoyancy flux is not known sUfficiently well for this run to be used
either for calibration purposes or as a test of model behavior.

Inasmuch as the model was designed to have general applicability over
all seasons (wide range of values for H*), the proper calibration and testing
procedure requires an integration over a full year. This remains to be done
at a future date under a more operationally-oriented program of research.

Figure 32 shows a measure of the sensible heat flux at the surface (by
a bulk parameterization) versus time for the first half of the total period
of observation. (Air temperature was not available after the storm of 21
August.) Because relative humidity was not available, the relatively larger
latent heat flux could not be computed. Because the latent heat flux is very
roughly proportional to the sensible heat flux (assuming an approximately
constant Bowen ratio), Figure 32 indicates the large magnitude of the net
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diurnal heat flux compared with the mean daily values. The mean daily heat
flux and the diurnal component were assumed to be constant over the entire
period. This was obviously not true.

Nevertheless, this particular run, as illustrated by Figures 29 to 33,
does have didactic value in demonstrating the character of the model re­
sponse to realistic boundary conditions. The overall conclusion for this
particular case is that the wind stress controls the timing of the entrain­
ment and retreat events. The degree of surface heating or cooling is impor­
tant in determining the extent of the retreat or the deepening. Although the
guess at bw(t) was only marginally satisfactory, an important result is that
the diurnal cycle prescribed gives a much better prediction than does an
integration using a constant heat flux alone.

7. CONCLUS IONS

This model for the ocean mixed layer consists of a number of hypotheses
and assumptions regarding the mechanical energy budget, originally shown in
Figure 1. In arriving at these hypotheses, mean turbulent field techniques
were used, but this was done without losing the simplicity of the bulk model
concept. The particular details of the structure of the mean fields within
the boundary layer were not of highest priority as a model output. In any
case detailed geophysical data revealing this structure is unavailable to
test such a prediction. Of highest importance in this model was the ability
to predict the year-round evolution of the ocean mixed layer depth, together
with the bulk properties. There are several models, including those by
Wyngaard et ale (1974) and Sundararajan (1975), which provide struc~ural
predictions quite nicely, but these boundary layer models are not dlrectly
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concerned with a changing layer height. An entrainment model is necessary to
provide boundary conditions at the moving density interface.

The atmospheric and oceanic boundary layers present nearly identical
problems. However, an important difference arises in the surface heat flux
boundary condition. The atmospheric boundary layer is predominantly unstable
because of minimal absorption of solar radiation within the layer. On the
other hand, most of the solar radiation is absorbed near the ocean surface
and hence turbulent heat flux downward in the oceanic boundary layer is about
the same as flux upward in the course of an annual cycle. Therefore, the
stable situation is of relatively greater importance in the ocean. As shown
by Figures 12 and 14, the nonlinearity of p* (H*) is greatest for H* > 0,
the stable region. The treatment of the oceanic case must be made with
emphasis upon this point since the linear extrapolation of the unstable
situation will not suffice.

In addition to the nonlinear dependence upon stability, a Rossby number
dependence for the entrainment rate has been found in the nondimensional
solution, Figure 14. This makes possible a cyclical steady state for the
boundary layer without resorting to unrealistic values of upwelling or
lateral advection in a long-term integration.

In the short term, on the order of days, the upper ocean, even at higher
latitudes, exhibits significant three-dimensional baroclinic activity. A
case in point is well documented by Gregg (1975) in which only lateral advec­
tion can explain the change in heat content after the passage of a storm. In
doing the ensemble or horizontal averaging, such phenomena as well as the
short-period internal waves are treated as noise in the essentially one­
dimensional mixed layer dominated by the strong vertical turbulent fluxes of
heat, salt, and momentum. This does not eliminate the practical difficulties
of analyzing and simulating actual observations made at a single point, as
shown by the case using real winds to drive the model.

The importance of shorter-period fluctuations in the surface buoyancy
flux in modulating the longer-term response has demonstrated the need to know
the typical daily heating/cooling cycle: Solar radiation, evaporation, con­
duction, and back-radiation as a function of season and geographical coordin­
ates. The detailed features of this diurnal cycle were not of importance in
conducting a qualitative evaluation, but accurate quantitative results from
an operational model would be impossible without them. For the same reason,
the radiation absorption function should be known. This la~t suggestion may
not be possible without the incorporation of a primary productivity model in
which case the physics becomes directly dependent upon the biology!

Some of the most fruitful applications of this model lie in the link-up
with other models. The region below the mixed layer has been over a short
time period successfully treated as a zero-flux "qu iescent abyss." This was
done primarily for simplicity when the point of focus was the overlying
turbulent boundary layer. The first natural joining of models is between
such a boundary layer model with an ocean general circulation model. But why
stop there? An atmospheric general circulation model may be combined with

76



the ocean general circulation model--but only through two boundary layer or
mixed layer models. It has been demonstrated here that the sea-surface tem­
perature, which is so important for weather prediction, cannot be predicted
with accuracy without the proper consideration of the ocean mixed layer.
Climate modeling must also pay heed to the oceanic boundary layer. Anomalous
events in the evolution of the mixed layer may induce a delayed response by
the atmosphere when the mi~edliyer again deepens sufficiently.

The interaction between diurnal and annual time scale events has been
particularly emphasized, but other time scales even longer than a year pose
some interesting possibilities, particularly for inactive models.

8. SUMMARY OF MODELED EQUATIONS

ENTRAINMENT BUOYANCY FLUX

-~
m4 <w2> <E>

-bw (-h) = h

BUDGET FOR HORIZ. COMPONENTS OF TURB. KINETIC ENERGY

(1)

(2)

_ k: 2ml _ k:
<E>2 - -3- «E>2 + fh) <E>

BUDGET FOR VERTICAL COMPONENT OF TURB. KINETIC ENERGY

1 !- (h ;:;z:w ) = h bW(-h) + h bW(O)
"2 dt < > 2 2

m .
_ ~ -k: 1 -k: -

+ m2 «E> - 3 <\10, » <E>2 - 3 «E>2 + fh) <E>

CONSERVATION OF MEAN BUOYANCY AND MEAN MOMENTUM
o

f Q dz
-h
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"JUMP CONDITIONS" AT BOTTOM OF MIXED LAYER

- cw (-h) = ~C ~dt

(5)

NOTATION

- bw (-h) = ~B ~dt

C = U + i V

E= u2 + v2 + w2

lim
L~

( ) dxdy

o

« » = kf ()dz

-h

Ri* = h~B

l~cl2
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