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Introduction 
 
Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both 
climate modeling with global climate models and remote sensing.  The aspect ratio (horizontal/vertical) 
of the mesh cells used for radiation modeling in global climate models is so large that the cells are 
effectively shaped like square “pancakes,” with rough dimensions of 100s of km horizontally and 1 km 
vertically, as seen in Figure 1a.  In this situation, a reasonable and commonly-used approximation 
known as the Independent Column Approximation (ICA) neglects transport through the sides of the 
pancake-shaped cells and treats each column of cells (or “stack of pancakes”) as an independent one-
dimensional (1D) problem.  More recently, the pancakes have been divided into a number of optically 
distinct sub-cells (e.g., cloudy vs. clear regions) where the ICA is applied; then averaging is performed 
over the sub-cells (e.g., Barker and Davis 2005; Cahalan 2005).  However, to resolve the detailed 
dynamics of convection and cloud processes, several Atmospheric Radiation Measurement (ARM) 
Program science team members have invested heavily into cloud-resolving models (CRMs) and large-
eddy simulations (LESs) where the elementary cells now have aspect ratios close to unity, as seen in 
Figure 1b.  The multi-layer ICA is still used in such models to compute the radiative transfer, but it is no 
longer a reasonable approximation for a refined, aspect ratio=1 mesh due to important horizontal fluxes 
that cannot be modeled via a cyclic boundary condition.  True three-dimensional (3D) radiation 
transport modeling is required to derive the proper spatial distribution of radiant energy deposition.  Our 
goal is to develop an efficient 3D-capable radiation code that is easily integrated into LESs and CRMs 
as an alternative to the resident 1D model. 
 
In this report, we describe the development of a 3D radiative transfer modeling capability for transport 
through given 3D media.  At least inside cloudy regions, this modeling framework is accurate yet 
efficient for solar heating and thermal cooling rates.  This capability is being developed in the Cæsar 
Code Package (Hall 2000) (http://www.lanl.gov/Caesar), which is a parallel, object-based computational 
physics development environment.  The package uses levelized design (Lakos 1996), Design by  
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Contract™ (Meyer 1997), extensive unit testing, and the ideas of literate programming (Knuth 1992) to 
generate rich documentation from the source.  Results from preliminary calculations are shown, drawn 
specifically from the cases used in the Intercomparison of 3D Radiation Codes (I3RC) protocol 
(http://i3rc.gsfc.nasa.gov). 
 
Atmospheric Radiation Model 
 
Our method starts with the steady-state, mono-energetic Boltzmann photon transport equation with no 
internal sources, 

 
( ) ( ) ( ) ( ) ,ˆˆ,ˆˆ,ˆ,)(ˆ,ˆ

4

Ω′Ω′Ω⋅Ω′=Ω+Ω∇⋅Ω ∫ drrrrr s
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where Ψ is the photon angular intensity, σ is the extinction (or total cross section), σs is the scattering 
cross section from direction  into Ω , and all variables are functions of 3D space, Ω′ˆ ˆ rr .  Highly accurate 
solutions of this equation often involve discretization of the angular variable (the discrete ordinates 
method), expanding in angular moments (the spherical harmonics method) or a stochastic approach (the 
Monte Carlo method) (e.g., Evans and Marshak 2005).  All of these methods are extremely compute-
intensive, and can require large amounts of memory and long run-times. 
 
On the other end of the spectrum, ICA models apply a 1D diffusion model (with an assumption that the 
intensity is linear in angle) at each horizontal location to give a quick, but low-accuracy solution.  Our 
method is in a class that explores the middle ground between these two approaches and results in a fast 
method with relatively high accuracy (Davis and Polonsky 2005). 
 
We first separate the photon angular intensity into two components:  an uncollided component, Ψ0, and a 
collided component, Ψc.  The uncollided component represents streaming radiation from the sun that has 
not undergone a scattering or absorption collision, such that it exhibits strong transport characteristics.  
In contrast, the collided intensity loses directionality after a few collisions, such that it is predominantly 
diffusive, especially near the cloudy regions.  
 
The uncollided intensity is governed by the simpler equation 
 

 ( ) ( ) ,0ˆ,)(ˆ,ˆ
00 =Ω+Ω∇⋅Ω rrr rrr ψσψ  (2) 

 
which can be solved analytically by calculating the optical depth for the incident solar radiation, 

, along streamlines according to the solar illumination angle.  The angle-integrated 

uncollided intensity, , is then  

dsrr ∫= )()(0
rr στ
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where  is the magnitude of the incident solar radiation, hereafter taken to be unity.  0Ψ

 
The collided intensity follows the original transport equation, with an added first-collision source:  
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Defining the single-scattering albedo, 
 

 
( ) Ω′Ω⋅Ω′≡ ∫ ˆˆˆ,

)(
1)(

4
0 dr

r
r s

r
r

r

π

σ
σ

ϖ
 (5) 

 
and assuming that diffusion is a valid approximation for the collided intensity gives the following 
equation for the angle-integrated collided intensity, )(rJ r

 (Case and Zweifel 1967): 
 

 ( ) 0
001 τσϖσϖ −=−+∇⋅∇− eJJD , (6) 

 
with spatial dependence left implicit and where  
 

 
D =

1
3σ 1−ϖ0g( ) , (7) 

 
is the diffusion coefficient, with g is the mean cosine of the scattering angle, as weighted by the phase 
function.  For simplicity, we have omitted a uniform change in the strength of the source term on the 
r.-h. side of Eq. (6) dependent on g (assumed constant) and originating in the forcing of the 1st-order 
harmonic; this omission does not change normalized results. 
 
Results 
 
We applied the model to Case 1 from the Intercomparison of 3D Radiation Codes Project (I3RC).  This 
case posits a square-wave cloud defined on the domain ),0(),,0( hzLx ∈∈  where h = 0.25 km and 
L = 0.5 km.  Boundary conditions are periodic at 0=x  and Lx = , and vacuum at  and 0=z Lz = . 
The extinction (total cross section) σ = 2/h for 2/Lx < ;σ =18/h for .  Calculations were 

done for two solar illumination angles,   

2/Lx >
θ0 = 0o

 and  θ0 = 60o

, and two single-scattering albedos, 10 =ϖ  

and 99.00 =ϖ . 
 
First, the optical depth is calculated as a function of position using geometrical considerations.  The 
optical depth for the   θ0 = 60o

 case is shown in Figure 2.  The source term for the diffusion calculation is 
derived from the optical depth, as seen in Figures 3 and 4. 
 
Results from diffusion calculations (Cæsar code) using the first-collision source are shown in Figures 5 
and 6 for the overhead sun condition.  The dark shadow directly underneath the cloud can be seen, as 
can the illumination at the top of the cloud.  Results for a solar illumination angle of 60° are shown in 
Figures 7 and 8.  Note here the angled shadows along the front of the illumination surface.  Also note the 
strong horizontal fluxes, indicated by the closely spaced vertical contour lines.  These strong horizontal 
fluxes are ignored by the ICA modeling approach. 
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Figure 2.  Optical Distance to Solar Source, τ 0(x,z),θ0 = 60° . 
 
 

 
 

Figure 3.  First-Collision Source Term, Q(x,z) = ϖ 0σ e−τ 0 , θ0 = 0° . 
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Figure 4.  First-Collision Source Term, , 0
0),( τσϖ −= ezxQ θ0 = 60° . 

 
 

 
 

Figure 5.  CÆSAR Results:  , ),( zxJ θ0 = 0° , 10 =ϖ . 
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Figure 6.  CÆSAR Results:  , ),( zxJ θ0 = 0° , 99.00 =ϖ . 
 
 

 
 

Figure 7.  CÆSAR Results:  , ),( zxJ θ0 = 60° , ϖ0 =1. 
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Figure 8.  CÆSAR Results:  , ),( zxJ θ0 = 60° , 99.00 =ϖ . 
 
The non-dimensional heating rate is defined as the radiant energy absorption in the cloud, and is equal to 

),()1( 0 zxJqrad σϖ−=  for the diffuse component of the field (see Figures 9 and 10).  In these cases, 
virtually all of the diffuse heating takes place in the cloud. 
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Figure 9.  CÆSAR Results:  Non-Dimensional Heating Rate, ),()1( 0 zxJqrad σϖ−= , θ0 = 0° , 
99.00 =ϖ . 

 
 

 
 

Figure 10.  CÆSAR Results:  Non-Dimensional Heating Rate, ),()1( 0 zxJqrad σϖ−= , θ0 = 60° , 
99.00 =ϖ . 
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Figure 11 shows boundary flux fields for the square-wave cloud in the conservative (ω0 = 1) case, and a 
derived quantity.  Benchmarks for comparison with the 3D diffusion theoretical results (ED3D code 
[Qu 1999]) are:  a full 3D RT equation solution (twodant code [Alcouffe et al. 1997]), and the ICA 
(using both the 1D RT equation and the analytical diffusion solution).  Two solar illumination angles 
and two boundary fluxes (R(χ), the boundary flux at the top and T(χ), the boundary flux at the bottom) 
are considered along with the “horizontal fluxes” (or apparent absorption) H(χ) = 1 – R(χ) - T(χ).  In 
spite of the mirror symmetry of cloud structure around the vertical planes at χ = 0.125 and 0.375 km, the 
uniform µ0 = 1 (θ0 = 0°) illumination and the angularly-integrated response, we note a minor asymmetry 
in the results from twodant.  That is because 3D RT equation solvers based on a grid proceed by 
“sweeps” in a given direction and iterations.  This gives an indication of the residual numerical error. 
 

 
 
Figure 11.  Normalized Boundary Fluxes (  – top, – bottom) for )(xR )(xT ϖ0 =1 and (a) θ0 = 0° , 
(b) θ0 = 60°  and Horizontal Flux Divergence Fields ( ) for )(xH (c) θ0 = 0° , (d) θ0 = 60° . 
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Figure 12 shows the column absorption for the square-wave cloud (when ω0 = 0.99) for both 3D exact 
and 3D diffusion solutions.  Two solar illumination angles are again considered, both with and without 
δ-rescaling (Joseph et al. 1976).  For overhead illumination, δ -rescaling helps, but not for a 60° sun.  To 
appreciate the potential dynamic effect of the bias caused by the ICA assumption, we note that the local 
solar heating rate can be off by as much as a factor of 2.  This happens near the strong gradients when 
the illumination is significantly off-zenith.  By comparison, the error induced by the diffusion 
approximation is less than ≈ 10%. 
 

 
 

Figure 12.  Column Absorption, , when )(xA 99.00 =ϖ :  (a) θ0 = 0° , and (b) θ0 = 60° . 
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Cæsar Computational Physics Development Environment 
 
The methods described in this paper have been developed inside the Cæsar computational physics 
development environment, and so were able to take advantage of some pre-existing code (Hall 2000). 
The Cæsar code package contains a general diffusion solver for multi-dimensional (1D, 2D, and 3D) 
problems defined on a uniform mesh.  Specialized routines for calculating the optical depth for the 
square-wave problem were added to enable calculation of atmospheric radiation propagation.  Cæsar 
uses second-order convergent diffusion discretizations, and is based on the earlier Augustus 
(diffusion-P1) and Spartan (simplified spherical harmonics, SPN) codes. 
 
Cæsar uses Message Passing Interface standard for parallel communication, but can run in serial mode 
also.  It uses LAMG, the Los Alamos Algebraic Multigrid Solver (Joubert 2005), to solve the linear 
algebraic diffusion systems in scalable parallel time.  It is written in Fortran-95 preprocessed by Gnu m4 
(gm4), in an object-based fashion, and is as close as possible to object-oriented in Fortran-95. 
 
Cæsar uses complete unit testing to certify all classes—each component is tested in isolation, and only 
components that have been previously tested may be included.  This facilitates error discovery, pin-
pointing and correction.  Each class contains its own specific driver routine for unit testing, which is 
toggled on or off (compiled in or out) via gm4 flags.  Each component to be unit tested must be 
compiled and linked with a unique subset of Cæsar.  Unit test output is compared to previous results. 
 
Cæsar has a completely levelized design (Lakos 1996), that is, there are no dependency loops between 
classes or modules.  Each component depends only on components that are at a lower level—feedback 
or circular designs are not allowed (see Figure 13).  Levelized design is necessary for incremental 
compilation in F95 if dependency is via “use association,” and it makes unit testing possible.  The 
current levelized design for Cæsar is given in Figure 14. 
 
Cæsar uses verification and Design by Contract™ or “DBC” (Meyer 1997) to ensure correct program 
execution.  Verification is accomplished using statements to check the validity of specified conditions, 
which are conditionally compiled into the code, allowing error checking that can be turned off 
completely for fast execution.  This implementation, using gm4, allows for extreme error checking if the 
tests are compiled in and unfettered execution speed if they are commented out.  Cæsar uses DBC 
throughout:  procedures satisfy a contract when they are called—input requirements are verified upon 
entry and output guarantees are verified before exit.  Verification and DBC are simple, but very 
powerful ideas.  See Figure 15 for an example usage of verification and DBC. 
 
Cæsar uses the ideas of “literate programming” (Knuth 1992) to generate documentation (in HTML, 
PostScript, and PDF) from a single source, comments included in the code, via the Document Package. 
The collocation of documentation and source facilitates keeping the documentation synchronized. 
LaTeX and LaTeX2HTML are used to process the documentation, allowing graphics, equations, tables 
and code listings to be easily included.  An index, a bibliography and a table of contents are generated 
automatically.  The HTML version is extensively hyperlinked for easy navigation. 
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Figure 13.  A levelized diagram showing a dependency that is not allowed. 

 
 

 
 

Figure 14.  CÆSAR levelized design. 
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  subroutine Quadratic_Roots (a, b, c, root1, root2)  
 
    ! Input variables. 
    type(real), intent(in) :: a, b, c       ! Equation coefficients. 
 
    ! Output variables. 
    type(real), intent(out) :: root1, root2 ! Roots of the equation. 
 
    ! Internal variable. 
    type(real) :: determ                    ! Determinant of the equation. 
 
    ! Verify requirements. 
 
    VERIFY(Valid_State(a),1)                ! The equation coefficients can 
    VERIFY(Valid_State(b),1)                ! take on any real value, but 
    VERIFY(Valid_State(c),1)                ! we can check for NaNs & Infs. 
 
    ! Calculate roots. 
 
    determ = b**2 - 4.d0*a*c 
    VERIFY(determ>=0.d0,1) 
    determ = sqrt(determ) 
    root1 = (-b + determ)/(2.*a) 
    root2 = (-b - determ)/(2.*a) 
 
    ! Verify guarantees. 
 
    VERIFY(Valid_State(root1),1)            ! The roots can take on any real  
    VERIFY(Valid_State(root2),1)            ! value, so only test Valid_State. 
    VERIFY(a*root1**2 + b*root1 + c .VeryClose. zero,1)  ! root1 and root2 
    VERIFY(a*root2**2 + b*root2 + c .VeryClose. zero,1)  ! satisfy the equation. 
 
    return 
  end subroutine Quadratic_Roots 

 
Figure 15.  Design by Contract™ example. type(real) is a gm4 macro for the F95 intrinsic real type. 
Valid_State is an F95 logical function which is defined for every variable type and dispatched 
polymorphically at compile time.  VeryClose is an F95 logical function which checks for near equality for 
reals. 
 
Summary and Future Work 
 
The Cæsar diffusion package has been used to model 2D diffusion in an atmospheric radiation model, 
making use of the uncollided intensity for an isotropic first-collision source term.  The model has 
exposed limitations of the commonly used ICA.  The parallel Cæsar code package employs many of the 
latest ideas in software design, including Literate Programming, Levelized Design, Unit Testing, 
Verification, and Design by Contract™. 
 
Future plans for atmospheric radiation transport modeling are as follows:  
 

• 3D atmospheric problems (Cæsar is already working and tested in 3D),  
 

• implementation in an LES-based cloud model (such as the University of Oklahoma/Cooperative 
Institute for Mesoscale Meteorological Studies model [e.g., Mechem and Kogan 2003]),  
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• time-dependence (for cloud lidar studies)  
 

• broken clouds (embedded in extensive non-diffusive regions).  
 
Future plans for other applications of the Cæsar code package include: unstructured hexahedral meshes, 
polyhedral meshes, multigroup in energy, tensor diffusion, and mixed cells. 
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