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Executive Summary

This document reports on the workshop "Future Challenges for the Science and Engineering of
Learning" held at the National Science Foundation Headquarters in Arlington Virginia on July
23-25, 2007. The goal of the workshop was to explore research opportunities in the broad
domain of the Science and Engineering of Learning, and to provide NSF with this Report
identifying important open questions. It is anticipated that this Report will to be used to
encourage new research directions, particularly in the context of the NSF Science of Learning
Centers (SLCs), and also to spur new technological developments. The workshop was attended
by 20 leading international researchers. Half of the researchers at the workshops were from SLCs
and the other half were experts in neuromorphic engineering and machine learning. The format
of the meeting was designed to encourage open discussion. There were only relatively brief
formal presentations. The most important outcome was a detailed set of open questions in the
domains of both biological learning and machine learning. We also identified set of common
issues indicating that there is a growing convergence between these two previously separate
domains so that work invested there will benefit our understanding of learning in both man and
machine. In this summary we outline a few of these important questions.

Open Questions in Both Biological and Machine Learning

Biological learners have the ability to learn autonomously, in an ever changing and uncertain
world. This property includes the ability to generate their own supervision, select the most
informative training samples, produce their own loss function, and evaluate their own
performance. More importantly, it appears that biological learners can effectively produce
appropriate internal representations for composable percepts -- a kind of organizational scaffold -
- as part of the learning process. By contrast, virtually all current approaches to machine learning
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typically require a human supervisor to design the learning architecture, select the training
examples, design the form of the representation of the training examples, choose the learning
algorithm, set the learning parameters, decide when to stop learning, and choose the way in
which the performance of the learning algorithm is evaluated. This strong dependence on human
supervision is greatly retarding the development and ubiquitous deployment autonomous
artificial learning systems. Although we are beginning to understand some of the learning
systems used by brains, many aspects of autonomous learning have not yet been identified.

Open Questions in Biological Learning

The mechanisms of learning operate on different time scales, from milliseconds to years. These
various mechanisms must be identified and characterized. These time scales have practical
importance for education. For example, the most effective learning occurs when practice is
distributed over time such that learning experiences are separated in time. There is accumulating
evidence that synapses may be metaplastic; that is, the plasticity of a synapse may depend on the
history of previous synaptic modifications. The reasons for this spacing effect and state-
dependence must be established so that the dynamics of learning can be harnessed for education.
Similarly, the role of sleep in learning, and particularly the relationship between the Wake-Sleep
Cycle and the spacing of learning experiences must be explored. Although computational models
of learning typically focus on synaptic transmission and neural firing, there are significant
modulatory influences in the nervous system that play important roles in learning. These
influences are difficult to understand because the time scale of some of these modulatory
mechanisms is much longer than the processing that occurs synaptically. Amongst the many
questions listed in this Report list the following examples: How are different time scales
represented in network space? What are the detailed neuronal network mechanisms that could
implement a reward prediction system operating on multiple timescales? How do neurons, which
process signals on a millisecond range, participate in networks that are able to adaptively
measure the dynamics of behaviors with delays of many seconds? What are the neuronal network
architectures that support learning? What is the role of neuronal feedback in autonomous
adaptive learning? What is the role of the areal interactions, coherence, and synchrony in cortical
learning? How do the interactions of social agents promote their learning? What are the cues or
characteristics of social agents? If we could flesh out these characteristics we could develop
learning/teaching technologies that captured those critical features and characteristics to enhance
human education.

Open Questions in Artificial Learning

At the heart of all machine learning applications, from problems in object recognition through
audio classification to navigation, is the ancient question of autonomously extracting from the
world the relevant data to learn from. Thus far machine learning has focused on and discovered
highly successful shallow (in organizational depth) algorithms for supervised learning, such as
the support vector machine (SVM), logistic regression, generalized linear models, and many
others. However, it is clear from the fundamental circuitry of brain, and the dynamics of
neuronal learning, that Biology uses a much deeper organization of learning. In order to make
significant progress toward human-like relatively autonomous learning capabilities, it is of
fundamentally important to explore learning algorithms for such deep architectures. Many of the
most difficult AI tasks of pressing national interest, such as computer vision object recognition,
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appear to be particularly suited to deep architectures. For example, object recognition in the
visual pathway involves many layers of non-linear processing, most or all of which seem to
support learning. We need to explore these mechanisms to determine whether biology has
discovered a specific circuit organization for autonomous learning. If so, what are the elementary
units of biological learning and how could they be implemented in technology? Is it possible to
develop neuromorphic electronic learning systems? How could ultra-large memories be
initialized, or are all large systems essentially dependent on learning? To answer this question we
must confront the fundamental relationship between physical self-assembly and learning. Such a
combination of dynamic structural and functional organization links the science of learning to
emerging advances in materials science, chemistry and, specifically, nanotechnology. How can
such configuration mechanisms be facilitated? Enhanced learning by apprenticeship (or
imitation) is already been applied with great success to a range of robotic and other artificial
systems, ranging from autonomous cars and helicopters to intelligent text editors. How can
synergistic learning between humans and machines be enhanced? To integrate synthetic learning
technology with biological behaving systems, and especially people, requires learning machines
that are commensurate with the constraints of human behavior. This means that learning
machines must have the appropriate size, address issues of energy use, and be robust to
environmental change. How can efficient communication across human-machine interface be
learned? How should portable human-machine learning systems be implemented physically and
ergonomically?

International Collaboration in Learning Research

This workshop included a number of international participants, indicating that there is an
international consensus about the relevant open questions of learning, and that these are being
pursued actively also outside of the USA. For example, the European Union programs are also
actively promoting research at the interface between neuroscience and engineering, and
addressing particularly questions of learning and cognition and their implementation in novel
hardware and software technologies. Nevertheless, systematic collaborative research programs
on learning remain sparse. Can we obtain synergies by promoting international collaborative
research on learning? And how should we do so?
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Description of the Workshop

The NSF-sponsored workshop on "Future Challenges for the Science and Engineering of Learning" was
held at the NSF Headquarters in Arlington VA from the evening of July 23 to the afternoon of July 25,
2007.

The goal of the workshop was to explore research opportunities in the broad domain of the Science and
Engineering of Learning, and also to provide NSF with a Report identifying important open questions. It
is anticipated that this Report will to be used to encourage new research directions, particularly in the
context of the NSF Science of Learning Centers (SLCs), and also to spur new technological
developments.

The format of the meeting was designed to encourage open discussion. There were only relatively brief
formal presentations. This format was very successful: So much so that the participants finally focused
on a rather different set of questions than those that were originally proposed by the organizers.

The organizers circulated seed questions to the Participants prior to the Workshop. Initially these
questions clustered into roughly 5 general areas: Science of Learning, Learning Theory, Learning
Machines, Language Learning, and Teaching Robots. The Participants were assigned in pairs to one of 5
general areas, and each asked to give a 10 minute position statement in that domain. We hoped that their
independent presentations would provide two separate attempts to identify, and motivate, some initial
issues for discussion. These statements were not expected to offer solutions to the open problems, but
merely to identify some of them, and to provoke and steer discussion about them. These position
statements were planned for the mornings, and breakout discussions on the same topic were planned for
the afternoons (see Schedule in Appendix). In practice though, discussions soon began to focus on the
slightly different topics that are now described in this Report.
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GENERAL QUESTIONS OF LEARNING

What are the General Characteristics of Learning in Biology and Machines?

Biological learners have the ability to learn autonomously, in an ever changing and uncertain world.
This property includes the ability to generate their own supervision, select the most informative training
samples, produce their own loss function, and evaluate their own performance. More importantly, it
appears that biological learners can effectively produce appropriate internal representations for
composable percepts -- a kind of organizational scaffold -- as part of the learning process.

By contrast, virtually all current approaches to machine learning (ML) typically require a human
supervisor to design the learning architecture, select the training examples, design the form of the
representation of the training examples, choose the learning algorithm, set the learning parameters,
decide when to stop learning, and choose the way in which the performance of the learning algorithm is
evaluated. This heavy-handed dependence on human supervision has greatly retarded the development
and ubiquitous deployment autonomous artificial learning systems. This deficit also means that we have
not yet understood the essence of learning, and so research on a variety of topics outlined below should
be encouraged and supported by NSF.

One key theme is that of understanding the importance of the computational architecture of learning
systems. It is widely believed that, unlike the shallow architectures typically employed in ML (machine
learning), the learning in neural systems uses a deep, or heterarchical architecture, in which increasingly
higher-level, or more abstract, concepts (or features) are composed of simpler ones. Re-representation
across different neural mechanisms is an important feature of neural architecture. This deep architecture
first extracts simple fundamental features that can be used to typify objects in a natural scene. These
features then feed to later stages of processing, where more complex features are composed from these
low-level building blocks. This hierarchical architecture is ubiquitous, and critical for enabling robust
learning and characteristic of Hebb’s notion of the nesting of levels of abstraction within neural
structures. It is this proposed functional organization that would provide “scaffolding” by finding the
elemental features that are most universal (across target learning domains) and fundamental within
natural signals in the earliest sensory processes in the system. These simple features promote the ability
to separate and segment a source of interest from the competing sources in the everyday environment.
Once these features are tuned by experience or learned outright, higher-order regularities and structure
can then be extracted with more refined processing.

Unlike supervised approaches to machine learning, most biological learning appears to be based on
largely “unlabeled” data. Large amounts of natural data are available to the learning system without
external supervision or labels, although the structure of the environment may provide causal or
correlated signals that have distributional properties that may function akin to labeling. Generally, there
is at most very weak external supervision, such as can be obtained by real-valued environmental
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“reward” signals. Although a behaving organism rarely learns in a supervised manner (in a strict
mathematical sense), the organism often appears to act with some implicit or explicit intent that
presumably reflects an internal goal. The success or failure in achieving such an internally derived goal
can provide a strong reward signal that drives learning. Even in situations where no specific outcome is
desired, the organism may nevertheless be generating internal predictions relevant to possible actions
and their consequences, and so can continually evaluate the success or failure of these predictions to
improve learning.

How does a learner select relevant data? In most real-world situations there is no explicit teacher, and so
a major problem is determining which of the deluge of impinging information are relevant for the
solution of a particular task. In order to solve this problem, the learner must first be able to segment and
segregate the sources of information in the environment, and then focus attention on the information that
is relevant for a given task. The heterarchy of sensory processing probably supports these processes of
segmenting and directing attention to construct the scaffold. However, the exact nature of this process
and its biological implementation are essentially unknown.

There has been some progress in understanding the development of this scaffold in some important
areas. A key example showing the evolution from general to specific learning is in language acquisition.
For example, the learning in utero of simplest speech attributes (pitch, prosody, coarse phonotactics).
Or the use of “Motherese” to accelerate segmentation and segregation by providing clear, over-
articulated prosodically modulated speech that gives efficient information about what attributes and
features matter in a particular language. Learning then progresses more quickly to enable understanding
of words, semantics, and grammar. Understanding this principle would be beneficial for education in
general.

During the past decade there has been an explosion of interest and success in ML. However, those
successes are largely in the classification domain, operating on electronic data sets which are not typical
of the ever-changing sensorium of the real world. The success of ML within its domain has had the
negative effect of drawing that field away from the more challenging problems of biological /
autonomous learners. NSF could encourage a return to the synergistic middle ground by promoting
research at the interface between machine learning and biology, in addition to more basic research on
the biological bases of learning that can guide future ML developments.

It is certainly realistic to start now a concentrated effort towards the design of autonomous learners. Bits
and pieces of principles and methods have already been discovered that automate some of the tasks
which a human supervisor formerly had to do. Examples include learning algorithms that are self-
regulating in the sense that they automatically adapt the complexity of their hypotheses to the
complexity of a learning task (e.g. SVMs, MLPs and ART systems); or automatically produce suitable
internal representations of training examples (e.g. deep learning). A few examples of autonomous
learning have been demonstrated in robotics. For example the winning robot in the DARPA Grand
Challenge used a form a self-supervised learning called “near-to-far” learning, in which the general
principle is to use the output of a reliable but specialized module (such as a stereo-based short range
obstacle detection system, or a bumper) to provide supervisory signals (labels) for a trainable module
with wider applicability (such a long-range vision-based obstacle detector). Recent promising advances
in deep learning have relied on unsupervised learning to create hierarchical representations.
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OPEN QUESTIONS IN LEARNING BY BIOLOGICAL SYSTEMS

What are the different temporal scales of learning and how are they implemented?

Learning is not a monolithic process that can be described by any single mechanism. Moreover,
learning may depend on a variety of mechanisms that are not themselves experience-dependent, but
rather provide prior constraints or structure that is necessary for different aspects of learning to occur.
All these mechanisms operate on extremely different time scales ranging from evolutionary time -
during which the genetic foundations of learning mechanisms were established; to developmental time -
during which the various functional periods in an organism’s life play out; to task-processing time -
during which information from a particular experience is encoded, processed, stored, and ultimately
consolidated. The relationship among these time scales requires further research.

What is the functional relationship between brain evolution and behavioral success? This is a key
question underlying the emergence of autonomous intelligence, for superior neurons will not survive
Darwinian evolution if they cannot work together in circuits and systems to generate successful adaptive
behaviors. In order to understand brain autonomy, one therefore needs to discover the computational
level on which the brain determines indices of behavioral success. Decades of modeling research
support the hypothesis that this success is measured at the network and system level rather than the
single neuron level.

This evolutionary principle does not imply that individual neurons are irrelevant, but rather that the
relevance of individual neurons lies in their ability to configure themselves in relation to their neighbors
and thereby establish the network conditions that generate emergent network properties that map, in
turn, onto successful behaviors. Thus, in order to understand brain autonomy, we need to explore
principles and mechanisms that can unify the description of multiple organizational levels, and time
scales of organization.

At the much shorter time scales, it is clear that some types of learning require repeated experiences. The
timing of those experiences and the relative timing of information about the importance or meaning of
those experiences (reinforcement or feedback) is critical to the process of learning and causal inference.
However the mechanisms that mediate these effects are not completely understood. By contrast, other
types of learning (such as the Garcia Effect in which food avoidance is rapidly learned) occur with a
single experience that may be temporally remote from the ultimate outcome of the experience, and yet
somehow an association between the antecedent and the consequent is formed.

Understanding how different brain mechanisms are able to interact across these widely different time
scales, and how such time scales are linked to the nature of the differences among mechanisms, pose
basic challenges for understanding biological learning and similar problems obtain for artificial learning:
Are there universal principles of learning that transcend different time scales, and are there mechanisms
that can account for the interactions that must hold across these different time scales? When
mechanisms operate on different time scales, what kinds of representational differences emerge, and
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how can these diverse mechanisms be coordinated? The operation of mechanisms at different time
scales raises the problem of appropriate credit assignment bridging asynchronous processes.

A rather separate problem from the mechanisms of learning is the temporal structure of relevant events
in the world from which we learn. The events that occur in a learning environment have their own set of
time scales, from responding in real time to speech, to observing and understanding the unfolding of a
set of physical behaviors in relation to an interactive tutor, or to the relative timing of feedback or
reinforcement. How do the internal time scales of learning processes relate to this variability in timing
of events in the world? In the following sections we consider a set of issues that highlight some of these
questions in the context of biological mechanisms and psychological processes.

What are the practical implications of the Spacing Effect?

Over 100 years ago, Ebbinghaus reported that the timing of learning is critical to the strength of
learning. The most effective learning occurs when practice is distributed over time such that learning
experiences are separated in time. This spacing effect is remarkably robust in establishing long-term
retention of learning. Perhaps most remarkable is that the spacing effect itself holds over a wide range
of time scales, from spacing out learning within the course of a single day, to spacing out learning over
days and even months (the maximum study interval is limited by forgetting and has been shown to be
effective out to 14 months, with an 8 year test interval). The fact that this principle holds over such a
wide range of time scales has argued against specific psychological theories of the spacing effect and
presents a basic challenge to understanding the neural substrates of this effect. The fact that the spacing
effect holds as well for memorizing a list of arbitrary words as for improving your tennis game, suggests
some general feature of learning may be involved rather than a specific mechanism. What are the
practical applications of this principle for the classroom and for the development of a skilled workforce?

How does Wake-Sleep Cycle impact learning?

Although learning is usually considered to be a process that takes place in an awake animal, there is a
growing body of research indicating that sleep is an important part of the learning process. Animals
spend an enormous amount of their lives asleep, but the biological and psychological processes of sleep
are poorly understood. Sleep has been traditionally viewed as important for learning mainly because of
the absence of experiences that could interfere with prior learning. It now appears that sleep is an active
process that serves to consolidate learning that took place prior to sleeping. Theories of sleep have
considered how the relative duration of sleep stages such as slow-wave sleep (SWS), or rapid-eye
movement (REM) sleep are important to the consolidation process; however, understanding how the
timing of these sleep stages occurs and changes over the course of a sleep period remains an important
question.

One well established fact about sleep in mammals is that normal sleep duration is highest in infants and
decreases with age, consistent with a parallel decrease in learning abilities. It is, however, clear that
some aspects of consolidation following learning occur over different periods of waking time, and the
relative roles of time-dependent consolidation and sleep-dependent consolidation need to be further
investigated. Different types of learning (e.g., rote vs. generalization or simple vs. complex) may be
consolidated through different types of mechanisms with different time courses. Although there has
been speculation about possible mechanisms (synaptic downscaling, protein synthesis changes, etc.),



11

this is an important aspect of learning research that has been neglected. Understanding these
mechanisms could lead to biological interventions (pharmacological) or behavioral interventions that
could improve learning in parts of the work force (e.g., students at different ages, shift workers) and lead
to improved learning algorithms that mimic aspects of the biological processes of learning.

What are the factors underlying metaplasticity of synapses?

There is accumulating evidence that synapses may be “metaplastic”; that is, the plasticity of a synapse
may depend on the history of previous synaptic modifications. This means that the learning rule changes
in time according to a meta-rule that reflects the interaction of mechanisms working on multiple
timescales. What is the role of metaplasticity in learning, especially in non-stationary environment?
Can metaplasticity explain the variable effectiveness of experiments that attempt to induce long-term
synaptic modifications in vitro?

How can neuromodulation be used to improve memory?

Although computational models of learning typically focus on synaptic transmission and neural firing,
there are significant modulatory influences in the nervous system that play important roles in learning.
These influences are difficult to understand because the time scale of some of these modulatory
mechanisms is much longer than the processing that occurs synaptically. For example, consideration of
the time scale over which LTP/LTD develops suggests that this kind of mechanism may differ from the
mechanism by which consolidation takes place. Modulatory neurotransmitters such as serotonin (5HT)
can operate on a short time scale through ligand-gating (5HT3 receptors) or a longer time scale through
G-protein binding, and these time-scale differences may have different effects on neural processing.
Hormones such as testosterone can have effects on memory consolidation that take as long as 24 hours
to develop whereas other pharmacological effects on memory occur relatively quickly. These
mechanisms are understood less well than mechanisms such as LTP, and the interaction of these
modulatory systems with LTP needs to be investigated.

Increased understanding of the principles of neuromodulatory systems, and understanding how
mechanisms interact across different time courses, could lead to the development of pharmacological
aids to learning and memory that could speed up the process of initial learning or memory consolidation
to improve retention. We learn faster and remember better when we are motivated. The state of the
brain changes depending on the level of arousal and, in particular, with the expected reward.
Neuromodulators such as dopamine and acetylcholine are involved in regulating what is attended, what
is learned and how long it is remembered. How do these neuromodulatory systems regulate the time
scales of learning? It has recently shown that slow learning in monkeys of the meaning of cues can be
greatly speeded when the cues signal the amount and quality of reward. Moreover, rapid reversal of
meaning and category learning occur much more slowly when the amount of reward is fixed.

How are different time scales represented in network space?

The interaction between different brain areas has been shown to be fundamental to understanding
complex cognitive functions, flexible behavior and learning. For example the cortical-basal ganglia loop
is known to be involved in reward prediction at different time scales. In particular the neurons predicting
immediate rewards have been shown to be segregated from those predicting future rewards. Such a
representation of time in neuronal network space might also help to perform a complex cognitive task in
a changing environment where the rewarded visuomotor associations change in time.
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What are the detailed neuronal network mechanisms that would implement such a reward prediction
system operating on multiple timescales? In particular, how can neurons, which process signals on a
millisecond range, participate in networks that can adaptively time behaviors with delays of many
seconds? What is the role of these neurons in reinforcement learning? Can these neurons be used to
generate a representation of the context, and even more generally, to abstract general rules? Such an
issue has a fundamental importance because most reinforcement learning algorithms operate under the
assumption that the states of the learning system are given, whereas in a real world the animal has to
create autonomously the neural representations of these states.

What are neuronal network architectures that support learning?

For many decades the results of cortical neuroanatomy have had a mainly biological descriptive value.
In recent times the goals of neuroanatomical research are becoming more focused on understanding the
computational significance of the cortical neuronal circuits. Experimentalists should now be further
encouraged to formulate their questions so as to resolve more abstract questions of learning in concrete
anatomical and physiological terms. We need to understand whether and how brain structure is related to
brain function. In particular, to what extent can we understand the function of a neural circuit from its
anatomical structure? Indeed, to what extent can it be asserted that “the architecture is the algorithm”?
An even broader question is how these different brain areas are integrated into an autonomous system.
Can we exploit these principles for constructing artificial learning technologies?

The cerebellum, hippocampus, and neocortex, for example, each have different, but rather regular
neuronal architectures. This regularity suggests that each region has a characteristic computational
circuit, suited to the respective tasks that they implement. How are different learning competences
embedded into these anatomically distinct architectures? Usually, learning is seen in terms of synaptic
mechanisms, rather than as the operation of an entire learning/teaching subcircuit. It is possible that a
significant fraction of (e.g.) cortical circuits is used to support learning/teaching of the local information
processing circuit. How are these two processing and learning functions accomplished in real time?

Learning in the cerebral cortex takes place in highly recurrent internal and interareal circuits, with each
part of the cortex processing different combinations of sensory and motor modalities and synthesizing
novel perceptual, cognitive, affective and motor activities. What new computational principles do
cortical circuits provide for the animal? How do these loopy circuits, whose processing is dominated by
cortical rather than subcortical input, produce a consistent interpretation of the world rather than learn a
hallucination. Indeed, how does normal cortical processing break down to lead to hallucinations and
other signs of mental disorders? Is there active regulation of learning, so that only relevant patterns of
activity are imprinted into the circuits? Is it possible that the cortical circuits have two basic sub-
components; one performing processing, and the other exercising a teaching /learning role? In this way
different neuronal architectures reflect in some large part the implementations of different learning
algorithms. If architectures do reflect the learning algorithms, then one might ask of e.g. cortex, what
are the different roles of the various laminae and/or neuron types in the implementation of learning.

The cerebellum and hippocampus are also laminated but have qualitatively different functions than the
cerebral cortex. Even different areas of the cerebral cortex have different variations on the laminated 6-
layer structure. Motor cortex does not have a layer 4. Primary visual cortex in primates has several sub-
laminations in layer 4. Prefrontal cortex has more delayed period activity than found in the primary
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sensory areas. What other specializations have evolved for other functions such as language, invariance
(what) vs. location (where), and temporal (auditory) vs. spatial (visual)?

Although the cortex is highly structured, and a product of development, the cortex is, if not a tabula
rasa, a structure with exceptional adaptability i.e. the cortical neuropil has a great deal of flexibility in
the way that the connectivity and intrinsic properties of neurons can unfold during development while it
receives inputs from the environment. To what extent does the cortex produce a circuit that is
essentially free of bias, which is then configured by world data? Or is learning strongly constrained by
the developing circuit organization, so that various kinds of appropriate data can be learned at different
stages, as development unfolds? If the latter, then understanding the mechanisms of cortical self-
construction and learning are inseparable. On a more general level, is it the case that learning is
essentially intertwined with the self-organization of the multilevel structure of biological matter? Their
stability depends on similar principles of coupling between scale levels. These need to be explored as
general principles of multilevel organization, with particular implications for learning and adaptation,
which are probably crucial processes in maintaining the integrity of organizations in the face of a non-
stationary environment. These notions are also relevant for the development of artificial information
processing systems. Often these systems are dominated by recurrence between many distributed
modules, as found in biology. Understanding these principles in cortex has already begun to have benefit
also in the development of artificial learning systems. Their systematic use may lead to solutions of
many currently intractable problems in engineering and technology.

Within the cortical hierarchy, different levels have different functions. How is the cortical activity at
these different levels used to control behavior? This is an issue in systems integration. How can
multiple learning mechanisms (Hebbian, spike-timing dependent plasticity (STDP), homeostatic) and
learning algorithms (supervised, unsupervised, reinforcement) be integrated? Many agree that the brain
should be viewed as a “learning system“, but most existing models for learning in neural
circuits/systems focus just on a single learning mechanism. Instead neural circuits and systems may be
understood as support architectures for a variety of interacting learning algorithms. Understanding these
neuronal network architectures and the interactions between learning algorithms is a new frontier in
intelligent information processing and learning. They can provide new insights into how humans and
other animals can be flexible in nonstationary environment through structures that are self-configuring.
Learning clearly depends both on modification of synaptic connectivity (anatomy) and synaptic
plasticity (physiology). Most models for learning have focused largely on the physiology of synapses
rather than the anatomical growth processes. Those models that do combine both lead us to expect that
large benefits for biology and technology can be anticipated by using learning rules that combine both
these aspects.

How do the local interactions of neurons support the extraction of more general
statistical properties of signals?

Behaving brains are exquisitely sensitive to environmental statistics and use principles of local
computation that process huge amounts of non-stationary spatio-temporally distributed information. A
key challenge is to understand how brains implicitly embody statistical constraints while learning
incrementally in real time using only local computations in brain circuits.
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What is the role of feedback in autonomous adaptive learning?

Anatomical studies make it clear that brain subsystems often interact closely with one another through
bottom-up, horizontal, and top-down connections. A key issue for the future of biological and
biomimetic computation is to understand whether and how these interactions support autonomous
learning.

It is well-known that many feedforward learning systems are incapable of autonomous learning in a non-
stationary world. In particular, they may exhibit catastrophic forgetting if learning is too fast or world
statistics quickly change. In contrast, the brain can rapidly (often even with a single exposure) learn an
important rare event for which there was no obvious prior. How does the brain avoid the problem of
catastrophic forgetting in response to non-stationary data?

What is the role of the areal interactions, coherence, and synchrony in cortical
learning?

Much behavioral and electrophysiological data, together with modeling studies, indicate that
autonomous learning may use top-down feedback, notably learned top-down expectations that focus
attention, to stabilize learning in response to a non-stationary world. In particular, bottom-up and top-
down feedback exchanges generate dynamical states that can synchronize the neural activity of large
brain regions that cooperate to represent coherent knowledge in the world, as they actively suppress
signals that are not predictive in a given environment. Such dynamical states provide a way to
understand how the brain copes with the vicissitudes of daily experience.

This raises the issue of what other useful properties are achieved by such dynamical states? In particular,
how are these brain states linked to cognitive states? How can classical statistical learning approaches be
modified or enhanced to incorporate coherent computation using dynamical states? How can such
dynamical states be optimally represented in fast software and hardware systems in applications.

How does the failure of prediction influence the search for solutions?

The feedback processes in autonomous brain systems enable them to predict probable events. At the
moment of a predictive failure, the correct answer is by definition unknown. How then, does an
autonomous system use this predictive mismatch to drive a process of autonomous search, or hypothesis
testing, to obtain a better answer? And how does this happen without an external teacher, and in a world
filled with many distracters? How are spatial and object attention shifts controlled during autonomous
search to discover predictive constraints that are hidden in world data? Much further work needs to be
done to fully characterize how the brain regulates the balance between expected and unexpected events.

What properties are required for”autonomous” learning in a changing world?

In what ways are autonomous learners similar to, and differ from machine learning approaches? There
are deep questions about the generality and optimality of learning principles. Are there clear optimal
methods of learning that nature has selected and that we can discover? Or are there simply broad
constraints common to the class of successful learners? Can artificial autonomous learners surpass
biological systems?

Much experimental data and modeling indicates that the brain is capable of autonomously learning in
real time in response to a changing world. In technology as well, many outstanding research problems
concern how to achieve more autonomous control that can cope with unanticipated situations. Much
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work in the design of increasingly autonomous mobile robots operating in increasingly unconstrained
environments exhibit this trend, as exemplified by the DARPA autonomous vehicle Grand Challenges.

These parallel goals raise the following issues: First: How can we best understand how the brain
achieves autonomous real-time learning in a changing world? That is, how can we design autonomous
agents that learn in real time as they interact with a non-stationary environment that may not include any
explicit teachers? Second: How can such autonomous agents flexibly combine environmental feedback
that reflects the statistics of the world with feedback from other learners that may be more selective and
goal-oriented?

How are the known different learning mechanisms combined in autonomous agents?

Much experimental and modeling evidence suggests that there are at least five functionally distinct types
of learning:

 Recognition learning whereby we learn to recognize, plan, and predict objects and events in the
world.

 Reinforcement learning whereby we evaluate and ascribe value to objects and actions in the
world.

 Adaptive timing whereby we synchronize our expectations and actions to match world
constraints.

 Spatial learning whereby we localize ourselves and navigate in the world.
 Sensorimotor learning whereby we carry out discrete actions in the world.

These may be called the What, Why, When, Where, and How learning processes, respectively. All of
these types of learning interact. For example, visual object learning is a form of recognition learning that
generates size-invariant and position-invariant representations of objects, whereas spatial learning
generates representations of object position. Interactions across the What and Where cortical processing
streams enable us to recognize valued objects and then reach towards them in space. Making intentional,
goal-directed plans for the future potentially involves interactions among all five types of learning. How
can these different types of learning systems be integrated into increasingly complete and autonomous
system architectures, chips, and robots?

How do the interactions of social agents promote their learning?

Developmental science provides excellent examples of fast and powerful bidirectional learning. For
example, parent-child interaction is prototypical case of teaching and learning effortlessly, efficiently,
and adaptively for a changing world. For many tasks, it appears that humans may learn best from other
social agents. However, the characteristics of ‘social agents’ are yet to be clearly defined. What are the
cues or characteristics of social agents? If we could flesh out these characteristics we could develop
learning/teaching technologies that captured those critical features and characteristics to enhance human
education.

Studies of robotic (and educational software technologies) can also be used to explore the ‘social’
characteristics that support learning. For example, human interaction and learning from a robot may be
enhanced if the robot:
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 has human features
 reacts with correct timing (regardless of features)
 interactively adjusts to the needs of the learner
 have actions that seem to be goal-directed/planful.

What is the ‘social factor’ in learning? There are several hypotheses to be explored. Is the role of the
teacher purely as a spotlight that highlights the thing to be learned? Attention and arousal work like this.
Does the social nature/status of the teacher affect what and how things are learned? Do learners develop
a portfolio of experts, learning different things from different people according to the different skills that
those experts exhibit. Who do we learn from? Must they be trusted, and what does that mean? Do we
learn preferentially from those with whom we share priors? Or from those agents that we can best
simulate and understand? For example, learning slows down when there is a lack of understanding (and
shared priors) between the participating agents. Does social/interactivity impact neural systems in
particular ways (e.g. hormones; extension of the critical period in bird learning by social signals, shared
neural circuits for coding actions of self and other)?

If the learner and teacher must be mutually adapted, then what are the cues used by learner to detect and
select candidate teachers? We need also to study the strategies of a good teacher/tutor does: What cues
do teachers use to modify their behavior in order to optimize child and student learning. Rapid and
effective learning appears to depend on social scaffolding. How do we recognize and promote the
assembly of that scaffold?

There are important advantages to be gained by harnessing a technology to promote learning on a long-
time scale. These long-term relationships could be optimized by co-adaptation of the artifact and human
partners. Endogenous neural compensatory learning on short and long time scales and physical
constraints of interaction provide challenges to such synergistic learning.

Synergistic learning would be influenced by windows of opportunity that may be critical for induction
of sustained learning. Ultimately, the technology becomes a training and educational tool that can be
weaned away, after promoting synergistic learning in the biological system. Learning in the merged
systems will have occurred when there are carry-over effects beyond the time-period when the
technology is interacting with the biological systems. The synergistic learning platform could thus allow
us to discover the principles governing activity dependent learning in living systems, to develop novel
approaches to sense the dynamic changes in adaptive living system and the environment, and to deliver
novel adaptive technology that encourages appropriate learning in biological systems.
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OPEN QUESTIONS IN LEARNING BY ARTIFICIAL SYSTEMS

What are the major challenges in 'Machine' Learning?

The ability of machine-learning algorithms to use such forms of unsupervised reward signals holds the
potential to increase the spectrum of problems they can solve. At the heart of all machine learning
applications, from problems in object recognition to audio classification to navigation, is the issue of
what data there is to learn from. Because unlabeled natural scene data is vastly easier to obtain than any
labeled data, in the following, we focus on algorithms that are able to exploit unlabeled natural scene
data. We pose the following questions:

What are effective shallow learning algorithms?

What shallow learning algorithms does the brain use? The engineering of machine learning has
produced highly successful shallow algorithms for supervised learning, such as the support vector
machine (SVM), logistic regression, generalized linear models, and many others, as well as “linear”
unsupervised methods such as principal component analysis (PCA), independent component analysis
(ICA), sparse coding, factor analysis, product of experts (PoEs), and restricted Boltzmann machines
(RBMs). However, to date even the “shallow” levels of computation in the neocortex (for example,
visual cortical area V1) are not fully understood. What learning principles result in the cortical
organization of early processing, such as V1, A1, etc.? Can such algorithms be validated against what is
known about V1, A1, etc. in the brain?

What are effective deep learning algorithms?

What deep learning algorithms does the brain use? To realize significant progress on developing
human-like learning capabilities, it is of fundamental importance for us to develop effective learning
algorithms for deep architectures. Indeed, many of the most difficult AI tasks of pressing national
interest—such as computer vision object recognition—appear to be particularly suited to deep
architectures. The visual pathway for object recognition in the visual cortex involves many layers of
non-linear processing, most or all of which seem to support learning. How can effective deep learning
algorithms be developed, and applied effectively to tasks such as visual object recognition? Many
learning algorithms are defined in terms of explicit purely feedforward terms (such as ICA, PoE), purely
feedback/generative terms (sparse coding, mixture of Gaussians), or a mix of both (RBM, stacked
autoencoders, PCA); what role, if any, does feedback play in unsupervised and deep learning
(ARTMAP)?

What is real-time autonomous learning?

As pointed out above, in most ML-applications, the intelligent aspects of learning are managed by the
human supervisor (and not by the learning algorithm). Typically this human supervisor must:
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 select the training examples
 choose the representation of the training examples
 choose the learning algorithm
 choose the learning rate
 decide when to stop learning
 choose the way in which the performance of the learning algorithm is evaluated.

This absolute requirement for a human expert supervisor precludes ubiquitous use of ML. It also means
that ML has not yet captured the essence of learning.

By contrast, most current approaches to machine learning typically require the human supervisor to
design the learning architecture, select the training examples, design the representation of the training
examples, choose the learning algorithm, choose the learning parameters, decide when to stop learning,
and choose the way in which the performance of the learning algorithm is evaluated. This strong
dependence on human supervision has greatly held back the development and ubiquitous deployment
artificial learning mechanisms. This also means that current ML algorithms have not yet encompassed
the essence of learning, and so research on a variety of topics outlined below should be encouraged and
supported.

We need to invest substantial efforts into the development of architectures and algorithms for
autonomous learning systems. Most work on ML involves just a single learning algorithm, whereas
architectures composed of several autonomously interacting learning algorithms and self-regulation
mechanisms (each with a specific subtask) are needed. In particular, reinforcements learning systems
need to interact with learning algorithms that optimize the classification of states required for particular
tasks.

Is it possible to develop neuromorphic electronic learning systems?

Understanding the principles and the architecture of learning machines at the intersection of the
disciplines of biology, physics and information is an exciting intellectual endeavor with enormous
technological implications. The natural world is a tapestry of complex objects at different spatial and
temporal scales that emerge as forces of nature transform and morph matter into animate and inanimate
systems. Self-assembly at all scales is pervasive in nature where living systems of macroscopic
organism dimensions organized in societal communities have evolved from hierarchical networks of
nanoscale components i.e. molecules, into cells and tissue.

In the brain, optimization of functionality is heterarchically organized at all levels of the system
simultaneously, in a seamless fashion. Understanding the physical constraints (cost functions) in the
organization of the learning machinery will permit understanding of both brain function and theories that
have the potential to bridge the physical scales from molecules to networks, individual behavior, and
societies.

The synthesis of biologically-inspired synthetic structures that abstract the functional and developmental
organization of the brain enables the rapid prototyping of machines where learning (acquiring
knowledge) and functioning (using the knowledge to perform a specific task) is intricately intertwined.
The computational complexity of modern learning algorithms and the engines that drive them are not
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capable of this functionality today and even with advances in CMOS technological do not scale to large
scale problems such as for example speaker independent large vocabulary speech recognition systems.
Analog VLSI technology that fully embodies the style of learning in the mammalian neocortex should
be based on a laminar architecture with at least six distinct and interacting processing layers
(LAMINART).

What are electronic signals and information representations are suited for learning?

Research in several labs over the last decade has converged on data representation in synthetic
neuromorphic systems called the Address Event Representation (AER). In AER, each ‘neuron’ on a
sending device is assigned an address. When the neuron produces a spike its address is instantaneously
put on an asynchronous digital bus. Event ‘collisions’ (cases in which sending nodes attempt to transmit
their addresses at exactly the same time) are managed by on–chip arbitration schemes. AER allows for
an encoding and processing that preserves the “analog” characteristics of real world stimuli, while at the
same time allowing for the robust transmission of information over long distances using “spike” like
stereotypical (digital) signals. Exploring learning algorithms/architectures in this representation allows
for asynchronous machines that encode knowledge locally and globally as a sparse learnable network
graph. The AER representation leads naturally to event-based, data-driven computational paradigms.
This style of computation shares some properties with the one used by the nervous system, yet is still
largely unexplored by the computer science and engineering community (consider for example the
frame-based way that dominates computer vision). This representation is ideal for hardware
implementations of neuromorphic system, and optimally suited for spike-based (be it from real or silicon
neurons) learning mechanisms.

From a synthesis perspective, the engineering and computer science communities have developed
architectural frameworks, CAD tools and efficient methods to design and manufacture microsystems at
the “chip” level, moving up to the “board” level and down at the “micro” and “nano” levels. These
require serial “pick and place” processes that are slow and expensive. As Complementary Metal Oxide
Semiconductor (CMOS) VLSI technologies rapidly advances to deep sub-micron processes, the
nanometer feature size is making the chasm between the micro/nanoscale device function and the macro
scale system organization greater and greater. Developing tools and methodologies to accomplish this
that mimic biology is crucial for further advances in the field; for example developing tools that
automatically wire “neural like circuits” using algorithms based on the principles of gene networks. The
broad research directions outlined above addresses fundamental questions at the interface of biological
and physical systems as we strive to engineer new forms of complex informed matter. Our ultimate goal
is the synthesis of networks at multiple physical scales in hybrid animate/inanimate technologies that
can transduce, adapt, compute, learn and operate under closed loop. The outcome of this research effort
impacts a diverse range of applications, from tissue engineering and rehabilitation medicine to
biosensors for homeland defense.

What are the elementary units of biological learning?

Modern computers rely on the classical notion of a single “processor” or multiprocessor coupled to a
memory hierarchy to process and maintain the states in the machine. Digital memories can be modified
very rapidly and selectively, and with an arbitrarily large accuracy. These memories can then be
preserved for arbitrarily long times, or at least until they are modified again. More obviously continuous
valued physical systems such as neuromorphic electronic circuits, must rely on variables that are
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encoded in some physical quantity like the charge across a capacitor. Such a quantity should be
modifiable (plasticity) and it should be stable in time (memory preservation). Stability usually emerges
from the interaction of the circuit elements that are responsible for implementing the memory element
(for example a synapse). In such a system, the number of stable states is limited, and, as a consequence,
memories have a dramatically short lifetime. Forgetting is not due to the passage of time, because each
state is assumed to be inherently stable, but it is due to the overwriting of new memories. For example,
when every memory element is bistable, every transition to a different state erases completely the
memory of previous experiences. In order to improve the storage capacity, the memory devices should
be smarter than a simple switch-like device, and the experience driven transitions from one stable state
to another should depend on the previous history of modifications. This is called metaplasticity (see
above), and it implies the transfer of much of the processing at the level of single memory elements.
This may be one of the solutions adopted by biological synapses, for which the consolidation of a
modification implies the activation of a cascade of biochemical processes working on multiple
timescales. Metaplasticity can lead to a dramatic increase in memory performance, especially when the
number of memory elements is large. What are the fundamental principles of metaplasticity, and how
can they be used to leverage learning?

Unlike digital computers, brains often process distributed patterns of analog information. In many parts
of the brain, such distributed patterns, rather than the activities of individual cells, are the units of
information processing and learning. From this perspective, many properties of brain dynamics, such as
the role of synchronous oscillations, become clearer. Thus one important goal of future research should
be to understand how VLSI systems be designed for carrying out self-synchronizing processing of
distributed patterns in laminar cortical circuits?

What is the relationship between physical self-assembly and learning?

In biology self-assembly and organization is dynamic. Many biological functions at the cellular and sub-
cellular level are controlled by weak, non covalent interactions such as electrostatic, van der Waals
forces, hydrogen bonds and metal coordination chemistry. Supramolecular chemistry is responsible for
the intelligent function of animate matter, from the encoding of genetic information in basic amino-acids
sequences at the sub-cellular level to the transport of ions and small molecules through cell membranes.
Understanding how biological information processing systems employ dynamic matter and learning at
all levels and time scales in networks of complex structures links the science of learning to emerging
advances in materials science, chemistry and, specifically, nanotechnology.

How can the human interface to robots and other machines be enhanced?

Apprenticeship learning (also called imitation learning) has been applied with great success to a range of
robotic and other artificial systems, ranging from autonomous cars and helicopters to intelligent text
editors. Apprenticeship learning here refers either to situations where a separate (external)
demonstration of a task is provided by a human to an artificial learning system—such as the human
using her own hand to show a robot how to grasp an object. Alternatively teleoperation can be used to
demonstrate directly through the robot that is attempting to learn to perform a task. For example, a
human may demonstrate flying an aircraft, and the same aircraft may then try to learn to fly itself.
Because the demonstration and the task to be learned took place using the same robotic hardware, this
approach finesses the problem of having to find a mapping from the human’s body parts/actions to the
robot’s body parts/actions. No doubt this will be a rapidly expanding field, as ever more complex
machines must be taught more efficiently how to perform their required tasks.
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There is already significant potential for cross-fertilization between development psychology and
robotics, which have traditionally been two entirely separate research fields, even though both have
converged to fairly similar classes of ideas in learning from teachers. Robotic apprenticeship learning
today is extremely primitive compared to that studied in development psychology. Using insights from
development psychology to develop robust apprenticeship learning methods holds the potential to
revolutionize the capabilities of today’s robots and computers. Similarly, insights from robotic
apprenticeship learning—which has gained expertise over the past few decades about which classes of
algorithms do and do not work on robots—will naturally further inform further developments in
development psychology, and suggest novel theories and classes of experiments.

Some of the central questions and challenges facing apprenticeship learning are:
 Given a good demonstration of a task, what are effective inverse learning algorithms for

inferring what goal the teacher was trying to attain? Similarly, given one or more noisy (or
suboptimal) demonstrations of a task, what are effective inference algorithms for
estimating the teacher’s true goal?

 Many robots exist in exponentially large state spaces, which are infeasible to explore
completely. How can demonstrations of a task be used to provide exploration information
or to guide exploration?

 Given a multitude of demonstrations of many different tasks, what are effective strategies
for retrieving the most appropriate piece of learned knowledge (or demonstration) when the
robot faces a new, specific, task?

 Robots often reason about control tasks at different levels of abstraction (as in hierarchical
control). How can demonstrations that are provided at one or more different levels of
abstraction be combined and used effectively?

 If the robot observes an external demonstration of a task (i.e., if the demonstration was not
via teleoperation), how can it find an appropriate mapping between the teacher’s body
parts/actions and the robot’s own body parts/actions?

 What are the fundamental theoretical limits of apprenticeship learning, in terms of the
number of demonstrations required, length of demonstration required, complexity of the
task (and how do these interact with each other and prior learning)?

 What are effective principles for choosing how best to demonstrate tasks to an artificial or
robotic system?

How can synergistic learning between humans and machines be enhanced?

A specific platform for investigating bidirectional (synergistic) learning is interaction between
neural systems and intelligent machines. Two of the most important trends in recent technological
developments are that:

 technology is increasingly integrated with biological systems
 technology is increasingly adaptive in its capabilities

The combination of these trends produces new situations in which biological systems and advanced
technologies co-adapt. That is, each system continuously learns to interact with its environment in a
manner directed at achieving its own objectives, yet those objectives may, or may not, coincide with
those of its partner(s). The degree of ‘success’ in this learning process is thus highly dependent on the
dynamic interaction of these organic and engineered adaptive systems. Optimizing the technology
necessitates an approach that looks beyond the technology in isolation and looks beyond the technology
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as it interacts with the biological system in its current state. Here, the design of effective technology
must consider its adaptive interaction with a biological system that is continuously learning.
Furthermore, often the objective of the technology is to shape or favorably influence the learning
process. A set of scientific and technological challenges are emerging in the efforts to design engineered
systems that guide and effectively utilize the complexity and elegance of biological adaptation.

The interaction between technological and biological systems could be improved by designing
technological system to embody biological design principles wherever possible.

How can efficient communication across human/machine interface be learned?

A platform for addressing the future challenges of science and engineering of co-adaptive synergistic
learning could be adaptive integration of technology with a person who has experienced traumatic injury
that leads to neuromotor disability. Such a platform could be utilized to address fundamental issues
regarding learning in biological systems, the design of adaptive engineered systems, and the dynamics of
co-adaptive systems. The engineered system needs to access the patterns of activity of the nervous
system. The patterns of activity of the biological system could be accessed using adaptive technology,
soft and hardware that learns from a biological system that is nonstationary, dynamic, functions across
multiple time and spatial scales and multiple modalities.

The adaptive technology that influences the biological system on short time-scales can be designed to be
biomimetic, where the design of the control system is guided by the physical and programmatic
constraints observed in biological systems, allows for real-time learning, stability, and error correction
that accounts for the biological systems non-linearities and paucity of inputs to influence the biological
system. Algorithms developed have to be adaptive, self-correcting and self-learning. Active learning on
the part of the adaptive technology requires probing the living system in order to respond. Active
teaching requires probing and interacting modifying the living system in some way.

How should portable human-machine learning systems be implemented physically?

To integrate synthetic learning technology with biological behaving systems, and especially people,
requires learning machines that are commensurate with the constraints of human behavior. This means
that learning machines must have the appropriate size, address issues of energy use, and be robust to
environmental change. Donning and doffing of the learning machine as it interacts with the person will
be of a paramount importance. In the event that the learning machine is implanted, additional constraints
of material compatibility will have to be taken into account as will issues of communication across
living and non-living matter. Similarly, ability to change architectural design of implanted systems are
clear barriers and hence approaches that maximize functionality and perhaps included redundancy in
design are necessary.
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APPENDIX

Future Challenges for the Science and Engineering of Learning
July 23-25, 2007
National Science Foundation

Schedule:

Monday, July 23
4:30 PM
Welcome (Director's Office, and David Lightfoot SBE/OAD)
Goals of the Workshop (Soo-Siang Lim)
Organization of the Workshop (Rodney Douglas)
5:00 PM - Keynote address: (Javier Movellan - introduced by Terry Sejnowski)
6:00 PM - Reception.

Tuesday, July 24
9:00 AM – 12:00 PM – Initial Position Statements: Chair - Douglas
9:00 AM - Science of Learning (Fusi and Sejnowski)
9:30 AM – Teaching Robots (LeCun and Ng)
10:00 AM – Learning Machines (Boahen and Indiveri)
10:30 AM – Break
11:00 AM – Language Learning (Kuhl and Corina)
11:30 AM – Learning Theory (Bell and Maass)
12:00 AM – Lunch
1:30 PM – 3:00 PM - Breakout Sessions
3:00 – Break
3:30 – 5:00 Interim Reports: Chair - Douglas
3:30 PM – Language Learning (TBA)
3:45 PM – Learning Theory (TBA)
4:00 PM – Science of Learning (TBA)
4:15 PM – Teaching Robots (TBA)
4:30 PM – Learning Machines (TBA)
4:45 PM – Interim Summary (Sejnowski)
5:00 PM – Dinner

Wednesday, July 25
9:00 AM – 12:00 PM – Interim Position Statements: Chair - Sejnowski
9:00 AM – Learning Machines (Andreou and Jung)
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9:30 AM – Teaching Robots (Movellan and Meltzoff)
10:00 AM – Learning Theory (Vapnik and Douglas)
10:30 AM – Break
11:00 AM – Language Learning (Shinn-Cunningham and Regier)
11:30 AM – Science of Learning (Bongard and Grossberg)
12:00 AM – Working Lunch
1:30 PM – 3:00 PM – Breakout Sessions
3:30 PM – Closing Discussion: Chair - Sejnowski
4:00 PM – Workshop ends

Participants and Groups:

Science of Learning
Stefano Fusi (Columbia)
*Steven Grossberg (Boston U.)
Josh Bongard (Univ. Vermont)
*Terry Sejnowski (Salk Institute/UCSD)

Learning Theory
*Tony Bell (UC Berkeley)
Wolfgang Maass (TU Graz)
Vladimir Vapnik (Royal Holloway, London)
Rodney Douglas (ETH/Zurich)

Teaching Robots
*Javier Movellan (UCSD)
Andrew Ng (Stanford)
Yann LeCun (NYU)
*Andrew Meltzoff (Univ Washington)

Learning Machines
Kwabena Boahen (Stanford)
Andreas Andreou (Johns Hopkins)
Giacomo Indiveri (ETH/Zurich)
*Ranu Jung (ASU)

Language Learning
*Pat Kuhl (Univ Washington)
*Barbara Shinn-Cunningham (Boston U)
*Howard Nussbaum (Univ Chicago)
*Terry Regier (Univ Chicago)

*Members of NSF Science of Learning Centers
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Initial set of questions and starting points for discussions:

Science of learning.
 How can discoveries in Neuroscience, Psychology and Engineering be translated into

improving teaching practice and which are the most promising?
 What are the prospects that these discoveries will lead to a new era of intelligent machines

that learn from experience?
 What do we know about methods for preserving existing knowledge in the face of

fragmentation/decay processes such as Alzheimer’s Disease (and normal ageing)?
 What is the relationship between self assembly of networks (development) and learning new

knowledge in a mature brain?
 What contributions can artificial intelligence make?
 How does the body constrain learning strategies?

Learning theory
 Learning implies detection and extraction of regularity in the world that can be used for

predictive advantage. How much of the regularity can be extracted de novo? How much of
the regularity can be incorporated from another source (a teacher)?

 Extraction of the model de novo requires some kind of search, usually involving a trial and
error evaluation process. What is the cost function that is being used to guide the search?

 How can the learner improve on the model received from a teacher?
 What do we know about the barriers to scalability of artificial learning?
 Efficient learning requires the development of a conceptual framework from relatively few

data. How is this efficiency achieved? What is the minimum number of examples that are
needed?

 During learning, the effects (beneficial or otherwise) of correct action are often delayed with
respect the causal action. The delay may be variable, the reward may not be recognizable as
such, etc. How do learning systems handle these problems?

 For learning systems that involve a cost-function minimization, how to avoid local minima,
and how to deal with flat regions of the space (mesa effect).

 Can global models be found, or is it the case that we must live with a bunch of partial
models, as apparently occurs in nature.

 What is the relationship between self-assembly and learning? Can assembly provide a
framework for efficient, staged, acquisition of knowledge?

Teaching Robots.
 What lessons have we learned from existing social robots that interact autonomously with the

world and with humans that could help us to improve teaching practice?
 Can teaching practice help us design more intelligent robots that learn from instruction?
 What is the relationship between social robots and the problems of Human-Machine

Interfaces?
 How will the next generation of social robots be used in the classroom?
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 What do we know about rapid learning of compact yet flexible communication/instruction
sets? (How will we avoid the cumbersome methods of current mobile telephones, PDA's, and
DVD players?)

Learning machines
 At what point will cognitive neuromorphic engineering become possible?
 What could cognitive neuromorphic engineering teach us about human learning?
 Can we scale up brain models of learning to approach the power and complexity of human

cognition?
 How can multiple learning mechanisms (Hebbian, STDP (spike based) learning,

homeostatic) and learning algorithms (supervised, unsupervised, reinforcement) be
integrated?

 What are the most promising applications of learning machines if they could be built
economically?

Language learning.
 What do we need to know about language that is not yet known to improve learning in the

classroom?
 How can knowledge about how humans learn language help in the design of Human-

Machine Interfaces?
 How is the meaning of a new word learned from context?
 How many examples are needed to learn the meaning of a new word or a new syntactic

structure? How does the brain disambiguate the multiple meanings of words or multiple
syntactic structures?

 Is learning a language more like setting parameters in a huge graphical model or more like
learning a set of rules?

 How does the brain learn to produce rule-like behaviors?
 What are the crucial properties of language that constrain the methods that should be used for

teaching language-like knowledge?
 Are we doing the best we can, or what new methods does recent language research suggest?
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The 'Willow Wish List':

Dinner at the Willow restaurant was a working dinner. Participants were asked to come up with a list
of 'The Learning Problems that I would most like to see answered.' The questions are grouped roughly
by topic.

What are good and bad data, and how shall we know them?
How can/do systems learn what is good and bad data?
How do brains know/decide what is good data?
How are multi-modal data integrated for noise reduction / gating relevant data?
How do is data to be weighted for relevance, reliability, and robustness?
What is the role of environment on learning?

Are there general principles of learning that transcend domains (neuronal / social) and timescales?
Can there be different principles of learning, and equally, is what we learn from ML completely relevant
for nervous systems?
How do we move from inductive to transductive influence?
What are the principles of deep learning (i.e. training synapses at many levels of indirection)?

What is the interaction between learning processes on various temporal and spatial scales?
How do physical learning systems cope with noise and stochasticity?
How can we integrate learning by modification of synaptic connectivity (anatomy) with synaptic
plasticity (physiology)?
What are the requirements for autonomous incremental real-time learning in a changing world?

What triggers learning?
What kinds of environment promote incidental learning (i.e. outside the context of normal educational
learning – e.g. surprise encounters that give knowledge?

How does the developmental level affect learning. Conversely, how does learning serve to steer /
promote development?
What is the relationship between self-construction and learning?
How can we obtain learning machines without explicitly building them?
How does learning relate to the self-organizing multi-level structure of matter?
What are the mechanisms of synergistic / co-operative learning between interacting agents?

What is the role of sleep in learning?
What is the relationship between the biological (sleep / neural mechanisms / neurohormonal) and
psychological (social / interactive / cognitive / affective) levels of learning?
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Personal views offered by the participants:

Andreas Andreou

Hybrid computing architectures

An inanimate sliver of silicon with dimensions of a few hundred microns in the state of the art 90 nm
CMOS technology is a complex physical system that incorporates over 1 million components for charge
sensing, charge storage, computation and control. In 10 years from now we would have reached the
limitations of CMOS technology as we know it today and we are facing serious challenges in planning
technological roadmaps beyond that point in the era “Beyond Moore’s Law”. A neural cell with all its
molecular machinery internally and on its surface is an even more complex adaptive biological system.
The research program in this proposal begins to explore fundamental questions at the interface of
complex biological and physical systems as we usher in the era beyond Moore’s Law. The ultimate goal
of our research program at the interface of natural and synthetic physical systems is the development of
a scalable and comprehensive framework for the synthesis of new forms of complex informed matter
using biological and physical components that bridge the structural scales, from the nano to the micro
and macro. This program centers around two major themes: i) self-assembly/self-organization of passive
and active non-living matter and ii) integration with living matter for closed loop transduction learning ,
adaptation and control at the cellular level and beyond. The ambitious goal of functional hybrid
living/non-living structure synthesis and control, inevitably opens questions of theoretical and
fundamental nature at the interface of the constituent fields, physics, chemistry, biology, mathematics
and learning theory. At the architecture level, constraints in the flow of energy and information in the
networks of sub-systems will impose fundamental performance limitations that are yet to be understood.

cell to cell
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MOSFET to
MOSFET
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hybrid matter

energy supply
optical and radio
frequency photons
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Josh Bongard

Evolving adaptive robots

Many of the future challenges for understanding learning lie in the ultimate, as opposed to the proximate
causes of learning. That is, what are the origins of learning: how did it evolve in humans; and how
might we build an artificial evolutionary system such that learning appears in evolving robots. One
project of mine1 demonstrates that evolving intelligent robots, at least in simulation, is possible. A future
challenge would be to present these robots with more demanding tasks and richer environments such
that learning mechanisms and structure begin to evolve. This would broaden our understanding of
learning by challenging us to look for general principles underlying animal learning, human learning,
and robot learning. Evolution of robot learning might also provide evidence for particular machine
learning paradigms, due to their appearance in an evolutionary framework which is not explicitly biased
toward any one paradigm. For example, one of the main goals identified by our group as a “grand

challenge” to learning is to
realize autonomous robots that
can survive in the real world
by constantly adapting to
unanticipated situations. A
recent project of ours2 (see
figure) demonstrates a learning
robot that is able to handle
unanticipated body damage;
one small step in this direction.
What sorts of learning
mechanisms might be required
by a robot able to adapt to a
wide range of unanticipated
situations? In short, artificial
evolution of increasingly
sophisticated robots may
generate novel hypotheses
about how we learn, and
broaden our conception of
learning by including non-
human learning.

1 Bongard (2002) ''Evolving Modular Genetic Regulatory Networks'', in Proceedings of the IEEE 2002 Congress
on Evolutionary Computation, IEEE Press, pp. 1872-1877.

2 Bongard, Zykov, Lipson (2006) Resilient machines through continuous self-modeling. Science, 314: 1118-1121.
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Rodney Douglas

International collaboration on learning and related issues

This workshop included a number of international participants. So it is clear that there is international
consensus about the relevant open questions of learning, and that these are being pursued actively also
outside of the USA. For example, the European Union Future and Emerging Technologies (FET)
program has been actively promoting research at the interface between neuroscience and engineering,
addressing particularly questions of learning and cognition and their implementation in novel hardware
and software technologies. Also, the Institute of Neuroinformatics (INI) at ETH Zurich (which is the
base of some participants of this workshop) is an example of a new breed of inter-disciplinary research
and teaching organization whose work focuses on these computational / learning /cognitive questions,
and that are now being established in Europe and internationally. No doubt both NSF and these
international organizations could benefit by collaboration in both research and teaching.

One simple starting point for promoting such an active international collaborative community, is via the
existing annual NSF Neuromorphic Engineering Workshop at Telluride. That workshop has, over the
past decade, forged a remarkably collaborative international community working on electronic and
robotic implementations of neuronal like processing, including learning. A large part of the non-US
support and participation in Telluride is from Europe, and so there are now moves afoot to extend the
'Telluride' activities also to Europe. It is exactly this expansion which could provide useful leverage to
promote European / International collaboration with NSF SLC program.

Specifically, INI and other European groups propose to establish an annual 3-week long research and
teaching workshop entitled the 'Neuromorphic Cognition' workshop. Preliminary discussions about co-
ordination and collaboration have already begun between the European organizers; program managers
at EU, NSF; and the organizers of the U.S. Telluride workshop. And as a first step towards this joint
goal, a group of about 40 US and European scientists actively engaged, or interested in NE, met in April
2007 in Sardinia, Italy to discuss the EU and US neuromorphic workshops, their goals, and the
intellectual steps needed to move towards cognitive behavior. The 2007 Sardinia Workshop was funded
by the Institute of Neuroinformatics, the U.S. NSF, and the individual scientists attending the meeting.

One of the outcomes of the 2007 Sardinia workshop was the consensus on priorities for the immediate
future:
 Establish two complementary Neuromorphic Engineering workshops, in US (Telluride) and in

Europe.
 Reach-out to other related disciplines (control theory, biological learning, machine learning,

cognitive science, etc.)
 Further develop, distribute, and train students in the use of the NE hardware components and

infrastructure that represent the backbone of our community.
 Develop a methodology for designing/configuring/analyzing and evaluating distributed

neuromorphic cognitive / learning systems.
 Define challenges and benchmarks for well-studied complex behaviors.
 Provide cross-disciplinary training opportunities for pre-docs and post-docs.
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Like Telluride, the European Neuromorphic Cognition (EMC) workshop will have the format of a three-
week practical laboratory workshop in which we will test and elaborate our NE systems. The practical
component will form about 1/3 of the participation at the Workshop, and provide the back-bone onto
which other activities will dock. One of these activities will be teaching. It is expected that 1/3 of the
participants will be novices attending the Workshop (by application) to learn about the issues of
neuromorphic hardware, computation, learning and cognition. The final 1/3 will be invited scientists
with specialist knowledge, invited to discuss and contribute to the emerging questions of Neuromorphic
Cognition.

The first of these workshops will take place in Sardinia in April 2008. It is likely that many of the
participants and experts then and in the future will be from the USA. Overall, the co-ordination between
Telluride and the new EMC workshop provides at least one fine opportunity for promoting international
collaboration on the science of learning.

Stefano Fusi

Computational role of diversity

What is the role of biological diversity in complex cognitive tasks and in the learning process of abstract
rules? The heterogeneity in the morphology and the function of neural cells and the other brain
components is likely to produce the huge diversity of the neural response across different cells recorded
in vivo during behavioral tasks. Cells in areas like prefrontal cortex respond to complex combinations of
external events and they might contribute to build neural representations of particular mental states.
These states might represent a certain disposition to behavior or they might encode motivation,
intentions, decisions, and the "instructions" to predict and interpret future events. Such a diversity of
neural responses plays probably a fundamental computational role in complex cognitive tasks and in the
process of learning. Many of the state-of-the-art neural network models are shown to be robust to
heterogeneity, but there are only a few cases in which the neuronal diversity is actually harnessed to
improve computational performances. I believe that it is extremely important to understand the
computational role of heterogeneity in complex cognitive tasks and in the process of learning. One of
the limitations of the reinforcement learning algorithms currently used to explain animal performance in
simple behavioral tasks is that the set of mental states must be defined a priori, and the reinforcement
signals are used to assign a value to the states. These values are then used to decide how external events
should induce transitions from one state to another in order to receive reward. Animals are certainly able
to create autonomously the set of necessary states and I believe that heterogeneity might play an
important role in generating (learning) these states given that it provides an incredibly rich
representation of the world. Developing ideas and experiments which address explicitly the issue of
heterogeneity might have important consequences on the theory of machine learning, but it would also
improve the understanding of cognitive mechanisms and their related diseases, and it will help to decode
in real time the activity recorded in vivo.
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Stephen Grossberg

Autonomous adaptive systems

To fully understand how the brain learns, one needs to find a method to link brain mechanisms with
behavioral functions. Using such a method, one needs to understand how an individual learner can adapt
autonomously in real time to a complex and changing world. I introduced such a method during my first
derivation of nonlinear neural networks to link brain to mind data many years ago. Since that time, the
method has clarified on many occasions different aspects of how the brain achieves autonomous
learning in a non-stationary environment. This problem is as important for the understanding of
biological learning as it is for the design of new learning systems for technology. Technology can
benefit particularly well from studies of biological learning when they clarify both brain mechanisms
(how it works) and behavioral functions (what it is for) and how both mechanism and function operate
autonomously to adapt in a changing world filled with unexpected challenges.

Progress in biological and machine learning has brought us to the threshold of an exciting and
revolutionary paradigm shift devoted to understanding biological and technological systems that are
capable of rapidly adapting on their own in response to complex and changing environments that may
include many unexpected events. The results of this new paradigm can have an incalculably beneficial
effect on many aspects of society. However, despite initial scientific and technological successes, there
is currently at best inefficient communication of discoveries across these communities. Likewise, such
discoveries have been slow to change educational practice in the schools, both in terms of methodology
and curriculum content. Thus, in addition to a major effort to support further research on biological and
machine learning, support is also needed to encourage the formation of scientific and societal
infrastructure to facilitate the effective communication of these discoveries across the communities that
can best use them. Cyberinfrastructure should prominently use web-based materials that can have a
potential impact on millions of learners. New curriculum development activities can bring exciting
discoveries about brain learning and intelligent technology into the classroom, where discoveries about
brain learning can also help teachers to be more effective. Finally, regular interdisciplinary tutorials,
workshops, and conferences can provide a forum where complex interdisciplinary discoveries can be
efficiently communicated and thereby more effectively used.

Giacomo Indiveri

Real-time autonomous learning machines

Present day computers are much less effective in dealing with real-world tasks than biological neural
systems. Despite the extensive resources dedicated to Information and Communication Technologies,
humans still outperform the most powerful computers in routine functions such as vision, audition, and
motor control.

An important goal, also outlined in this report, is to identify the principles of computation in neural
systems, and to apply them for constructing a new generation of hardware neuromorphic systems that
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combine the strengths of VLSI and new emerging technologies with the performance of brains. This
ambitious goal is also one of the main objectives of the Neuromorphic Engineering (NE) community.
Specifically, NE sets out to use standard VLSI technology in unconventional ways, and new emerging
technologies (MEMS, nano-technology, DNA-computing, etc.) to implement hardware models of
spiking neurons, dynamic synapses, and models of cortical architectures as a means for understanding
the principles of learning and computation in the brain. The constraints imposed on the models
developed in this way overlap to a large extent with the ones that real neural systems are faced with.
Therefore these neuromorphic hardware systems can help in understanding the computational strategies
that nature has adopted in developing brains, and possibly lead to real-time autonomous learning
machines with a huge potential long-term technological impact.

Ranu Jung

Adaptive learning technology

Two of the most important trends in recent technological developments are that technology is
increasingly integrated with biological systems and that technology is increasingly adaptive in its
capabilities. The combination of these trends produces new situations in which biological systems and
advanced technologies co-adapt. That is, each system continuously learns to interact with its
environment in a manner directed at achieving its own objectives, yet those objectives may, or may not,
coincide with those of its partner(s). The degree of ‘success’ in this learning process is thus highly
dependent on the dynamic interaction of these organic and engineered adaptive systems. Optimizing the
technology necessitates an approach that looks beyond the technology in isolation and looks beyond the
technology as it interacts with the biological system in its current state. Here, the design of effective
technology must consider its adaptive interaction with a biological system that is continuously learning.
Furthermore, often the objective of the technology is to shape or favorably influence the learning
process. A set of scientific and technological challenges are emerging in the efforts to design engineered
systems that guide and effectively utilize the complexity and elegance of biological adaptation. A
platform for addressing the future challenges of science and engineering of co-adaptive synergistic
learning is adaptive integration of technology with a person who has experienced traumatic injury that
leads to neuromotor disability. Such a platform could be utilized to address fundamental issues
regarding learning in biological systems, the design of adaptive engineered systems, and the dynamics of
co-adaptive systems.

The patterns of activity of the biological system could be accessed using adaptive technology, soft and
hardware that learns from a biological system that is nonstationary, dynamic, functions across multiple
time and spatial scales and multiple modalities. The adaptive technology that influences the biological
system on short time-scales can be designed to be biomimetic, where the design of the control system is
guided by the physical and programmatic constraints observed in biological systems, allows for real-
time learning, stability, and error correction that accounts for the biological systems non-linearities and
paucity of inputs to influence the biological system. The frontier lies in being able to harness the
technology to promote learning on a long-time scale under co-adaptive conditions. Endogenous neural
compensatory learning on short and long time scales and physical constraints of interaction provide
challenges to this synergistic learning. In this context of promoting learning in the biological system, the
learning outcome should be defined for the biological system. The learning outcome could be described
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at multiple scales, at the behavioral scale (function), electrophysiological scale (synaptic learning),
morphological scale (form) or molecular scale (genes/proteins/sugars). The synergistic learning would
be influenced by windows of opportunity that may be critical periods for induction of sustained learning.
Ultimately, the technology becomes a training and educational tool that can be weaned off after
promoting synergistic learning in the biological system. Learning in the merged systems will have
occurred when there are carryover effects beyond the time-period when the technology is interacting
with the biological systems.

The synergistic learning platform could thus allow us to discover the principles governing activity
dependent learning in living systems, to develop novel approaches to sense the dynamic changes in
adaptive living system and the environment, and to deliver novel adaptive technology that encourages
appropriate learning in biological system

Yann LeCun

Deep Learning

By all measure, Machine Learning has been an unqualified success as a field. Machine Learning
methods are at the root of numerous recent advances in many areas of information science, including
data mining, bio-informatics, computer vision, robotics, even computer graphics. However, despite the
success, our ML methods are extremely limited, when compared to the learning abilities of animals and
humans. Animals and humans can learn to see, perceive, act, and communicate with an efficiency that
no ML method can begin to approach. It would appear that the ML community has somehow "given
up" on its original goal of enabling the construction of intelligent machines with similar abilities as
animals, let alone humans. The time has come to jolt the ML community into returning to its original
ambitious goals. The ML community should seek new approaches that have a non-negligible chance of
attaining animal-level performance on traditional AI tasks, such as visual and multi-modal perception
(e.g. visual category recognition), learning complex behaviors (e.g. motor behaviors such as locomotion,
navigation, manipulation), and learning natural language communication. Some of us believe that this
requires the solution of two currently insurmountable problems:

 The partition function problem
 The deep learning problem.

The partition function problem is the difficulty of building learning machines that give low probability
to rare events. Giving high probability to observed events is easy, but assigning low probability to rare
events is difficult because the space of all possible events is astronomically large. The deep learning
problem currently receives very little attention from the community, yet is the key to building intelligent
learning agents. The brains of humans and animals are "deep", in the sense that each action is the result
of a long chain of synaptic communications (many layers of processing). We currently have no efficient
learning algorithms for such "deep architectures". Existing algorithms for multi-layer systems (such as
back-propagation) fail with more than a few layers. The ML community should devote a considerably
larger portion of its efforts towards solving this problem. The ML community should no longer be
ashamed of getting inspiration from neuroscience. I surmise that understanding deep learning will not
only enable us to build more intelligent machines, but also help us understand human intelligence and
the mechanisms of human learning.
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Wolfgang Maass

Multiple cortical learning mechanisms

We need more results from experimental biology about the interaction of learning mechanisms in the
cortex, and the way in which reward (or other behaviorally salient aspects, such as social contact)
influence learning-related changes at synapses (e.g. STDP) and network structure. To get such results in
spite of their technical difficulty and conceptual complexity, experimental neuroscientists need to
collaborate (e.g. within a Science of Learning Center) with experts for behavior, but also with modelers
and theoreticians that provide models for the interaction of diverse learning mechanisms and modulatory
signals in the cortex, that need to be confirmed or refuted by the experimentalists.

Andrew Meltzoff

Imitative Learning and learning from observation

Imitative learning is a powerful form of learning that has biological correlates, psychological and
developmental data, engineering and computer science applications, and educational impact (Meltzoff,
2007). In humans, a wide range of behaviors, from styles of social interaction to tool use, are passed
from one generation to another through imitative learning. Imitative learning is prevalent in children and
young learners (it has a developmental trajectory), but learning from observing and copying experts
remains important and adaptive throughout the life span. With recent advances in neuroscience (shared
circuitry for perception and production), it is now possible to examine the biological basis of imitation.

t
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The potential for rapid behavior acquisition through demonstration has made imitation-based learning an
increasingly attractive alternative to programming robots (e.g., Shon et al., 2007).

Basic science will illuminate several important aspects of imitative learning:
 Mechanism—We need to better understand the mechanisms underlying imitative learning. The

‘correspondence problem’ concerns this mapping between perception and production. How can
the learner use the actions of others a model for its own action plans? What part of the model’s
body/machinery corresponds to the specific body parts of the observer?

 Motivation—What motivates acting like a model and imitation? How does the learner pick a
‘good model’ to copy and why copy in the first place? What are conditions that regulate and
moderate imitation, and when is it best to imitate the model’s concrete actions versus the model’s
more abstract goals and intentions?

 Function—What functions do imitation serve? Imitation is an efficient avenue for acquiring new
behavior, rules, and conventions; but beyond this, imitation may be a fundamental way of
communicating with others and establishing a basic synchrony and connection between teacher
and learner.

Meltzoff, A. N. (2007). ‘Like me’: a foundation for social cognition. Developmental Science, 10, 126-134.
Shon, A., Storz, J. J., Meltzoff, A. N., Rao, R. P. N. (2007). A cognitive model of imitative development in humans

and machines. International Journal of Humanoid Robotics, 4, 387-406.

Howard Nusbaum

Social context of language learning

For decades, psychology has focused on studying memory rather than learning, or on language
acquisition, assuming biological “black-box” solutions to the emergence, rather than language learning.
Thus the focus has been on the outcomes and products of learning rather than on the process of learning.
But now there is a growing trend to examine the biological and psychological mechanisms of language
learning, and of learning more broadly. Language use is a generative skill and cannot be understood
simply as memorization of a set of predefined communicative signals but as a set of procedures for
translating between communicative intent and communicative signals. There is an important difference
between “rote” learning (memorizing specific information or behaviors) and generalization learning or
the acquisition of adaptive behaviors that transcend specific situations. Furthermore, complex learning
and language learning is hierarchical in information structure, and studying the interaction of
simultaneously learning the elements of pattern (e.g., words) and the systematic organization of those
constituents into patterns (e.g., sentences) has been overlooked. We can now begin to use animal
models of learning hierarchical structure and skill and these models open the door to new biological
methods of inquiry that cannot be used with human learners. To study the process of learning complex
skills and information, it is critical to understand how generalization and rote learning play different
roles and how these types of learning become consolidated or biologically stabilized to resist forgetting.

There is now evidence that generalization learning of language is consolidated by sleep but
understanding how this differs from consolidation of rote learning, and how other biological
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mechanisms operate to consolidate learning are open questions. It is also important to understand the
mechanisms that mediate the impact of various kinds of feedback, from reinforcement to information,
during learning. Indeed, different forms of feedback and information in social interaction may be
critical to many kinds of learning processes including language learning and to the importance of
directing attention during learning. Moreover, there are vast individual differences in working memory,
attention, and neural processes whose role learning and the use of feedback need to be understood in
order to improve education and training.

Terry Regier

Exploring the origin of language

For many years, the study of language has been dominated by the view that language is an autonomous
aspect of the human mind, one with its own recursive hierarchical structure, its own rules, and its own
learning challenges - something quite separate from the rest of cognition. This view has been challenged
in recent years, in ways that pose interesting questions for future research. A major challenge concerns
recursive structure, the allegedly uniquely human core of language: recursive patterns have been
successfully learned by several sorts of agents that "shouldn't" be able to learn them on the standard
view, notably songbirds, and machine learners operating without specifically linguistic prior bias. These
findings suggest that language may be uniquely human for reasons that have nothing to do with
recursion after all - that the uniquely human element may lie elsewhere, for instance in the ability to
communicate symbolically, or in aspects of human social cognition. Determining whether this is so, and
to what extent language structure is accountable for, and learnable, in terms of domain-general forces,
are important and interesting questions for the near future. More broadly, future research can usefully
focus not just on how language may be explained in terms of non-linguistic cognition, but also on the
reciprocal question of how much non-linguistic cognition is itself shaped by language - something we
have interesting evidence of - and how and why this happens.

Terrence Sejnowski

Learning in the internet age

Students today have access to a new world on the internet that I could not even conceive when I
was a student. Not only can I access centuries of accumulated knowledge, the searches often get
answered correctly when I misspell a keyword, and sometimes even when I enter the wrong
keyword. I am often startled at how quickly the replies appear, so quickly that if I blink it seems
like the answer was always there, waiting for me. If a page is in a language I do not understand,
I click “translate this page” and the text appears magically in English. With the internet, we have
achieved omniscience, for all practical purposes.
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What impact is the internet having on education? The way that computers are being used in the
classroom today is a variation on the way that teachers have traditionally interacted with
students. Students spend much more time using the internet to communicate with each other and
to play video games such as World of Warcraft than they do learning from the knowledge base.
The market for computer games is now far larger than that for all books and movies.

We need to invent a new way to educate children by taking advantage of the power of the
internet to actively engage children in meaningful and personal ways. For example, machine
learning techniques could be used to track the development of each child and make specific
suggestions for helping the child improve skills. Social bots could be introduced on the internet
that would interact with children in active and emotionally engaging ways. These social bots,
similar in sprit to the social robots that are being introduced into classrooms, could revolutionize
education by serving as a surrogate teacher and companion. The accumulated experience of
individual children could, in turn, be analyzed with machine learning techniques to find clusters
of children with similar problems, and their success and failures could be used to generate a
deeper understanding of learning.

Barbara Shinn-Cunningham

Auditory Scene Analysis

Learning is ubiquitous, occurring at every level of neural processing, at time scales ranging from
seconds to decades. Learning enables us to recognize patterns of inputs that occur commonly and that
are behaviorally important. Over the shortest time scales, learning is a form of calibration that ensures
that new, novel, events cause strong responses. Over longer time scales, learning ensures that listeners
can recognize and analyze complex patterns that represent behaviorally important events. Learning,
however, depends on the ability to focus attention on whatever events or inputs in the world matter at a
given moment. This ability, in turn, depends on interactions between low level sensory processing and
top- down volitional controls that modulate neural responses. Attention selects out what we learn from
the deluge of information we receive, allowing us to filter out unimportant clutter and select "good"
data. Indeed, in order to achieve stable learning, we must be able to tease out patterns that occur
commonly, recognize them, and interpret them. This is enabled by the heterarchical structure of neural
processing, where early sensory stages pull out features that are important in the inputs we receive,
while later stages enable us to respond to commonly occurring sequences or combinations of features
that we have learned have meaning or significance. Thus, when learning to communicate with speech,
we first learn to recognize gross features of prosody. This enables us to better segregate out one talker's
voice from the cacophony of sound we hear in common settings, and provides a substrate for learning
more complex, detailed features of sound, such as different phones in our native tongue. From this, we
can learn to associate meaning with the patterns that we pick out of a sound mixture. Moreover, social
interactions teach us what to focus on and attend in order to enable the process of learning.
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Vladimir Vapnik

What are the principles of learning?

The existing learning centers mainly conduct research to answer the question: "How does the brain
execute learning processes?" This is only part of the overall learning problem (and not the most
important from my point of view). The important question: "What are the principles of learning?" is out
of the scope of the interests of the existing centers. This is in spite of the fact that the greatest progress in
the understanding of the process of learning has been made in pursuit of learning principles. This
progress lead to dramatic changes in existing philosophical, methodological, and technical paradigms of
learning which can be characterized as: The discovery of advantages of non-inductive form of learning
with respect to inductive. (in the existing paradigm non-inductive forms of inference are regarded as
non-scientific and only inductive forms are regarded as scientific). This discovery along with
constructing of new (more effective) types of learning methods may lead to unification of exact science
with humanities.


