
Novell International Cryptographic
Infrastructure 2.4.0

Security Policy for Solaris 8
www.novell.com

December 23, 2002

2

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this docu-
mentation, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to make
changes to its content, at any time, without obligation to notify any person or entity of such revisions
or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to make changes to any and all parts of Novell software, at any
time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting
from the U.S. or Canada.

Copyright (C)2000-2002 Novell, Inc. This document may be copied freely without the author’s permis-
sion provided the document is copied in it’s entirety without any modification.

U.S. Patent Nos. 4,555,775; 5,157,663; 5,349,642; 5,455,932; 5,553,139; 5,553,143; 5,594,863; 5,608,903;
5,633,931; 5,652,854; 5,671,414; 5,677,851; 5,692,129; 5,758,069; 5,758,344; 5,761,499; 5,781,724;
5,781,733; 5,784,560; 5,787,439; 5,818,936; 5,828,882; 5,832,275; 5,832,483; 5,832,487; 5,859,978;
5,870,739; 5,873,079; 5,878,415; 5,884,304; 5,893,118; 5,903,650; 5,905,860; 5,913,025; 5,915,253;
5,925,108; 5,933,503; 5,933,826; 5,946,467; 5,956,718; 5,974,474. U.S. and Foreign Patents Pending.

Novell, Inc.
1800 South Novell Place
Provo, UT 84606
U.S.A.

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and
to get updates, see www.novell.com/documentation.

3

Novell Trademarks

Access Manager is a registered trademark of Novell, Inc., in the United States and other countries.

ConsoleOne is a trademark of Novell, Inc. NDS is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc., in the United States and other countries.

Novell is a registered trademark of Novell, Inc., in the United States and other countries.

Novell Client is a trademark of Novell, Inc.

Novell Directory Services is a trademark of Novell, Inc.

Novell International Cryptographic Infrastructure (NICI) is a trademark of Novell, Inc. It includes RSA
BSAFE cryptographic software from RSA Security.

Transaction Tracking System is a trademark of Novell, Inc.

TTS is a trademark of Novell, Inc.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Contents

2.1 Cryptographic Modules . 9

2.2 Module Interfaces . 11

2.2.1 Data Input/Output Interface . 11

2.2.2 Command/Status Interface . 11

2.3 Roles and Services . 11

2.3.1 User Role . 11

2.3.2 Crypto Officer Role . 12

2.4 Finite State Machine Model . 12

2.5 Physical Security . 12

2.6 Software Security . 12

2.7 Operating System Security . 13

2.8 Cryptographic Key Management . 13

2.8.1 FIPS Approved Key Generation . 13

2.8.2 Key Distribution . 13

2.8.3 Key Entry and Output . 14

2.8.4 Key Storage . 14

2.8.5 Key Destruction . 15

2.9 Cryptographic Algorithms . 15

2.10 EMI/EMC . 16

2.11 Self-Tests . 16

2.11.1 Software Integrity Tests . 16

2.11.2 Conditional Self Tests . 17

3.1 FIPS 140-1 Level 2 Installation Requirements . 18

3.2 Evaluated Configuration . 18

A FIPS Mode CCS API Definitions 20

4

CONTENTS 5

B Non-FIPS Mode CCS API Definitions 22

C Abbreviations 24

List of Figures

2.1 Software block diagram. 10

2.2 Hardware Block Diagram. 10

3.1 Tamper-evident Label Placement on a Sun SPARC Ultra-10. 19

6

List of Tables

2.1 FIPS 140-1 Test Category Levels. 9

2.2 Roles and Services. 11

2.3 Critical Security Parameters (CSP). 13

2.4 NICI Keys. 14

7

8 NICI 2.4.0 Security Policy for Solaris 8

1 Introduction

The Novell International Cryptographic Infrastructure (NICI) consists of a set of components that have
been implemented on a number of different platforms. Versions have been implemented on Novell’s
NetWare 5.x and 6.x, Microsoft’s Windows 2000, Windows NT 4.0, Sun’s Solaris, Linux, and AIX.
This document describes the Security Policy for NICI version 2.4.0 as it has been implemented for the
Solaris 8 EAL4 evaluated platform.

Security Requirements 9

2 Security Requirements

The Novell NICI 2.4.0 Cryptography Library for Solaris 8 conforms to FIPS 140-1 Level 2 as shown in
Table 2.1.

Table 2.1: FIPS 140-1 Test Category Levels.

FIPS140-1 Test Category Level

Cryptographic Modules 2
Module Interfaces 2
Roles and Services 2
Finite State Machine Model 2
Physical Security 2
Software Security 2
Operating System Security 2
Key Management 2
Cryptographic Algorithms 2
EMI/EMC 3
Self Tests 2

2.1 Cryptographic Modules

NICI consists of a set of software libraries designed to run on a wide variety of modern operating systems
and hardware platforms. This particular Security Policy document pertains to the NICI configuration,
running on a Solaris 8 platform. In this configuration, NICI is a shared library (.so). In FIPS 140-1
terms, NICI consists of a set of hardware, software, and firmware that make up a “multi-chip stand-alone
module”.

The module consists of the following components:

• A C2 TCSEC equivalent system consisting of a hardware platform and operating system software.

The test system was an EAL4 evaluated configuration of Solaris 8 running on a Sun SPARC
Ultra-10. Configuration details are listed in section 3 (Installation Guidance) of this document.

• NICI 2.4.0 for Solaris 8.

This consists of a matched upper library, which is linked to the application, and a lower library
that is installed on the workstation.

10 NICI 2.4.0 Security Policy for Solaris 8

Figure 2.1: Software block diagram.

CCS API

Run−time Binding

Bound at

Link Time

Authenticated by MABLE

Application Program

NICI Upper Library

Upper MABLE

NICI Lower Library

Lower MABLE

The cryptographic boundary is defined by the Sun SPARC Ultra-10. Since NICI must be able to store
at least one permanent key in order to be able to securely wrap and unwrap other keys, that key is
stored in a DES encrypted form per user, encrypted under a key encryption key, protected by the EAL4
operating system’s mechanisms. Audit data and stored NICI keys can be zeroized by reformatting the
computer’s hard drives.

MABLE is the Module Authentication and Binding Library Extensions (patent pending) technology used
to authenticate NICI to an application and to provide ongoing binding between an application and NICI
as if the application is statically linked to NICI. Upper MABLE is statically linked to an application and
contains the challenge generation, certificate verification, and ongoing binding mechanism functions.
Lower MABLE is statically linked to NICI and contains the response-to-challenge generation, signature
creation, and ongoing binding mechanism functions.

Figure 2.2: Hardware Block Diagram.

Power
Supply

UltraSparc 10

Cryptographic Boundary

Interface

CPU Memory
Subsystem

Disk Video
Subsystem

Network
Interface

Serial
Interface

Mouse
Interface

Keyboard

Motherboard

2.2. MODULE INTERFACES 11

2.2 Module Interfaces

FIPS 140-1 defines a cryptographic boundary, and as well as interfaces through which information is
allowed to enter and leave the cryptographic boundary. Defining such interfaces is normally straightfor-
ward for developers of hardware modules, but developers of software modules are faced with the task of
choosing an appropriate set of interface definitions. NICI has the following logical interfaces: data in,
data out, control-in, and status out. These interfaces are supported by the API set.

2.2.1 Data Input/Output Interface

FIPS 140-1 requires the definition of Data Input/Output (I/O) and Command/Status interfaces. NICI
defines these interfaces through the Controlled Cryptographic Services API. The API provides the means
to input and output data. The Data Input/Output interface is active only during the User State.

2.2.2 Command/Status Interface

The FIPS 140-1 Control interface is used to initiate the NICI Module. It is activated by the operating
system when an application program asks the operating system to attach NICI and causes it to commence
operation. It may also be activated when the operating system commands NICI to shut down. Otherwise,
it is active only during the User and Crypto Officer States, when commands are issued via the API set.
The Status interface is active only during the User and Crypto Officer States.

2.3 Roles and Services

Novell NICI 2.4.0 is FIPS 140-1 Level 2 compliant for Roles and Services. NICI implements identity-based
authentication.

Table 2.2: Roles and Services.
Operation User Role Crypto Officer Role

Install NICI X
Upgrade NICI X
Configure NICI X
Zeroize Keys X
Zeroize Audit Data X
Encrypt/Decrypt X
Generate Keys and Random Data X
Sign/Verify X

2.3.1 User Role

A “User” is an application program, running as a single or multiple process (perhaps multi-threaded),
which has been linked with the Novell NICI interface library. This version of NICI supports multiple
processes with different user identities with separation between such multiple instances relying on the

12 NICI 2.4.0 Security Policy for Solaris 8

access mechanisms provided by the Solaris 8 operating system. Each instance of NICI has an identity
and a separate memory space with access to a unique set of key materials.

All NICI applications must be installed by the Crypto Officer. Access to the NICI library and configuration
files are granted by the Crypto Officer using the Solaris 8 file access mechanisms. All installed applications
that are granted access to the NICI shared library (.so) are authenticated users. An authenticated user
is able to perform crypto operations via the API set defined in the Controlled Cryptography Services
Software Development Specification (CCS) document.

NICI maintains a set of persistent unique keys per Solaris 8 operating system user. The Solaris 8
operating system maintains the separation of these sets of keys. All processes with the same Solaris 8
user ID have access to a unique set of keys with independent key generation capability.

2.3.2 Crypto Officer Role

A single Crypto Officer role is supported in NICI as the “root” defined on the Solaris 8 operating system.
Authenticating to the Solaris 8 operating system assigns the Crypto Officer role to the “root” user. The
purpose of the Crypto Officer is to setup, configure, and reconfigure the NICI software. In addition, the
Crypto Officer can zeroize NICI keys and audit data if required. The Crypto Officer is also the security
administrator as defined by the Solaris 8 EAL4 operating system.

2.4 Finite State Machine Model

NICI has an embedded finite state machine that is compliant with the FIPS 140-1 specification. The
finite state machine is described fully in a separate document that is submitted during the FIPS 140-1
level 2 validation process.

2.5 Physical Security

As a multiple-chip stand-alone cryptographic module, the workstation enclosure for the EAL4 evaluated
system must have tamper evident labels placed in a manner so as to prevent undetected access to the
inside of the enclosure. Please refer to section 3, ”Installation Guidance” for further details.

2.6 Software Security

All NICI software including executable and data files is protected by the Solaris 8 operating system’s
access control mechanisms covered by its DAC (Discretionary Access Controls) policy and enforced by
TSF (TOE Security Function) installed in accordance with its EAL4 evaluation. The shared object
module is protected by file system access controls from unauthorized tampering. Solaris 8 operating
system’s TSF protects NICI configuration files and run-time memory image from tampering and access.
Similarly, the NICI configuration file is protected by the operating system’s access control mechanisms.

Table 2.3 lists the critical security parameters and their access rights. “Key Encryption Key” is a DES
key embedded in the code (see Section 2.1). “DAC Key” is a HMAC-SHA1 key embedded in the code
(see Section 2.11.1).

2.7. OPERATING SYSTEM SECURITY 13

Table 2.3: Critical Security Parameters (CSP).

CSP Crypto Officer User

Key Encryption Key Read/Write Read-only
DAC Key Read/Write Read-only
Audit Data Read/Write Read-only

2.7 Operating System Security

NICI 2.4.0 as evaluated requires Solaris 8 installed in its EAL4 evaluated configuration. See Chapter 3,
”Installation Guidance” for further information.

2.8 Cryptographic Key Management

NICI provides cryptographic key management services using secret key (symmetric) and public key
(asymmetric) algorithms. Secret keys and private keys are protected from unauthorized disclosure,
modification, and substitution. Public keys are protected against unauthorized modification and substi-
tution.

NICI key use policies are comprised of key usage flags (encrypt, wrap, sign, etc.), key types (DES, RSA,
AES, etc.), and algorithms (RSA, DES, DSA, etc.). NICI keys are listed in Table 2.4. SENSITIVE is an
attribute of a key set at key generation time, and EXTRACT is a key usage flag.

A key management key must have wrap and key management encrypt key usage flags set in order to
wrap keys. Key type must also match the algorithm used with a particular key. For instance, a DES
key can not be used with the RSA algorithm. These combined constitute the NICI key use policies.

It is the application’s responsibility to use the FIPS approved APIs, algorithms, and keys to maintain the
FIPS 140-1 mode of operation. Use of any one of the non-FIPS algorithms or non-FIPS approved APIs
would invalidate the FIPS mode of operation. Loading of software/firmware other than the validated
software/firmware will put the module in the non-FIPS mode of operation.

2.8.1 FIPS Approved Key Generation

The G function in the pseudo-random generator described in FIPS 186-2 is constructed using the SHA-1
hash function with b=512.

2.8.2 Key Distribution

NICI key distribution capabilities comply with FIPS 171 options 1 (key exchange role), 4 (MAC), 5 (key
and IV generation), 6 (key generation techniques), and 14 (send IV).

NICI has TripleDES and RSA key management keys. The TripleDES and RSA key management keys
are generated and used in FIPS mode. NICI uses DES-MAC to ensure integrity of persistent keys in
FIPS mode. NICI uses digital signatures to sign certificates. NICI does not use RSA for data encryption
in FIPS mode.

14 NICI 2.4.0 Security Policy for Solaris 8

Table 2.4: NICI Keys.

Key Name Key Type / Key Usages Description
Algorithm

STORAGE TripleDES WRAP, UNWRAP,
SENSITIVE

Key-wrapping key. NICI-generated
and NICI-maintained.
FIPS approved.

SESSION DES, TripleDES WRAP, UNWRAP,
SENSITIVE

Key-wrapping key per connection
between a client and a server. NICI-
generated, present while the con-
nection is active.
FIPS approved.

CA RSA SIGN, VERIFY,
SENSITIVE

NICI’s machine-unique CA key-pair.
NICI-generated and NICI-maintained.
Not FIPS approved.

PARTITION DES, TripleDES WRAP, UNWRAP,
SENSITIVE

Security Domain Keys, key wrap-
ping only. NICI-generated and NICI-
maintained.
FIPS approved.

FOREIGN Any Any,
EXTRACT,
not SENSITIVE

Generator unknown, maybe NICI.
Not FIPS approved.

Other DES, TripleDES, AES WRAP, UNWRAP,
ENCRYPT, DECRYPT,
not EXTRACT

NICI-generated.
FIPS approved.

Other HMAC-SHA1, DSA,
RSA ANSI X9.31
(vendor-affirmed)

SIGN, VERIFY,
not EXTRACT

NICI-generated.
FIPS approved.

Other RSA (encryption),
RSA (key distribution)

WRAP, UNWRAP,
ENCRYPT, DECRYPT

NICI-generated.
Not FIPS approved.

2.8.3 Key Entry and Output

NICI does not possess a manual key entry method; all keys are entered electronically. Aside from the
Crypto Officer’s role in distributing configuration data (used under the control of the Crypto Officer at
installation time), all keys are entered under the User’s control via the API interface.

Typical key entry to NICI is done via key unwrapping, i.e., by decrypting the key value, and verifying
the integrity of the attributes associated with the key. NICI maintains a storage key that is usable only
for key wrapping for this purpose.

In FIPS mode, raw key entry (key injection) and output (key extraction) are not allowed.

2.8.4 Key Storage

When keys have been unwrapped within the confines of the NICI cryptographic module boundary, they
are kept in plaintext form. Keys in memory are protected by the EAL4 operating system.

NICI provides key wrapping as a secure way of transferring keys in and out of NICI. NICI maintains a
persistent TripleDES key wrapping key to applications (See STORAGE key on Table 2.4). No means is
provided to unauthorized applications to obtain this key-management key.

2.9. CRYPTOGRAPHIC ALGORITHMS 15

NICI uses RSA digital signatures to sign certificates and to encrypt keys in FIPS mode. NICI does not
use RSA for data encryption in FIPS mode.

2.8.5 Key Destruction

When the particular NICI context associated with the usage of a set of keys is closed, all keys associated
with that context within NICI are zeroized and destroyed in memory. When NICI itself is closed within
a given process all keys in all contexts are zeroized.

In order to destroy the audit data and NICI storage keys, the Crypto Officer must perform a complete
reformatting of the hard disk, thoroughly scrubbing the disk to make certain there is no readable residue.

2.9 Cryptographic Algorithms

NICI 2.4.0 supports the following FIPS approved algorithms:

1. DSA (FIPS 186-2)

2. DES and Triple DES (FIPS 46-3 and 81)

3. SHA-1 (FIPS 180-1)

4. RSA signature (X9.31)

5. AES (FIPS 197)

6. HMAC-SHA-1 (FIPS 198)

Non-FIPS approved algorithms that also are supported include:

7. Diffie-Hellman (PKCS#3)

8. RSA encryption/decryption (PKCS#1, RFC 2437)

9. MD2 (RFC 1319)

10. MD4 (RFC 1320)

11. MD5 (RFC 1321)

12. HMAC (RFC 2104)

13. RC2 (RFC 2268)

14. RC4

15. RC5 (RFC 2040)

16. CAST128 (RFC 2144)

16 NICI 2.4.0 Security Policy for Solaris 8

17. Password Based Encryption, six algorithms (PKCS#12)

18. UNIX Crypt

19. LMdigest (CIFS)

20. TLS-KeyExchange-RSASign (RFC 2246)

21. NetWarePassword (Novell)

When only FIPS approved algorithms (numbers 1-6) are used, NICI is functioning in FIPS mode. If
any non-FIPS approved algorithm (numbers 7-21) is used, NICI is running in non-FIPS mode. It is the
application programmer’s responsibility to enforce FIPS and Non-FIPS modes of operation.

2.10 EMI/EMC

The EAL4 evaluated system complies with EMI/EMC requirements.

2.11 Self-Tests

NICI conforms to the FIPS 140-1 Level 2 requirements for self-test.

The required start-up self-tests are performed every time the NICI is started by the operating system,
prior to transitioning to the User state. If the self-tests do not run correctly, NICI will not start, and an
error indication will be returned via the API.

2.11.1 Software Integrity Tests

NICI satisfies the requirements for FIPS 140-1 Level 2 for Power-up Self-Tests.

Cryptographic Algorithms Test

Known answer tests are performed for DES, TDES, AES, HMAC-SHA-1, RSA, and DSA upon startup.
Pair-wise consistency tests are performed for RSA and DSA upon startup.

Software/Firmware Test

NICI complies with FIPS 140-1 by storing a DAC for the NICI shared library when the module is
installed. This DAC is under the control of the Crypto Officer and is protected by the Solaris 8 EAL4
operating system security. The DAC for the shared library (.so) is calculated using an embedded key at
initialization and compared with the stored version. NICI fails initialization if the DAC does not match.
NICI is using HMAC-SHA1 to compute the DAC.

2.11. SELF-TESTS 17

2.11.2 Conditional Self Tests

The following tests are performed as specified for each test:

Pair-Wise Consistency Tests (for public/private key pairs)

When a public/private key pair is generated the key pair is tested for pair-wise consistency. The public
key is used to encrypt a plaintext value and checked to ensure that an identity mapping did not occur,
and then the private key is used to decrypt that value and the value compared to the original. If the
values are not identical, the tests fails. If the keys are to be used only for the calculation of a signature,
then the consistency is tested by the calculation and verification of a signature. These tests are applied
to RSA and DSA keys.

Continuous Random Number Test

The module performs continuous random number generator tests as dictated by FIPS 140-1. Pseu-
dorandom numbers are generated using approved FIPS 186-2 (Appendix 3.1) standard. The random
number generator generates blocks of 160 bits.

18 NICI 2.4.0 Security Policy for Solaris 8

3 Installation Guidance

3.1 FIPS 140-1 Level 2 Installation Requirements

For NICI version 2.4.0 for Solaris 8 to be compliant with the FIPS 140-1 Level 2 specification the
following requirements must be met:

1. NICI must be installed on a EAL4 evaluated computing platform according to Solaris 8.0 Se-
curity Release Notes” Sun document number s8.0 125 (see http://www.sun.com/software/-
security/securitycert/docs/SRN 1.0.pdf) .

2. NICI must be installed using the standard NICI 2.4.0 Installation Program to insure that file
permissions are correctly set.

3. The EAL4 evaluated system hardware must have tamper evident labels applied such that removable
covers or other parts may not be removed without leaving evidence that an intrusion has taken
place. These labels must be kept securely under the control of the security officer.

3.2 Evaluated Configuration

NICI 2.4.0 was evaluated in the following configuration:

1. EAL4 evaluated computing platform consisting of a Sun SPARC Ultra-10 with Solaris 8 in-
stalled as specified by Solaris 8.0 Security Release Notes” Sun document number s8.0 125 (see
http://www.sun.com/software/security/securitycert/docs/SRN 1.0.pdf) .

2. NICI was installed using the standard installation program.

3. The labels used were Bay Area Labels Voidable Mylar Labels. As shown in figure 3.1, two labels
were applied to secure the removeable cover. These labels were left in place for at least 24 hours
prior to the test in accordance with the manufacturer’s specifications.

3.2. EVALUATED CONFIGURATION 19

Figure 3.1: Tamper-evident Label Placement on a Sun SPARC Ultra-10.

Appendix A

FIPS Mode CCS API Definitions

For complete descriptions, please refer to the Controlled Cryptography Services Software Development

Specifications document available from Novell.

API Description

CCS Init Initializes the CCS library

CCS Shutdown Closes the CCS library

CCS GetInfo Return information about the CCS interface

CCS GetPolicyInfo Determines the policy constraints on key attributes
for a given type and usage

CCS GetKMStrength Returns the key management strength level

CCS GetRandom Returns a random number

CCS GetAlgorithmInfo Obtain information about a specific algorithm

CCS GetAlgorithmList Obtain information about the algorithms available in
the system.

CCS GetMoreAlgorithmInfo Obtain variable-length information about an algo-
rithm.

CCS CreateContext Create a cryptography context.

CCS DestroyContext Destroy a cryptography context.

CCS DestroyObject Destroy a CCS object.

CCS FindObjectsInit Initialize a search for objects that match a template.

CCS FindObjects Continue a search for objects that match a template.

CCS GetAttributeValue Obtain the value of one or more object attributes.

CCS SetAttributeValue Modify the values of one or more object attributes.

CCS DataEncryptInit Initialize a data encryption operation.

CCS Encrypt Encrypt single-part data.

20

21

CCS EncryptUpdate Continue a multi-part encryption operation.

CCS EncryptFinal Finish a multi-part encryption operation.

CCS DataDecryptInit Initialize a data decryption operation.

CCS Decrypt Decrypt encrypted data in a single part.

CCS DecryptUpdate Continue a multi-part decryption operation.

CCS DecryptFinal Finish a multi-part decryption operation.

CCS DigestInit Initialize a message-digesting operation.

CCS Digest Digest data in a single part.

CCS DigestUpdate Continue a multi-part message-digesting operation.

CCS DigestFinal Finish a multi-part message-digesting operation.

CCS SignInit Initialize a signature operation.

CCS Sign Sign data in a single part.

CCS SignUpdate Continue a multi-part signature operation.

CCS SignFinal Finish a multi-part signature operation.

CCS VerifyInit Initialize a verification operation.

CCS Verify Verify data in a single part.

CCS VerifyUpdate Continue a multi-part verification operation.

CCS VerifyFinal Finish a multi-part verification operation.

CCS GenerateKey Generate a secret key.

CCS GenerateKeyPair Generate a public-key/private-key pair.

CCS WrapKey Wrap (i.e. encrypt) a key for storage or distribution
external to CCS.

CCS UnwrapKey Unwrap (i.e. decrypt) a key.

CCS LoadCertificate Load a public-key certificate, verify its signature and
load the resulting public key.

CCS LoadSelfSignedCertificate Load a self-signed public-key certificate, verify its sig-
nature and load the resulting public key.

CCS LoadUnverifiedCertificate Load a public-key certificate and the resulting public
key without verifying the certificate signature.

CCS GenerateCertificate Create and sign a public-key certificate.

CCS GenerateCertificateFromRequest Create and sign a public-key certificate whose public
key is provided by a PKCS#10 Certification Request.

CCS GetLocalCertificate Return a public-key certificate or local portion of the
certification path for one of the NICI-predefined pub-
lic keys.

CCS GetCertificate Return a public-key certificate or complete certifica-
tion path for one of the NICI-predefined public keys.

Appendix B

Non-FIPS Mode CCS API Definitions

For complete descriptions, please refer to the Controlled Cryptography Services Software Development

Specifications document available from Novell.

API Description

CCS EncryptRestart Reinitialize an encryption operation.

CCS DecryptRestart Reinitialize a decryption operation.

CCS Obfuscate Obfuscates an input string.

CCS DeObfuscate De-obfuscates an input string.

CCS pbeEncrypt Encrypt data in a single part using a password and
password-based algorithm as described in PKCS#5
or PKCS#12.

CCS pbeDecrypt Decrypt data in a single part using a password and
password-based algorithm as described in PKCS#5
or PKCS#12.

CCS pbeSign Generate signature for input data in a single part
using a password and password-based algorithm as
described in PKCS#12.

CCS pbeVerify Verify input data and its signature in a single part
using a password and password-based algorithm as
described in PKCS#12.

CCS pbeShroudPrivateKey Encrypt a PKCS#8 private key using a password and
password-based algorithm as described in PKCS#5
or PKCS#12.

CCS pbeUnshroudPrivateKey Decrypt and load an encrypted PKCS#8 private key
using the password and the password-based algo-
rithm as described in PKCS#5 or PKCS#12.

CCS LoadPFXPrivateKeyWithPassword Loads zero or more private keys encrypted in a
password from a PKCS#12 PFX structure. See
PKCS#12 document for details. Only PKCS#8 pri-
vate keys are supported.

22

23

CCS LoadPFXCertificateWithPassword Loads zero or more X.509 certificates and public keys
in those certificates from a PKCS#12 structure. The
certificates either can be encrypted in a safe bag or
can be in plain form. See PKCS#12 and RFC 2459
documents for details.

CCS DigestRestart Reinitialize a message-digesting operation.

CCS SignRestart Reinitialize a signature operation.

CCS VerifyRestart Reinitialize a verification operation.

IKE Sign Sign using an IKE Authentication Phase 1 authen-
tication algorithm. The algorithms and mechanisms
are described in RFC 2409: The Internet Key Ex-
change.

IKE Verify Verify using an IKE Authentication Phase 1 authen-
tication algorithm. The algorithms and mechanisms
are described in RFC 2409: The Internet Key Ex-
change.

CCS InjectKey This is the raw (i.e., plaintext) key injection func-
tion that is used for legacy applications with raw key
access, and required to use NICI with their existing
raw keys.

CCS ExtractKey Extract attributes of a key, including its value
(NICI A KEY VALUE) attribute.

CCS GenerateKeyExchangeParameters This is the parameter generation stage of a key agree-
ment algorithm.

CCS KeyExchangePhase1 This is the phase 1 of a key exchange algorithm.

CCS KeyExchangePhase2 This is the phase 2 of a key exchange algorithm.

Appendix C

Abbreviations

AES Advanced Encryption Standard
API Application Programming Interface
CA Certification Authority
CAST A block encryption algorithm
CCS Controlled Cryptography Services
CIFS Common Internet File System
CSP Critical Security Parameters
DAC Discretionary Access Controls
DES Data Encryption Standard
DSA Digital Signature Algorithm
EAL Evaluation Assurance Level
EMI/EMC Electromagnetic Interference/Electromagnetic Compatibility
HMAC keyed-Hash Message Authentication Code
IETF Internet Engineering Task Force
IV Initialization Vector
LMdigest Lan Manager message digest algorithm
MABLE Module Authentication and Binding Library Extensions
MAC Message Authentication Code
MD2/4/5 Message Digest algorithms
NDS Novell Directory Services
NICI Novell International Cryptographic Infrastructure
PFX Personal inFormation eXchange syntax
PKCS Public Key Cryptography Standards
RC2/4/5 Encryption algorithms
RFC IETF Request For Comments
RSA Rivest-Shamir-Adleman public key algorithm
SHA Secure Hash Algorithm
SPARC Scalable Processor ARChitecture
TCSEC Trusted Computer System Evaluation Criteria
TLS Transport Level Security
TOE Target Of Evaluation
TSF TOE Security Functions

24

