

A FIPS 140-2 evaluation could easily encompass physical security tests

Jean-Pierre KRIMM CESTI-LETI jean-pierre.krimm@cea.fr

Physical Security Testing Workshop 26 - 29 September, Honolulu

www-leti.cea.fr

CESTI-LETI Presentation

- A French ITSEF
- Belongs to a public institution (independence)
- Accredited for electronic components and embedded softwares
- Performs CC and ITSEC evaluations

Who I am

- an evaluator (software) in the CESTI-LETI
- involved in ITSEC and Common Criteria evaluations for smart cards
- in charge of various R&D projects (PKI, semiformal and formal CC evaluation tasks)
- representing CESTI-LETI in several international security working groups (E-europe TB3/SG1, ISCI WG1 on methodology and evaluation criteria)
- involved in FIPS 140-2 evaluation, and ISO/IEC 19790 standard

Context of this presentation

- My own skills: the Smart Cards' World
 - Common Criteria evaluation
 a lot of time spent for physical testing
 - FIPS 140-2 validation
 x mainly conformance tests
- The Common Criteria and FIPS 140-2 are different
 - abstractness
 - focus of tests (conformance vs evaluation)
- What is the area of the intersection of these two worlds?

Presentation Outline

- CC evaluation vs FIPS 140-2 validation
 - general overview
- Presentation of some attacks actually performed in CC smart card evaluations
- How the results of these attacks are taken into account in CC evaluation
- How these attacks could be taken into account in FIPS 140-2 validation

CC Evaluation vs FIPS 140-2 Validation

	CC	FIPS 140-2		
Actors	СВ	CMVP, CAVP, NIST/CSE		
	Testing Lab.	Testing Lab.		
Laboratories	ITSEF (CB in each scheme)	CMT Lab (NVLAP)		
Prerequisite	None	Crypto algo validation (CAVP)		
Product	Target Of Evaluation	Cryptographic Module		
Applicability	AII	US and Canadian Organization		
Description	Security Target	Security Policy		
Security Levels	7 EAL, 4 robustness levels	4 Security Levels		
Methodology	CEM	DTR		
Philosophy	Evaluation	Validation		
Tester Tasks	SAR	Security Areas		

Security Assurance Requirements (CC)

Choose a level in the following Classes

- Security Target Evaluation (ASE)
- Configuration Management (ACM)
- Delivery and Operation (ADO)
- Development (ADV)
- Guidance Documents (AGD)
- Life Cycle Support (ALC)
- Tests (ATE)
- Vulnerability Assessment (AVA)

FIPS 140-2 Security Areas

- Cryptographic Module Specification
- Cryptographic Module Ports and Interfaces
- Roles, Services, and Authentication
- Finite State Model
- Physical Security
- Operational Environment
- Cryptographic Key Management
- EMI/EMC requirements
- Self Tests
- Design Assurance
- Mitigation of Other Attacks

Presentation Outline

- CC evaluation vs FIPS 140-2 validation
 - general presentation
- Presentation of some attacks actually performed in CC smart card evaluations
 - How the results of these attacks are taken into account in CC evaluation
 - How these attacks could be taken into account in FIPS 140-2 validation

Which tests are performed

- Functional testing but security oriented
 - Are the Security Functions working as specified ?
- Penetration testing
 - Independent vulnerability analysis
 - Adaptation of the classical "attack methods" to the specificities of the product

Strategy for penetration testing

Attacks on Smart Cards

- Physical (Silicon related)
 - Memories
 - Access to internal signals (probing)
- Side Channel Analysis
 - SPA, EMA, DPA, DEMA
- Perturbations
 - Cryptography (DFA)
 - Generating errors
- Specifications/implementation related attacks
 - Protocol, overflows, errors in programming, …

Reverse Engineering

Probing : laser preparation

Optical reading of ROM

Probing : MEB

Figure 2: Image sous faisceau d'électrons en contraste de potentiel des étais électriques des lignes du bus de données en fonction du temps.

Physical Security Testing Workshop - 26-29 September - Honolulu - CESTI-LETI

EM Signal Analysis

æ

Physical Security Testing Workshop - 26-29 September - Honolulu - CESTI-LETI

Electro-magnetic signal during DES execution.

- Hardware DES
- Differential signal

Signal amplitude

Signal difference

Cartography

Device restart

œ

Perturbations Examples

Initializations

valid = TRUE;

If got ^= expected then valid = FALSE ;

If valid Then critical processing; Branch on error

Non critical processing; **If not authorized then goto xxx;** Critical processing;

Re-reading after integrity checking

Memory integrity checking;
Non critical processing;
Data 1 reading;
Critical processing;
Data 2 reading;
Critical processing;

What is requested for the ITSEF

- Good knowledge of the state of the art
 - Not always published
- Internal R&D on attacks
 - Equipment
 - Competences
- Multi-competences
 - Cryptography, microelectronics, signal processing, lasers, software, ...
- Competence areas defined in the French Scheme
 - Hardware (IC, IC with embedded software)
 - Software (Networks, OS, ...)

Summary of attacks in CC evaluations

- CC Evaluation is
 - Rigorous & normalized process
 - Gives the assurance that the product is as resistant as it is declared in the ST
 - Attacks also need specific « human » skills
- Attack is
 - Gaining access to secret/forbidden operations
 - Free to « play » with the abnormal conditions
 - An error is not an attack
 - **×** But an error can often be used in attacks

Presentation Outline

- CC evaluation vs FIPS 140-2 validation
 - general presentation
- Presentation of some attacks actually performed in CC smart card evaluations
- How the results of these attacks are taken into account in CC evaluation
 - How these attacks could be taken into account in FIPS 140-2 validation

Leti A Quotation Table Exists (JIL)

Factors	Identification	Exploitation	_		
Elapsed time			_		
< one hour	0	0	_		
< one day	1	3	_		
< one week	2	4	_		
< one month	3	6	_		
> one month	5	8	Range of values	Resistance to attacker with attack potential of:	SOF rating
Not practical	*	*			
Expertise					
Layman	0	0	0-15	No rating	No rating
Proficient	2	2			
Expert	5	4			
Knowledge of the TOE			16-24	Low	Basic
Public	0	0			
Restricted	2	2	25-30	Moderate	Medium
Sensitive	4	3			
Critical	6	5	31 and above	High	High
Access to TOE			_		
< 10 samples	0	0	_		
< 100 samples	2	4	_		
> 100 samples	3	6	_		
Not practical	*	*	_		
Equipment			_		
None	0	0	_		
Standard	1	2	_		
Specialized	3	4	_		
Bespoke	5	6			

Presentation Outline

- CC evaluation vs FIPS 140-2 validation
 - general presentation
- Presentation of some attacks actually performed in CC smart card evaluations
- How the results of these attacks are taken into account in CC evaluation
- How these attacks could be taken into account in FIPS 140-2 validation

Possible interpretations

- a DTR statement is incomplete
 - "Attempt to access (by circumventing the documented protection mechanisms) [...]"
 - in tester requirements TE03.22.02 (RSA) and TE07.01.02 (CKM)
- 2 interpretations are possible
 - Using Only External Interfaces of the Module (Functional Means)
 - Or going further: Performing Environmental and/or Physical Testing

Problems and Proposals

Identified Problems

- How to quote the attacks ?
- How to know if the attack leads to a fail verdict ?
- Which quotation for each security level ?
- How modified the NVLAP taking into account the attacks skills ?

Proposals

- Using the CC Smart Card Quotation Table
- VLA.1 for level 3 and VLA.2 for level 4 (can be augmented)

A Feasibility Study

- Outside FIPS Applicability Context
 - EMI/EMC does not apply
 - "FIPS Approved" has been re-defined
- Performed by the CESTI-LETI Q4 2004 - Q1 2005
- Sponsored by the DCSSI
- The Cryptographic Module was already certified
- Two Phases in this project
 - FIPS 140-2 evaluation (adapted security areas)
 - Capitalization reports (general, methodology and process)

- The DCSSI is involved in ISO/19790 standard
- The Context of the Feasibility Study Applies
- Methodology Report of the Feasibility Study has been used as input
- The Physical Security Testing could be considered, but how ?

Conclusion

- CC evaluation and FIPS 140-2 validation are different but:
 - We can introduce vulnerability assessment on Cryptographic Modules
 - We can use the same Quotation Table as for CC
 - This can lead to a common scheme for the penetration testing allowing some comparisons
- The penetration testing is not "self-acting" in CC evaluations

Thank you for your attention

Jean-Pierre Krimm

jean-pierre.krimm@cea.fr

www-leti.cea.fr

