Measurement Methods for the 2006 Maricopa County PM₁₀ Source Attribution and Deposition Study

> Robert A. Baxter, CCM T&B Systems Valencia, CA

Overview

- Study Background
- Approach
- Monitoring tools
- What we learned

Study performed for the Maricopa Association of Governments in conjunction with Sierra Research

Primary Study Area

Background

Evaluations of Salt River PM₁₀ Violations Recorded in Winter 2005

- Modeling provided limited insight into source contributions to monitored concentrations
- Low wind speed conditions
- Multi-day episode
- Peak values recorded in the morning
- Apparent correlation with morning traffic
- Morning drainage flow from east not evident
- High concentrations recorded at both West 43rd and Durango Complex

Approach

Mobile and fixed site sampling

- Define routes for mobile sampling
 - Map distribution of PM levels
 - Identify areas of interest
 - Characterize diurnal variations in PM levels
 - Characterize size distribution of PM
- Enhance the meteorological data collection
- Investigate dispersion of roadway sources
- Conduct sampling in two phases
- Coordinate with local agencies for related data
- Perform daily rapid review of collected data to identify insights, opportunities and problems.

Particle lidar

- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

T& B Septems

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

- Particle lidar
- Mobile monitoring
- DustTrak optical PM₁₀
- DustTrak optical PM_{2.5}
- MiniVol filter based
- Particle size analyzer
- Fixed site sampling
- Sodar
- SCAMPER

Field Observations

- Detailed sampling on 17 days
 - Boundary conditions
 - North/South traverses
 - East/West traverses
 - Particle size distribution for source characterization
 - Gradients away from primary roads
 - Gradients across the Salt River
- Six days had high 24-hour concentrations at one or both stations

Field Observations

- Characterize the sources around the monitors
- Intercomparisons with site monitors
- Upwind/downwind monitoring
- Search for plumes and potential sources
- Major identified sources
- Tracking large plumes
- Visual documentation

Monitored Events

- Regional characterization
- Trackout
- "Dragout" from unpaved or poorly maintained paved roads or parking lots
- Unpaved shoulders
- Unpaved roads with "dragout"
- Open burning
- Agriculture
- Vehicle activity on unpaved or poorly maintained lots
- Industrial facilities
- Street sweeping effectiveness

Regional Characterization November 15 0400 to 1000

Regional Characterization November 15 0400 to 1000

Regional Characterization November 15 0400 to 1000

T& B Syste

Trackout

T&B Septems

Dragout

T& B Systems

Unpaved Roads and Dragout

T& B Syste

Unpaved Roads and Dragout

T&B Sust

Open Burning

T&B Septems

Open Burning and West 43rd PM₁₀ December 7, 2006

	Wind Speed	Wind	PM ₁₀
Time	(mph)	Direction	(µg/m³)
0400	1.2	S	102
0500	1.0	Ν	208
0600	0.8	ENE	381
0700	0.4	SSW	515
0800	0.7	WSW	566
0900	2.3	W	284
1000	3.0	W	240
1100	6.6	ENE	111

T& B Sustens

Open Burning and West 43rd PM₁₀ December 7, 2006

T& B Sust

Agriculture

T& B Sustens

Agriculture

T& B Septems

Vehicle Activity on Unpaved Lots

Saturday November 18, 2006

T&B Supt

Vehicle Activity on Unpaved Lots

Sunday November 19, 2006

PM₁₀ Data Points 08:00 – 08:35

07:00 Wind North at 0.6 mph $PM_{10} - 151 \mu g/m^3$

08:00 Wind East at 0.8 mph $PM_{10} - 361 \mu g/m^3$

R. B. Sustem

Vehicle Activity on Unpaved Lots

Sunday November 19, 2006

Industrial Facilities

T& B Sustens

Industrial Facilities

T& B Sustems

Street Sweeping Effectiveness

Final Notes

- Awareness of the monitoring played an obvious role in attempts to control fugitive emissions
- The data was used in demonstrating the problems and establishing new control measures
- No apparent exceedances during stagnant conditions in the 2007/2008 season.
- Use of a variety of fixed and mobile measurements collected the data needed to understand and start dealing with the issues

Measurement Methods for the 2006 Maricopa County PM₁₀ Source Attribution and Deposition Study

> Robert A. Baxter, CCM T&B Systems Valencia, CA