Skip Navigation
National Institute of Environmental Health SciencesNational Institutes of Health
Increase text size Decrease text size Print this page

Boston University

Superfund Basic Research Program

Superfund Basic Research Program at Boston University

Program Director: David M. Ozonoff
Grant Number: P42ES07381
Funding Period: 1995-2010
Grantee Website (http://www.busbrp.org/) Exit NIEHS Website

Summary

The scientific theme for this competitive renewal continues the theme from the previous grant submission: effects of exposures to environmentally hazardous substances on reproduction and development in humans and wildlife. Special emphasis is placed on substances commonly encountered as a result of improperly managed waste disposal. The chemicals under study are all organics, both halogenated and nonhalogenated compounds. This program will focus on the underlying mechanics of xenobiotic/endocrine interactions and their effects to allow a better understanding of the implications of perturbations of reproductive and developmental processes by hazardous substances in the environment. Nine projects, 5 biomedical and 4 non-biomedical will study:

  1. Epidemiological studies of effects on neurodevelopment of a population exposed to perchloroethylene (PCE, a peroxisome proliferator) in drinking water, and epidemiological techniques to study similar environmental problems (two biomedical projects);
  2. Receptor based mechanistic studies of the role of intracellular receptors and signaling pathways in the development of organisms and tissues (receptors/pathway: Ah receptor, AhR; peroxisome proliferator activated receptor, PPAR; estrogen receptor, ER; androgen receptor, AR; MAP kinase pathway) for important xenobiotics (planar halogenated aromatic hydrocarbons, PHAHs; polycyclic aromatic hydrocarbons, PAHs; and peroxisome proliferators, especially phthalates) (three biomedical projects);
  3. Mechanisms of toxicity and resistance of fish populations to PHAHs and xenoestrogens involving receptors (AhRs, PPARs, and ERs) and cytochrome P450s (one non-biomedical and two biomedical projects);
  4. Studies of the mechanistic basis for reproductive and developmental effects observed in wildlife (including those mediated by receptors such as AhR and ER) exposed to a complex mixture in surface water from a Superfund site via groundwater and sediment (one non-biomedical project);
  5. Mechanisms of oxidative dechlorination by an abiotic non-Heme iron catalyst for remediation of a wide variety of xenobiotics, including all those under study in other projects. The use of chlorinated ethylenes as a probe to study the oxidative mechanism of this biomimetic catalyst will also shed light on metabolism of these compounds by P450s (one non-biomedical project).
SBRP Logo
USA.gov Department of Health & Human Services National Institutes of Health
This page URL: http://tools.niehs.nih.gov/sbrp/programs/Program_detail.cfm
NIEHS website: http://www.niehs.nih.gov/
Email the Web Manager at webmanager@niehs.nih.gov
Last Reviewed: 19 May 2008