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CHAPTER 2

Research on Intraseasonal
to Interannual Variability

Much of CDC research is focused on understanding and predicting climate variability on longer than
synoptic time scales. We are interested not only in the coherent phenomena that occur on these time
scales such as floods, droughts, atmospheric blocking, the tropical MJO, and of course ENSO, but also
in the variations of the statistics of weather systems. Some of these phenomena are of shorter duration
than what one might typically associate with ‘climate’ variability. At CDC, however, we recognize that a
description of climate variability in terms of seasonal mean anomalies can often give a bland and even
misleading view of what most people experience as unusual weather. Hence our broader focus.

We use a combination of empirical and modeling approaches to address these problems. The empirical
studies range from simple descriptions employing a variety of observational datasets to ‘linear inverse
modeling’ studies. The latter are designed to throw light on the underlying dynamics, and also yield sta-
tistical forecast models that can be competitive with general circulation models. Our modeling studies
are conducted using models ranging in complexity from simple planetary Rossby wave propagation
models to the global NCEP atmospheric GCM.

In the last four years, CDC scientists have made important contributions to the understanding and pre-
diction of seasonal tropical SST anomalies and their impact on the extratropical atmosphere. They have
also made significant contributions to the fundamental dynamics of extratropical low-frequency vari-
ability, especially the dynamics governing the statistics of weather systems, and have pursued novel
approaches to the problem of anticipating unusual weather.  Some of this research is summarized below.
More details can be found in the peer-reviewed journal articles listed at the end of the chapter.

2.1 Understanding and predicting
seasonal tropical SST variations

2.1.1SST variations in the tropical Indo-
Pacific ocean

For several years, CDC scientists have
been supplying skillful forecasts of Indo-
Pacific SST anomalies, which are an
important part of the ENSO phenome-
non. These forecasts are published in two
publications of the National Weather Ser-
vice: the quarterly Experimental Long-

Lead Forecast Bulletin, and the monthly
Climate Diagnostics Bulletin, and are
also  made  available  on  the  World
Wide Web (http://www.cdc.noaa.gov/
~mcp/ Cecile.forecast.html).

The forecasts are made using Linear
Inverse Modeling, which is a method of
extracting the dynamical parameters of a
system from data. The assumption is
made that the dynamics can be modeled
as a stable linear multivariate process
driven by geographically coherent white
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noise. Physically, the white noise repre-
sents the broad-band nonlinear dynam-
ics affecting the more slowly varying
‘deterministic’ (and predictable) part of
a measured signal. This assumption has
been found to be remarkably appropri-
ate for the description of ENSO as man-
ifested in Indo-Pacific SST anomalies.
The assumption passes a variety of tests,
including the difficult ‘Tau-test’, which
suggests not only that the deterministic
dynamics can be treated as linear and
stable, but also that the parameters asso-
ciated with these deterministic linear
dynamics can be treated as seasonally
independent.

The inverse modeling yields a system
propagator (or Green function) which is
used in making forecasts. The eigen-

functions of this propagator matrix rep-
resent the natural modes of variability of
the system. Now if a dynamical system
is stable, its eigenmodes must all indi-
vidually decay. How then can the
observed predictable growth of SST
anomalies occur? The answer is that
since the modes are not orthogonal,
temporary SST anomaly growth can still
occur from their constructive interfer-
ence. It can be shown that the domain-
averaged square of Indo-Pacific SST
anomalies can amplify by as much as a
factor of 5 over 7 months by this mecha-
nism. The initial SST anomaly pattern
associated with this optimal growth is
shown in Fig. 2.1a. The model predicts
that if such a pattern were actually to
occur as an initial condition, it would
evolve 7 months later into the amplified

Fig. 2.1. (a)  The optimal initial structure for sea surface temperature anomaly growth. The pattern is normalized
to unity. The contour interval is 0.025, and negative values are indicated by dashed contours. (b) The linear
inverse model’s  7-month prediction when (a) is used as the initial condition. Contour interval and shading are as
in (a).
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mature ENSO pattern inFig. 2.1b. That
this is more than an interesting theoreti-
cal possibility is demonstrated inFig.
2.2. The plot shows that whenever the
evolving observed SST anomaly field
projects strongly on the optimal pattern
in Fig. 2.1a, it also tends to project
strongly on the pattern inFig. 2.1b
seven months later.  In other words, it
leads to ENSO.

Our conclusion that the observed cou-
pled Indo-Pacific ocean-atmosphere
system can be treated, at least for the
purposes of understanding and predict-
ing seasonal SST variations, as a stable
linear system driven by spatially coher-
ent white noise has major implications.
Apart from challenging the received
wisdom that ENSO arises from an insta-
bility of the coupled system, it implies
that there is no such thing as a single
‘ENSO mode’ of tropical variability: in
reality, ENSO is not one mode but a col-
lection of modes. From a practical
standpoint, our conclusion implies that
much of the nonlinear dynamics incor-
porated in intermediate and advanced
coupled dynamical models are parame-
terizable as linear terms in SST plus
noise. This may be one reason why our

forecasts are competitive with dynami-
cal model forecasts.

An example of a forecast made with our
multivariate first-order linear inverse
model (actually a hindcast, but of inde-
pendent data) is given in Fig. 2.3. The
figure shows the observed 3-month
mean SST anomaly field for January,
February and March (JFM) 1972, the 2-
season SST anomaly forecast made for
JAS 1972 using this as the initial condi-
tion, and the observed SST anomaly
field for JAS 1972. The observed field
undergoes a substantial change in pat-
tern, magnitude, and sign over the two
seasons, yet the model correctly predicts
most elements of this change. This is an
example of a good, but not the best,
forecast that can be made using our
model. It was chosen to illustrate the
points made above, and also highlight
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Fig. 2.2. Light curve: Pattern correlation of Fig.
2.1(b) with the observed SST anomaly field on the
dates indicated. Heavy red curve: Pattern correlation
of Fig. 2.1(a) with the SST anomaly field 7 months
earlier.

Fig. 2.3. Example of a 2-season SST anomaly
forecast. Top: Initial condition: JFM 1972.  Middle:
Prediction for JAS 1972.  Bottom: Verification for
JAS 1972. Contour interval is 0.2C., and negative
values are indicated by dashed contours.
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the multivariate nature of the coupled
dynamics that are clearly reasonably
well represented in the model. A
univariate Markov model would be
unable to predict either the growth or
the changes of sign inFig. 2.3. It would
merely have the initial condition decay
to climatology, possibly with different
decay rates at different points, over the
domain.

Finally, our assumption of statistical sta-
tionarity might appear inconsistent with
the clear observed preference of El Niño
to occur during certain times of year.  In
fact there is no inconsistency. In our
description, the observed phase locking
to the annual cycle is transmitted to the
SST anomalies through a seasonally
dependent variance of the stochastic
forcing.  Indeed the stochastic forcing
diagnosed from SST anomaly data using
a fluctuation-dissipation relation appro-
priate only to a stable linear process
yields a seasonally dependent forcing
variance. When our stable linear inverse
model is driven with this nonstationary
stochastic forcing, the correct phase
locking of El Niño to the annual cycle is
obtained. We emphasize again that the
forcing variance is the only seasonally
varying specified quantity in the model,
and that it is neither the deterministic
dynamics alone nor the stochastic forc-
ing alone but the interplay of the two
which accounts for the observed growth
of El Niño events and their phase lock-
ing to the annual cycle.

2.1.2 SST variations in the tropical
Atlantic ocean

The inverse modeling approach has also
been applied to the problem of under-
standing and predicting SST variations

in the tropical Atlantic ocean, described
in many studies as being dominated by a
north-south SST dipole pattern. Two
different inverse models, based on SST
data in the tropical Atlantic alone and in
the tropics as a whole, were constructed.
It was found that the global tropical
model is more skillful than the Atlantic
model in predicting SST anomalies in
the Caribbean and north tropical Atlan-
tic ocean, but not in the equatorial and
south tropical Atlantic oceans, where it
is difficult to beat persistence.

To help resolve the debate as to whether
the dipole found in various EOF analy-
ses is an artifact of the technique or a
physically real structure, 6-month
‘influence functions’ (not shown) were
determined for area-averaged SST
anomalies in the north and south tropi-
cal Atlantic oceans. The 6-month influ-
ence function for the north (south)
Atlantic SST represents the optimal ini-
tial SST pattern for maximizing SST
over the north (south) Atlantic 6 months
later. In other words, it shows at each
geographical location the sensitivity of
the area-averaged north (south) Atlantic
SST to the SST at that location 6
months earlier. The maps constructed
using only the tropical Atlantic data
were found to be similar and of opposite
sign, with both leading to a clear dipole
in six months.  On the other hand, the
maps constructed using the global tropi-
cal SST data showed a large sensitivity
of the north, but not the south, Atlantic
SSTs to the SSTs in the Indo-Pacific
basin, especially Niño-3. These results
suggest that the tropical Atlantic SST
dipole is a real phenomenon, but that the
influence of the Indo-Pacific disrupts its
northern branch so that the dipole is
rarely seen in its pure form.
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2.2 The impact of tropical SST
variations on the low-frequency
variability of the extratropical
atmosphere

The impact of ENSO is detectable
worldwide. The recent progress in pre-
dicting tropical Pacific SSTs several
seasons ahead therefore raises the hope
that at least some aspects of interannual
variability may also be predictable else-
where, perhaps even in the apparently
turbulent extratropics. Many GCM
groups are assessing the impact of SST
variations on the global atmospheric cir-
culation in pursuit of this goal. CDC sci-
entists are also involved in this effort
through a collaboration with NCEP’s
Coupled Model Project. We have access
to the output from all the model runs
performed under the project. A 12-
member ensemble of 45-year runs,
made with the (T40,18-level) atmo-
spheric GCM with different initial con-
ditions but the same observed global
SST fields for 1950-95 as evolving
specified boundary conditions, has
proved especially valuable. NCEP has
also generously provided us with the
GCM itself, so we can perform our own
experiments.

2.2.1 Signal-to-noise ratio and
predictability

How large is the tropical SST-forced
signal in the extratropics? The question
is surprisingly difficult to answer. One
possible answer is given by the 45-year
runs mentioned above. The SST-forced
signal in these runs is defined as the 12-
member ensemble average minus clima-
tology. The top panel ofFig. 2.4 shows
the total variance of the 540 (= 45x12)
simulated winter mean 200 mb height

fields. The SST-forced contribution to
this, i.e. the variance of the 45 ensem-
ble-averaged winters, is shown in the
middle panel. The bottom panel shows
the ratio of the SST-forced variance to
the total variance. Clearly, the SST sig-
nal explains only a small part of the total
variability of seasonal means in middle
latitudes, and its influence is mostly
confined to the Pacific-North American
(PNA) sector.

Fig. 2.4. The NCEP GCM’s simulated total variance
(top) and SST-forced variance (middle) of DJF-mean
200 mb heights.The bottom panel shows the ratio of
the SST-forced variance and total variance.
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The GCM simulations of each 3-month
season in 1950-95 may also be inter-
preted as seasonal forecasts made using
perfectly predicted (i.e., observed)
SSTs, and the ensemble-average inter-
preted as a ‘best’ maximum likelihood
forecast. How good are such forecasts?
The thin curve with open circles inFig.
2.5 shows a 45-year time series of the
pattern correlation of the predicted and
observed eddy 500 mb height  fields
over the PNA sector (20˚N-70˚N, 180-
60˚W). The thick red curve is a 9-point
running mean.  Consistent with the fact
that our maximum likelihood forecast is
precisely the SST-forced signal dis-
cussed above, the forecast skill is appre-
ciable only in ENSO winters when the
tropical SST forcing is large. Even in
those winters, a pessimist may contend
thatFig. 2.5 only shows the skill of pre-
dicting the pattern but not the amplitude
of the 500 mb height anomalies, and
only in the small portion of the northern

hemisphere in which the SST-forced
signal is relatively large.

According to the NCEP GCM, then, the
tropical SST-forced signal is small in
the extratropics, and as such the poten-
tial for modestly useful seasonal predic-
tions based solely on SST information is
limited to the PNA sector during north-
ern winter. Several other GCM groups
have also arrived at this conclusion. One
may wonder if the conclusion is false
because the GCMs have a spuriously
weak sensitivity to tropical SST forcing.
Fig. 2.6 demonstrates that this is not the
case at least for the version of the NCEP

Fig. 2.5.Time series of the pattern correlation of the
observed and predicted  zonally asymmetric 500 mb
height anomaly fields over the PNA region  for
consecutive 90-day averages during 1950-95. A nine-
point smoother has been applied to generate the red
curve.

Fig. 2.6.Composites of the December-April 500 mb
eddy height anomalies for mature El Niño events
based on (a) observations, (b) MRF8 GCM
simulations, and (c) MRF9 GCM simulations.
Contour interval is 5 m, and negative values are
indicated by dashed contours.
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GCM (MRF9) analyzed here. The bot-
tom panel shows the GCM’s composite
SST-forced 500 mb height signal for
three El Niño winters in the 1980s. It
compares very well in both pattern and
magnitude with the long-term observa-
tional El Niño composite shown in the
top panel. By way of contrast, the mid-
dle panel shows the much weaker com-
posite El Niño signal simulated by an
earlier version (MRF8) of the GCM.

2.2.2 The importance of the different
‘flavors’ of El Niño

Small though the SST-forced signal is in
middle latitudes, it is at present the only

predictable seasonal signal, and as such
it is important to get it right. The ques-
tion arises as to whether it is sensitive to
the details of the tropical SST forcing. If
it is, the accuracy of tropical SST pre-
dictions will need to be high: it will not
be sufficient to issue forecasts of area-
averaged SST in, say, the eastern equa-
torial Pacific ocean alone.

Fig. 2.7 shows the observed anomalous
tropical SST and 500 mb heights in the
PNA sector for four El Niño winters.
The height fields are appreciably differ-
ent from one another, and so are the SST
fields. To what extent are the differences
in the former attributable to those in the

Fig. 2.7.Observed winter 500 eddy height  and SST anomalies for the El Niño events of 1966,1969, 1983 and
1992. The anomalies  are departures  from a 1950-79 climatology. Eddy  height anomalies are contoured every
10 m, and negative values are dashed. The SST anomalies are contoured every 1 K, and negative values are
dashed.
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latter? An answer can again be given
using the 45-year runs discussed above.
Fig. 2.8 shows the SST-forced 500 mb
height signals in the four cases. The pat-
terns are similar to one another, despite
the tropical SSTs (and the simulated
rainfall fields, shown in the tropical sec-
tions) being appreciably different. This
suggests that the differences in the
height fields inFig. 2.7 are not mainly
due to the differences in the SST fields.
The 500 mb height signals inFig. 2.8
are relatively insensitive to the pattern
of the SST forcing;  they show more
sensitivity to its amplitude. However,
even such modest differences in the sig-
nals for different El Niño events may
prove important in regional predictions.

As an example,Fig. 2.9 shows the pre-
cipitation signals along the west coast of
North America for 9 recent El Niño
events. The variation between events is
not negligible.

2.2.3 Identifying the most sensitive
areas of tropical SST forcing

To the extent that the tropical SST-
forced signalsy in the extratropics are a
linear function of the SST anomaliesx,
it is meaningful to think of a Green
functionG  linking the two asy = Gx. A
knowledge ofG would clearly be very
useful, but for a variety of reasons is dif-
ficult to obtain from the observational
record. We have estimatedG directly for

Fig. 2.8. GCM simulated winter 500 mb eddy height and tropical Pacific rainfall anomalies for the El Niño
events of 1966,1969, 1983 and 1992.The anomalies are departures from a 1950-79 climatology. Eddy height
anomalies are contoured every 10 m, and negative values are dashed. The precipitation anomalies are contoured
every 4 mm/day, and negative values are dashed.
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the NCEP GCM from the set of
responses to SST anomalies in the 42
elliptical areas shown in Fig. 2.10. For
each area, the model was run in perpet-

ual January mode for 4 months with 8
different initial conditions, with both
positive and negative 1.5˚K SST anoma-
lies, and the response defined as half the
difference of the ensemble averages of
the positive and negative anomaly runs.
The entire experiment involved running
the GCM for a total of 226 years.

The Green function thus estimated was
then used to construct SST influence
functions (i.e., sensitivity maps) for lin-
ear measures of the extratropical
response in certain target regions of
interest. As explained in the previous
section, such a map represents the opti-
mal SST anomaly pattern for maximiz-
ing the response in the target region, and
also shows, at each geographical loca-
tion, the sensitivity of the response in
the target region to an SST anomaly at
that geographical location.Fig. 2.11
shows the SST influence functions for
area-averaged precipitation in five dif-
ferent regions of North America. The
figure dramatically illustrates the very
different sensitivities of the GCM’s pre-
cipitation in these regions to tropical
SST forcing, and also identifies the most
sensitive areas of SST forcing for gener-
ating large precipitation anomalies in
the target areas.

Fig. 2.9. GCM simulated Pacific west coast rainfall
anomalies averaged between 125˚W-118˚W for the
November through March rainy season during 9
recent El Niño events.
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Fig. 2.10. Array of 42 overlapping SST anomaly patches used in the GCM experiments. Peak amplitude is 1.5 K.
Only the 0.75 contour is drawn for each patch. Differing line thickness is only to reduce visual clutter. The shaded
field in the background is the standard deviation of January-mean SSTs for 1950-95, with darker shading for
values greater than 1 K.
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2.2.4 Nonlinear aspects of the response

The prevailing view of the global atmo-
spheric climate signal associated with
ENSO is that of a linear response, with
the spatial pattern of anomalies in the
warm (El Niño) phase opposite to that in
the cold (La Niña) phase. We find that
this paradigm is flawed. The upper and
lower panels ofFig. 2.12 show observa-
tional composites of the tropical rainfall
and 500 mb eddy height anomalies in
northern winter for El Niño and La
Niña, respectively. The patterns in the
lower panel are clearly not opposite to
those in the upper panel. The extrema of

both the rainfall and 500 mb height
anomaly fields in La Niña are shifted
well westward of their El Niño counter-
parts.

Given the short observational record
from which they are derived, one might
question the statistical significance of
these results. Also, the rainfall and 500
mb height composites inFig. 2.12 are
not derived from the same set of ENSO
events: the rainfall composites are based
on 4 warm and 4 cold events since 1974;
the height composites on 9 warm and 9
cold events since 1950. Finally and per-
haps most importantly, the composites
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Fig. 2.11. SST sensitivity maps for area-averaged precipitation in the indicated target regions, derived from the
GCM’s precipitation responses to prescribed SST anomalies in the 42 areas shown in Fig. 2.10.
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are not for strictly equal and opposite
SST anomalies.

To settle these doubts, 40 integrations of
the NCEP GCM  were performed with a
warm ENSO-like SST life cycle as
boundary forcing. The experiment was
then repeated with the sign of the SST
forcing reversed.Fig. 2.13 shows the
ensemble-average rainfall and 500 mb
height anomalies obtained in the two
GCM experiments, in an identical for-
mat to that ofFig. 2.12. Even though the
SST forcing is exactly equal and oppo-
site in the experiments, there is an
asymmetry of the response similar to

that in Fig. 2.12. The basic reason for
this asymmetry, we believe, is that tropi-
cal rainfall responds to the total, rather
than the anomalous, SST.

Given this evidence that the nonlinearity
seen inFig. 2.12 is real, and predictable
to some extent, one would hope that the
nonlinear NCEP GCM would have a
substantial advantage over linear models
in forecasting ENSO-related seasonal
anomalies over the PNA region. In fact
the advantage is only slight. The skill of
the simplest possible linear forecast —
that the seasonal anomaly pattern is the
observational composite ofFig. 2.6a
during warm, and the opposite pattern
during cold, ENSO winters — when
plotted inFig. 2.5 (not shown), turns out
to be very similar to that of the NCEP
GCM.Fig. 2.12.Observed seasonally averaged December-

February 500 mb eddy height and precipitation
anomalies composited with respect to El Niño (top)
and La Niña (bottom) SST states. The heights are
shown only poleward of 20 N and contours are drawn
every 10 m. Precipitation is shown only equatorward
of 20˚N, with shades drawn at every 2 mm/day
interval.

Fig.  2.13. As in Fig. 2.12 but for the GCM’s
response to El Niño (top) and La Niña (bottom) SST
states.
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2.3 The basic dynamics of extratropical
low-frequency variability

Much of extratropical low-frequency
variability is apparently unpredictable
noise, unrelated to tropical SST varia-
tions. Although its statistical structure is
different from that of synoptic variabil-
ity, with variance maxima over the east-
ern rather than the western Pacific and
Atlantic oceans, it is strongly affected
by the behavior of synoptic weather sys-
tems as they approach and decay in
these regions of diffluent flow. Much of
its unpredictability therefore ultimately
arises from the unpredictability of syn-
optic weather systems. The low-fre-
quency variability is also affected by the
behavior of tropically forced Rossby
waves, such as those associated with the
MJO, in these diffluence regions. A
clear understanding of eddy-mean flow
interactions in these regions (as well as
of the eddies themselves) would be wel-
come, but has remained elusive for
decades. Progress in this area will have
large implications for the predictability
of intraseasonal, interannual and even
interdecadal variability. Recent work by
CDC scientists has helped clarify sev-
eral aspects of the problem, which we
summarize next.

2.3.1 Low-frequency Rossby wave
dynamics

Extratropical low-frequency anomalies
tend to be ‘equivalent barotropic’, in the
sense that they extend through the tro-
posphere with relatively little vertical
tilt. If their structures were  precisely
separable in the horizontal and vertical
coordinates,  their dynamics would be
governed by the barotropic vorticity
equation at an equivalent barotropic

level somewhere in the upper tropo-
sphere. Many investigators have studied
low-frequency variability in terms of
upper tropospheric Rossby wave
dynamics, and a great deal has been
learned about atmospheric teleconnec-
tions in this way. In a seminal 1983
paper, Simmons, Wallace and Bransta-
tor (SWB) found that low-frequency
planetary scale Rossby waves  evolving
on the zonally varying climatological
upper tropospheric flow were weakly
unstable, and had structures strongly
reminiscent of those of the observed
variability. Because of their slow
growth, SWB doubted that such waves
would appear in a pure form on synoptic
charts, and argued instead that they
would be more evident in long-term sta-
tistics, especially in a scenario in which
the ambient flow is constantly perturbed
by random forcing.

Fig. 2.14 shows the streamfunction of
the most unstable Rossby wave in its
two quadrature phases, obtained from
our own eigenanalysis of the observed
wintertime upper tropospheric flow.
Except near the pole, the resemblance to
observed low-frequency structures is
undeniable. The amplitude pattern of
the wave (not shown, but imagine the
sum of the squares of the two panels) is
similar to the observed variance of low-
pass filtered 300 mb streamfunction
anomalies, given in the upper left panel
of Fig. 2.15. The resemblance, though
far from perfect, is impressive consider-
ing the vast simplification made to the
dynamics. One is tempted to think: here
is the essence of low-frequency variabil-
ity; a few such Rossby waves, continu-
ally excited by white noise forcing, with
a little extra push from anomalous tropi-
cal SSTs during ENSO events. Unfortu-
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nately, a closer look (published in three
papers in theJournal of the Atmospheric
Sciences) reveals that this engagingly
simple view is not valid in any quantita-
tively useful sense. The basic difficulty
is that the forcing cannot be treated as
random with a simple statistical struc-
ture. If it were white, the linear barotro-
pic model, given an initial
streamfunction anomalyx(0), would
predict a most probable anomaly at a
later time asx(t) = G(t) x(0), whereG is
the barotropic propagator. The lower
right panel ofFig. 2.15 shows the poor
average skill of 640 10-day forecasts of
low-pass 300 mb streamfunction made
in this manner, using observed initial
conditions in the winters of 1985-93.
Given that one does not expect such a
simple model to produce accurate fore-
casts, only reasonably accurate statis-
tics, one might consider this test too
harsh. Unfortunately, the model does
not fare any better at reproducing the
observed statistics. For a white noise

forcing, it predicts that the lag-covari-
ancesC(t) are linked to the zero-lag
covarianceC(0) asC(t) = G(t) C(0). The
remaining two panels ofFig. 2.15 com-
pare the observed 10-day lag-covariance
C(10) of the low-pass 300 mb stream-
function with that predicted using the
observedC(0) as the zero-lag covari-
ance. The comparison is poor; there is
even an error of sign over large areas.

A red noise forcing produces somewhat
better, but still unrealistic, lag-covari-
ances (not shown). We have systemati-
cally investigated the statistics
generated by a hierarchy of stochastic
forcing distributions, and concluded that
extratropical low-frequency variability
cannot be viewed as stochastically
forced barotropic Rossby waves evolv-
ing on the climatological zonally vary-
ing upper tropospheric flow. The spatial
and temporal structure of the observed
variability cannot be understood without
also taking into account the detailed

Most energetic phase Least energetic phase

Fig. 2.14.The streamfunction of the leading barotropic eigenmode of the 250-mb northern winter climatological
flow at two quadrature phases: (a) the most energetic phase, and (b) the least energetic phase. The contour interval
is arbitrary, but the same in the two panels. Negative values less than one contour interval are shaded. The mode
evolves from (a) to (b) to -(a) to -(b) to (a) over its period.
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spatial and temporal structure of the
forcing, respectively.

2.3.2  The most sensitive areas of
Rossby wave forcing, and their
dependence on season

In view of the likely importance of the
details of Rossby wave forcing sug-
gested above, we have attempted to
determine the most sensitive areas of
forcing for generating large responses
over North America. As in the previous
sections, this has been done by con-

observed 300 mb
streamfunction variance

observed 300 mb
10-day lag covariance

predicted 300 mb
10-day lag covariance

anomaly correlation of 300 mb
10-day forecasts

Fig 2.15.Top left: Observed variance of low-pass filtered 300 mb streamfunction anomalies for the winters of
1985-93. The filter passes periods longer than 10 days. Top right: observed 10-day lag covariance of the
streamfunction anomalies. Bottom left: predicted 10-day lag covariance of the streamfunction anomalies, using a
15-day drag in the linear barotropic model. The contour interval is 40 x 1012m2 s-1 in all three panels, and areas
with negative values are colored blue. Bottom right: the local anomaly correlation of the predicted and observed
day 10 streamfunction anomalies. The contour interval is 0.15, and areas with negative values are colored blue.
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structing sensitivity maps, i.e., influence
functions or optimal forcing patterns,
using our knowledge of the upper tropo-
spheric barotropic propagator. As
before, we seek to maximize a linear
measure of the response over a chosen
target region, say the 300 mb geopoten-
tial height anomaly averaged over the
western United States.Fig. 2.16shows
the optimal forcing patterns for generat-
ing a large height anomaly in this region
at different times of year. Since Rossby
wave propagation is strongly affected by
the background vorticity gradients,
which change substantially from month
to month, we expect the optimal forcing
patterns also to change from month to
month, and they do. The changes are
particularly marked during the spring
and fall seasons. For example, the most

sensitive area of forcing in early spring
(February-March) is over the tropical
central and east Pacific ocean; in June it
is over the subtropical far western
Pacific ocean. There is also a marked
decrease in the spatial scale of the opti-
mal forcing as spring progresses. Some
of these changes can be understood in
terms of simple WKB theory applied to
Rossby wave propagation on the sphere.

In addition to highlighting the sensitiv-
ity of western U.S. height anomalies to
different forcing areas at different times
of year,Fig. 2.16 makes another impor-
tant point. For an arbitrary forcingF, the
responseR in the target region is the
projection ofF on the sensitivity mapsS
in Fig. 2.16;  we write R = S • F. The
fact thatS is strongly time-dependent

JAN FEB MAR

Forcing influence functions
for Western U.S. height response

APR MAY

DEC JUN

NOV OCT SEP AUG JUL

Fig 2.16. Sensitivity maps for Rossby wave vorticity forcing of western U.S. 300 mb height response, using
observed base states. The center of the target area is indicated by a large filled circle. (The target area itself is
considerably larger than the filled circle). The contour interval is 6 x 1011 ms-2, values greater than 6 x 1011
ms-2 shaded red, and those less than - 6 x 1011 ms-2 are shaded blue. The zero contour is not shown for clarity.
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then raises the possibility of interactions
across time scales. In other words, it is
possible for a steady forcingF to pro-
duce an unsteady response, and equally,
for an unsteady forcing to produce a
seasonal-mean response.Fig. 2.16 sug-
gests that such multiscale interactions
would be relatively strong in the transi-
tion seasons. Chapter 3 discusses a
study of the 1988 U.S. drought in which
they may have played a significant role.

2.3.3  Understanding and predicting the
statistics of synoptic weather systems

Extratropical synoptic variability, with
variance maxima over the western
Pacific and Atlantic oceans (often
referred to as ‘storm-tracks’), is strongly
affected by the slow variations of the
background flow in space and time. The
variations of the storm tracks, in turn,
affect the variations of the background
flow, again in both space and time. As
mentioned earlier, a proper understand-
ing and modeling of this interaction
remains an outstanding problem in
meteorology. Some  progress has been
made by uncoupling the two compo-
nents of the problem, and asking ques-
tions such as 1) given a background
flow, to what extent can one predict the
storm tracks? and 2) given the storm
tracks, to what extent can one predict
the structure of the background flow?

Research conducted at CDC has shed
new light on the first of these questions.
Two different, but complementary, stud-
ies have been performed. In the first, the
focus was on clarifying the roles of two
apparently competing processes in
storm-track organization by a zonally
varying background flow: low-level
baroclinicity, and upper-level horizon-

tal flow deformation. We addressed this
issue in the simplest model capable of
generating storm-tracks, a 2-level quasi-
geostrophic model with periodic bound-
ary conditions on a midlatitude beta
plane. Idealized background flows, with
various combinations of baroclinicity
and deformation, were prescribed as
superpositions of an equivalent barotro-
pic stationary wave on a zonally sym-
metric baroclinic flow. In such flows the
relative strengths of the zonally varying
baroclinicity and horizontal deformation
are controlled by a single parameterr,
the ratio of the stationary wave ampli-
tudes at the upper and lower levels. For
r → 1, the baroclinicity is zonally uni-
form. In this case the model generates a
storm track (Fig. 2.17a) that is located
in the entrance region of the upper level
jet, just downstream of the point of min-
imum deformation. For r → 0, both the
baroclinicity and deformation fields
vary zonally. The model’s storm track
(Fig. 2.17c) is now located in the exit
region of the upper jet, just downstream
of the point of maximum baroclinicity.
For intermediate values ofr, the model
produces two distinct storm tracks in the
jet entrance and exit regions (Fig.
2.17b). Thus both baroclinicity and hor-
izontal flow deformation are important,
but with very different effects on storm
track organization.

Our goal is to understand storm track
organization well enough to be able to
predict the different storm tracks associ-
ated with different background flows, in
both observations and GCM simula-
tions. A reasonably simple and accurate
‘storm-track model’ would be useful for
understanding seasonal anomalies, diag-
nosing GCM errors, and parameterizing
synoptic eddy fluxes in simple models
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of low-frequency variability. The mid-
latitude beta plane model with periodic
boundary conditions, though useful for
investigating storm track sensitivities to
certain features of the background flow,
is too simple for this more ambitious
purpose.

We have subsequently constructed a
more sophisticated, but still very simple,
storm-track model that is applicable in
realistic settings. We consider a 2-level
hemispheric quasi-geostrophic model
linearized about a specified background
flow, and force it with Gaussian white
noise. For seasonal-mean flows, the
model is baroclinically stable for a rea-
sonable choice of damping parameters.
As emphasized by several investigators,
synoptic eddies can still grow on an

exponentially stable flow for a finite
time, either through local baroclinic and
barotropic energy interactions with the
flow or in response to the stochastic
forcing. In a state of statistical equilib-
rium, a fluctuation-dissipation relation
(FDR; also referred to as the Liapunov
equation) links the covariance of the
eddies to the structure of the back-
ground flow and the covariance of the
forcing. We assume that the white noise
forcing always has the same constant
covariance. Under this assumption, the
FDR reduces to a one-to-one link
between the synoptic-eddy covariance
and the background flow, and so given
any background flow, it can be solved to
obtain the eddy covariance associated
with that flow. All other second-order
statistics such as eddy kinetic energy,
momentum and heat fluxes, and power
spectra, can then also be predicted. This
is our storm track model.

For long-term mean flows such as the
wintertime climatology, the model pro-
duces rather realistic climatological
storm tracks. Fig. 2.18 shows the
observed and predicted synoptic-eddy
streamfunction variances at 400 mb, and
also the 400 mb streamfunction tenden-
cies induced by the observed and pre-
dicted eddy vorticity fluxes. In view of
the simplicity of the 2-level quasi-geo-
strophic dynamics and the drastic
assumptions made about the forcing, the
model’s predictions based only on a
knowledge of the climatological mean
flow are astonishing. We also find that
the FDR is sensitive enough to back-
ground flow changes that it is able to
predict important aspects of the
observed seasonal variation of storm
tracks associated with the seasonal vari-
ation of the background flow. Fig. 2.19

Fig 2.17. Synoptic-scale transient eddy energy (thick
contours) and time-mean upper-level streamfunction
(thin contours) for integrations with  (a)r = 0.75,  (b)
r = 0.5, and  (c)r = 0.25. Line segements are aligned
along major eddy axes with length proportional to a
measure of eddy anisotropy.
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compares the observed and predicted
400 mb synoptic eddy kinetic energy
maps for January and April. The
observed Pacific storm track is weaker
than the Atlantic storm track in January
(even though the Pacific jet is stronger
than the Atlantic jet), and stronger than
it in April. The model successfully cap-
tures this behavior.

The success of these calculations sug-
gests that it is not necessary to invoke
either exponential baroclinic instability
or the details of synoptic eddy excitation
to understand most of the observed
characteristics of extratropical storm
tracks, and their slow variations in time.
Rather, the dynamics of nonmodal syn-
optic eddy growth in the Pacific and
Atlantic jets, and the propagation and

Fig 2.18. Comparison of some observed measures of synoptic eddy variability (left) with those predicted by the
storm-track model (right), for northern winter (DJF). Synoptic variability is defined here as the variability of 1-
to-8 day band-pass filtered eddies. Top panels: Observed and predicted 400 mb streamfunction variance.
Contour interval is 1x1013 m4s-2, and values greater than 6 contour intervals are shaded. Bottom panels:
Observed and predicted 400 mb streamfunction tendency induced by synoptic eddy vorticity fluxes. Contour
interval is 6 m2 s-2, values greater than 6 m2 s-2 are shaded brown, and those less than - 6 m2 s-2 are shaded
blue. This streamfunction tendency is a measure of the synoptic eddy feedback on the background
climatological flow.



Research on Intraseasonal to Interannual Variability                                                                           CHAPTER 2

1997 CDC Science Review 25

dispersion of the eddy activity in the dif-
fluent regions downstream of the jets,
appear sufficient for this purpose.

2.3.4 Zonal mean flow - stationary
wave interactions

Given that the climatological zonal
mean flow strongly affects the structure
of the climatological stationary waves, it
seems plausible to expect that zonal
mean flow changes will also affect the
stationary waves, thus contributing to
extratropical low-frequency variability.

The dominant mode of variability of the
zonal mean 500 mb winds, determined
through an EOF analysis and shown in
the upper panel ofFig. 2.20, is associ-
ated with meridional displacements of
the jet between 35˚N and 55˚N. The
lower panel ofFig. 2.20 shows a 47-
year time series of a winter zonal index
defined as the zonal wind difference
between 35˚N and 55˚N. Its interannual
variability is appreciable, and interest-
ingly, it is only weakly correlated with
the interannual variability of tropical
Pacific SSTs. The index is, however,

Fig 2.19. Comparison of the observed (left) and predicted (right)  400 mb synoptic eddy kinetic energy for
January (top) and April (bottom). Contour interval is 15 m2 s-2, and values greater than 105 m2 s-2 are shaded.



CHAPTER 2                                                                                  Research on Intraseasonal to Interann ual Variability

26 1997 CDC Science Review

significantly correlated with the extrat-
ropical stationary wave anomalies; in
fact, in large portions of the hemisphere
the correlations are comparable to and
even greater than those associated with
ENSO.

What is the dynamical significance of
the variability of the zonal mean flow?
Given that it affects and is affected by
the variability of the stationary waves,
one is again looking at a coupled eddy-
mean flow interaction problem. As
before, some insight may be gained by
uncoupling it and asking questions such
as: given the anomalous zonal mean
flow for a winter, to what extent can one
predict the anomalous stationary waves
for that winter?  We have attempted to

answer this question for the winters of
1977-94 using a steady linear baroclinic
stationary wave model. For each winter,
we specify the terms representing the
advection of the climatological station-
ary waves by the anomalous zonal mean
circulation as a steady forcing, and
interpret the response to this forcing as a
‘zonal anomaly-forced signal’.Fig. 2.21
compares the standard deviation of the
17 eddy 500 mb height signals thus
obtained with the standard deviation of
the 17 observed eddy 500 mb height
anomaly fields. The point of this com-
parison is similar to that of the upper
and middle panels ofFig. 2.4. The zonal
anomaly-forced signals inFig. 2.21
apparently ‘explain’ a much larger frac-
tion of the total seasonal variability than
explained by the SST-forced signals in
Fig. 2.4.

Fig. 2.20. Top: The leading mode of wintertime 500
mb zonal mean wind variability. Bottom: The zonal
mean index defined as the difference in 500 mb
zonal-mean zonal geostrophic wind between
latitudes 35˚N and 55˚N for the winters of 1947
through 1994 (units m/s). The geostrophic wind is
computed from the NCEP analyses of the 500 mb
geopotential height field north of 20˚N. A positive
zonal mean index denotes westerly anomalies at
35˚N relative to those at 55˚N.

Fig 2.21 The standard deviation of winter-mean
zonally asymmetric 500 mb geoptential heights,
calculated from NCEP analyses (top), and  derived
from the linear model response to the anomalous
zonal mean state for each winter (bottom) for the
period 1977-94. The contour interval is 10 gpm, and
values greater than 40 gpm are colored red.
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These calculations suggest that a sub-
stantial portion of the low-frequency
variability of the zonally asymmetric
circulation is associated with that of the
zonal mean circulation. We recognize,
of course, that both are mostly unpre-
dictable noise. Nevertheless, the fact
that the zonally symmetric variability is
relatively low-dimensional noise (in its
EOF space) suggests that the zonally
asymmetric variability is also relatively
low-dimensional noise. It is interesting
to note in this context that nearly 64% of
the variance of the 17 signals inFig.
2.21 is explained by a single pattern
associated with the anomalous zonal
wind profile inFig. 2.20.

2.3.5  The role of extratropical SST
variations

Interannual variations of SST are not
confined to the eastern tropical Pacific
ocean. As shown in Fig. 2.22, there is
also substantial SST variability in the
North Pacific and North Atlantic basins.
Furthermore, there is evidence that a
large portion of it, especially in the
western oceans, occurs independently of
ENSO. The top and middle panels of
Fig. 2.22 show the time series of area-
averaged winter SST anomalies in the
western North Pacific and eastern equa-
torial Pacific oceans, respectively. Their
correlation is only - 0.15.

Despite many studies, the impact of
such extratropical SST variations on
low-frequency atmospheric variability
remains unclear. Empirical lead-lag
relationships studied by CDC scientists
strengthen the view that the SST vari-
ability is more of a response to the
atmospheric variability than a generator
of it. In other words, the extratropical

atmosphere cares less about anomalous
extratropical SSTs than vice versa. This
still leaves the question open, however,
as to precisely how much it does care.

Many atmospheric GCM experiments
have been performed with prescribed
extratropical SST anomalies to deter-
mine the atmospheric response to them.
The results have been variable and con-
fusing, not only because the response is
weak and difficult to establish in short
integrations, but also because it is sensi-
tive to the precise location of the pre-
scribed SST anomalies in relation to the
atmospheric jet streams and their associ-
ated storm tracks.

CDC scientists are taking some of the
first steps in systematically investigating

Fig. 2.22. Top: Index of area-averaged DJF-mean
SST anomalies in the region 40˚N-50˚N, 150˚E-
160˚W. Middle: Index of area-averaged DJF-mean
SST anomalies in the region 5˚N-5˚S, 180˚W-100˚W
(middle). Bottom: Standard deviation of DJF-mean
SST anomalies during 1950-95.
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these sensitivities. A series of long
NCEP GCM integrations have been per-
formed using an idealized SST anomaly
pattern in the northwest Pacific (Fig.
2.23), with amplitude roughly double
the standard deviation of observed SST
anomalies in the region. Four sets of 96-
month runs have been made for both
perpetual January and perpetual Febru-
ary conditions. The lower two panels of
Fig. 2.23 show the ensemble-average
500 mb height responses obtained in the
two cases. Both are much weaker than
the response to tropical SST anomalies
discussed in the previous section, and
very different from one another. Their
associated vertical structures (not
shown) are also very different: the Janu-

ary response is baroclinic; the February
response is nearly equivalent barotropic.
These differences highlight the large
sensitivity of the response to the rela-
tively minor changes that occur in the
Pacific jet and storm track from January
to February.

2.4 The predictability of extreme
climate and weather events

In essence, weather and climate predic-
tion are both problems of predicting the
conditional probability distributionPf of
anomalies given that some event (a par-
ticular initial condition, ENSO, or a
doubling of Carbon Dioxide, for exam-
ple) has occurred. The usefulness of the

Fig 2.23SST anomaly pattern specified in the perpetual January and February GCM experiments (upper panel).
The GCM’s 500 mb height response in the perpetual January experiment (lower left) and in the perpetual
February experiment (lower right).
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prediction depends upon how different
Pf is from the unconditional distribution
P. If the distributions are normal, they
are completely defined by their means
and standard deviations; we may write
Pf = N(s,σf) andP = N(0,σ). Heres is
the most likely anomalous state (the
‘signal’) andσf a measure of the range
of possible states (the ‘noise’) after the
event has occurred;σ is a measure of
the range of possible states before it has
occurred (the ‘natural variability’). In
practice,s and σf   may be estimated as
the sample mean and standard deviation,
respectively, of an ensemble of fore-
casts, andσ estimated as the climato-
logical standard deviation. Note that the
forecasts in question may be either
dynamical or empirical forecasts.

The usefulness of a forecast is then
determined by the  values of σf /σ and
s/σ. If σf /σ << 1, as in short range
weather prediction, the maximum likeli-
hood forecasts is ‘deterministic’. Such
a forecast is useful regardless of
whether s/σ is large or small. In
extended-range weather prediction, sea-
sonal forecasting, and global change
scenarios, however,σf /σ ~ 1. In such a
situation,s can still be useful as a fore-
cast ifs/σ >> 1. In most cases, however,
s/σ << 1, and consistent with thisthe
average skill ofs  is low (e.g.,Fig 2.5).

The problem, then, is how to make opti-
mal use of forecasts whens/σ  << 1 and
σf /σ ~ 1, that is, whenPf is close toP.
There are two possibilities. One is to use
the fact that even in such situations the
differences betweenPf and P are rela-
tively large on the tails of the distribu-
tions, and so focus on predicting the
altered probabilities of extreme events.
The other is to use the fact that even if

the average forecast skill ofs is low, the
forecast is more skillful in some cases
than others, either becauses/σ is rela-
tively large orσf /σ   is relatively small.
One may attempt to identify such cases
beforehand, that is, ‘forecast the fore-
cast skill’. CDC scientists have been
investigating both of these possibilities,
the first in the context of seasonal pre-
dictions over North America, and the
second in the context of medium to
extended range weather prediction.

2.4.1 The altered risks of extreme events

Even apparently small changes of the
normal distribution can have large
implications for the probabilities of
extreme events. For example, a shift of
half  a standard  deviation to  the right
(s/σ = 0.5, σf /σ = 1) nearly doubles the
probability of values greater than +σ
from 16% to 31%, and more than halves
the probability of values less than−σ
from 16% to 7%. For the shift accompa-
nied by slightly altered variability, say
σf /σ = 0.8, these changes are from 16%
to 27%, and from 16% to 3%, respec-
tively. The occurrence of ENSO is asso-
ciated with similar small shifts and
altered variabilities in the distributions
of extratropical variables. So even if the
ENSO signal is not large enough to
affect appreciably the expected mean
values of those variables, it can still
greatly affect the probabilities of their
extreme values.

It is clearly important to determinePf
andP as accurately as possible if one is
to draw inferences about the altered
risks of extreme events associated with
ENSO. One may attempt to do this
either through a large ensemble of GCM
simulations with and without ENSO, or
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through an analysis of past observed
behavior. The two approaches are com-
plementary. Both have their advantages
and drawbacks, and both are on our
research agenda.

We have made some progress with the
empirical approach in estimating the
altered risks of extreme U.S. precipita-
tion anomalies associated with El Niño
and La Niña. For this study a long-term
SOI time series and NCDC Climate
Division precipitation data for 1896-
1995 were used. The results suggest that
the odds of extremely dry or wet spring
seasons in the southwestern U.S. are
significantly changed as much as three
seasons in advance by the occurrence of

ENSO. The altered odds are most evi-
dent at a one-season lead.Fig. 2.24
shows the relative risk, compared to a
climatological risk of 20%, of the occur-
rence of extreme springtime precipita-
tion anomalies associated with El Niño
(upper panel) and La Niña (lower panel)
in the preceding winter. There is a great
deal of information of both scientific
and practical interest on these maps.
The green areas marked ‘Wet’ are those
for which there is a substantially higher
risk of an extremely wet spring accom-
panied by a substantially lower risk of
an extremely dry spring. The yellow
areas marked ‘Dry’ are those for which
the opposite is true, that is, a substan-
tially higher risk of an extremely dry

       
 

 

 

 

 

F
re

qu
en

cy
  o

f 
 O

cc
ur

re
nc

e

0Dry Wet

 Normal climate distribution

       
 

 

 

 

 

0Dry Wet

 Shifted mean

       
 

 

 

 

 

 

0Dry Wet

 Reduced variability

Fig 2.24.(a) Schematic illustrating how changes  in
the mean or variance alter the risks of extreme
events. (b),(c) Relative risk (compared to a
climatological risk of 20%) of the occurrence of
extreme springtime precipitation anomalies over the
U.S. associated with El Niño and La Niña in the
preceding winter. The impact of ENSO involves both
changes in the mean and higher moments of the U.S.
climate distributions. In particular, a shift in the mean
increases the risk of one extreme and reduces it of the
other. The areas marked ‘Wet’ and ‘Dry’ refer to
these situations. On the other hand, increased or
decreased variability associated with  ENSO raises or
lowers the risks of either extreme, which are marked
‘Both’ and ‘Reduced’, respectively.
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spring accompanied by a substantially
lower risk of an extremely wet spring. In
the olive green areas marked ‘Both’,
there is a higher risk of both extremely
dry and extremely wet springs due to
increased variability associated with
ENSO (σf /σ > 1), and in the red areas
marked ‘Reduced’, there is a reduced
risk of both extremely dry and
extremely wet springs due to reduced
variability (σf /σ < 1). Note also the
interesting asymmetries in the maps for
El Niño and La Niña.

2.4.2 Forecasting the forecast skill of
weather events

No weather or seasonal forecasting sys-
tem displays uniform forecast skill. In
the s/σ <<1, σf/σ ~ 1 scenario, espe-
cially, the errorE of the ensemble-mean
forecasts can vary substantially from
case to case. The question is to what
extent these variations are predictable.
As mentioned earlier, one might expect
E to be smaller whens/σ is relatively
large and/orσf/σ is relatively small.
Many researchers have focused on the
latter as being more relevant in medium
and extended range weather prediction.
In particular, they have searched for a
simple ‘error/spread’ relationship
betweenE and σf for possible use in
operational predictions ofE. We at CDC
are also active in this research area
through a link with NCEP.

Fig. 2.25 shows some results from a
recently completed study of the error/
spread relationship in 105 cases of 17-
member ensemble forecasts made at
NCEP in the winter of 1995/96. In each
case, the errorE is defined at each grid-
point as the magnitude of the ensemble-
mean forecast error, and the spreadσf as

the mean deviation of the individual
members from the ensemble-mean. The
two quantities are then averaged over all
105 cases and all grid points. The blue
and black curves inFig. 2.25 show such
averages ofE and σf, respectively, for
the 250 mb streamfunction as a function
of forecast lead time. Ideally, the two
curves would be identical. The fact that
they are not suggests that there is room
for improvement in the NCEP ensemble
forecasting system; it is possible that
both initial condition and model errors
are being undersampled in generating
the ensembles.

The red curve in Fig. 2.25 shows the
correlation of the variations ofE andσf
over the 105 cases, obtained first at each
grid point and then averaged over all
grid points. It reaches a maximum of
about 0.3 at forecast day 5, and
decreases rapidly after that. One expects
the correlation to decay for longer lead
times, because at longer lead times the
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Fig 2.25 Ensemble RMS spread (black) and RMS
error (blue) for 250 mb Northern hemisphere
streamfunction as a function of forecast lead time
using NCEP ensemble forecasts initialized between
November 15, 1995 and March 15, 1996. The
temporal correlation between spread and skill
averaged over all Northern hemisphere gridpoints is
shown by the red curve.
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conditional probability distribution
N(s,σf) tends to the climatological dis-
tribution N(0,σ). The ensemble mean
forecast is then always close to climatol-
ogy, and therefore its error varies from
case to case with standard deviation σ.
The ensemble spread, however, remains
approximately constant nearσ, and so
the correlation drops.

The error/spread relationship between
the ensemble-mean errorE and the
ensemble spreadσf  is thus fairly weak
in the NCEP forecast ensembles. As we
saw in regard to the extratropical impact
of ENSO in the previous sections, how-
ever, weak linear correlations can give a
misleading impression of the utility of
the connection between two quantities.
Table 2.1 is a contingency table of
ensemble-mean error and ensemble
spread for the same 105 forecasts of 250
mb streamfunction. The entries are pro-
portional to the joint probability of
obtaining the error and spread values in
the indicated quintiles. Thus an entry in
the ith row and jth column represents
the probability of the simultaneous
occurrence ofE in its ith quintile andσf
in its jth quintile. If there were no rela-
tionship betweenE and σf, all the
entries would be 0.2. If there were a per-
fect linear relationship, all the diagonal
elements would be 1 and all the off-
diagonal elements would be zero. The

actual values are only marginally differ-
ent from 0.2 over most of the table, but
they are substantially different from 0.2
at its corners. This means, for example,
that whenσf is in its highest quintile,
the chances ofE being in its highest
quintile are 3.4 times the chances of its
being in its lowest quintile. There is thus
some utility in the relationship between
spread and error, which is obscured by
the low linear correlation.

Contributed by:  P. Sardeshmukh, J.
Barsugli, M. Borges, R. Dole, M. Hoer-
ling, M. Newman, S. Peng, C. Penland,
J.  Whitaker,  and K. Wolter.

Table 2.1 Contingency table of RMS spread and
RMS error at forecast day 5 for the same 105
forecasts used to create Fig. 2.25. Entries in the table
are the probability that the error is in a given class,
given that the spread is in that class. Both the spread
and the skill are divided into five classes (or
quintiles), each with 20% (or 21) values for each
gridpoint. All gridpoints in the Northern hemisphere
poleward of 20¡N are used, so that each entry in the
table is computed using 144x29x21=87696 values.

Spread
quintile

0.1

Spread
quintile

0.3

Spread
quintile

0.5

Spread
quintile

0.7

Spread
quintile

0.9
Error

quintile
0.1

0.34 0.22 0.19 0.14 0.10

Error
quintile

0.3
0.23 0.22 0.20 0.20 0.14

Error
quintile

0.5
0.18 0.22 0.21 0.21 0.18

Error
quintile

0.7
0.16 0.19 0.20 0.21 0.23

Error
quintile

0.9
0.09 0.15 0.18 0.24 0.34
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