Is Global Warming Affecting Hurricanes, and Will it Do So in the Future?

Kerry Emanuel Massachusetts Institute of Technology

The Evidence

Historical Record

Paleotempestology

• Theory

Downscaling Global Climate Models

No Obvious Trend in Global TC Frequency, 1970-2006

Data Sources: NOAA/TPC and NAVY/JTWC

Better Intensity Metric:

The Power Dissipation Index

A measure of the total frictional dissipation of kinetic energy in the hurricane boundary layer over the lifetime of the storm

Power Dissipation Based on 3 Data Sets for the Western North Pacific

(smoothed with a 1-3-4-3-1 filter)

TC Power Dissipation and SST, Western North Pacific

Data Sources: NAVY/JTWC, Japan Meteorological Agency, UKMO/HADSST1, Jim Kossin, U. Wisconsin

Atlantic Storm Maximum Power Dissipation (Smoothed with a 1-3-4-3-1 filter)

Data Source: NOAA/TPC

Atlantic Sea Surface Temperatures and Storm Max Power Dissipation

(Smoothed with a 1-3-4-3-1 filter)

What is Causing Changes in Tropical Atlantic Sea Surface Temperature?

10-year Running Average of Aug-Oct NH Surface T and MDR SST

Tropical Atlantic SST(blue), Global Mean Surface Temperature (red), Aerosol Forcing (aqua)

Mann, M. E., and K. A. Emanuel, 2006. Atlantic hurricane trends linked to climate change. EOS, 87, 233-244.

Best Fit Linear Combination of Global Warming and Aerosol Forcing (red) versus Tropical Atlantic SST (blue)

Mann, M. E., and K. A. Emanuel, 2006. Atlantic hurricane trends linked to climate change. EOS, 87, 233-244.

Paleotempestology

Donnelly and Woodruff (2006)

Theoretical Upper Bound on Hurricane Maximum Wind Speed:

Surface temperature

Ratio of exchange coefficients of enthalpy and momentum Outflow temperature

0

Air-sea enthalpy disequilibrium

Heat Engine Theory Predicts Maximum Hurricane Winds

Maximum Annual Potential Intensity (MPH)

Observed Tropical Atlantic Potential Intensity

Data Sources: NCAR/NCEP re-analysis with pre-1979 bias correction, UKMO/HADSST1

Downscaling from Global Climate Models

Our Approach

- Step 1: Seed each ocean basin with a very large number of weak, randomly located cyclones
- Step 2: Cyclones are assumed to move with the large scale atmospheric flow in which they are embedded
- Step 3: Run a coupled, ocean-atmosphere computer model (CHIPS) for each cyclone, and note how many achieve at least tropical storm strength
- Step 4: Using the small fraction of surviving events, determine storm statistics.

Example: 200 Synthetic Tracks

Present Climate: Spatial Distribution of Genesis Points

Observed

Synthetic

Calibration

 Absolute genesis frequency calibrated to North Atlantic during the period 1980-2005

Genesis Rates

Seasonal Cycles

Cumulative Distribution of Storm Lifetime Peak Wind Speed, with Sample of 2946 Synthetic Tracks

Captures effects of regional climate phenomena (e.g. ENSO, AMM)

Year by Year Comparison with Best Track and with Knutson et al., 2007

Simulated vs. Observed Power Dissipation Trends, 1980-2006

Global Percentage of Cat 4 & Cat 5 Storms

What Caused Changes in the Atlantic, 1980-2006?

Power Dissipation

Now Use Daily Output from IPCC Models to Derive Wind Statistics, Thermodynamic State Needed by Synthetic Track Technique

Compare two simulations each from 7 IPCC models:

1. Last 20 years of 20th century simulations

2. Years 2180-2200 of IPCC Scenario A1b (CO₂ stabilized at 720 ppm)

Basin-Wide Percentage Change in Power Dissipation

Basin-Wide Percentage Change in Storm Frequency

7 Model Consensus Change in Storm Frequency

7-Model Consensus Change in Genesis Density

Some Concluding Thoughts:

- Globally, the frequency of tropical cyclones shows no trend, but power dissipation has been increasing over the past 25 years
- Atlantic hurricane frequency and power dissipation are increasing, probably as a result of global warming

 Future projections yield mixed results on affect of global warming on hurricane activity

Spare Slides

6-hour zonal displacements in region bounded by 10° and 30° N latitude, and 80° and 30° W longitude, using only post-1970 hurricane data

Model	Institution	Atmospheric	Designation in this	Potential
		Resolution	paper	Intensity
			and the second second	Multiplicative
			- the second	Factor
Community	National Center for	T85, 26 levels	CCSM3	1.2
Climate System	Atmospheric Research	Sector Company	and the second	1000
Model, 3.0	the second second			1
CNRM-CM3	Centre National de	T63, 45 levels	CNRM	1.15
1 and the	Recherches		101100000	
and the second second	Météorologiques, Météo-	and the second		
15	France			
CSIRO-Mk3.0	Scientific and Research	T63, 18 levels	CSIRO	1.2
	Organization			
ECHAM5	Max Planck Institution	T63, 31 levels	ECHAM	0.92
GFDL-CM2.0	NOAA Geophysical Fluid	2.5°X 2.5°, 24	GFDL	1.04
1.1.1	Dynamics Laboratory	levels	100 14	
			St. Contraction	
MIROC3.2	CCSR/NIES/FRCGC, Japan	T42, 20 levels	MIRO	1.07
mri_cgcm2.3.2a	Meteorological Research Institute,	T42, 30 levels	MRI	0.97

Genesis Distributions

Best Track

CNRM

ECHAM

MIROC

CCSM3

CSIRO

GFDL

MRI

Why does frequency decrease?

Critical control parameter in CHIPS:

$$s_m - s_b \cong s_m - s^* = \frac{L_v q^*}{T} (\mathcal{H} - 1) - R_v \mathcal{H} q^* \ln \mathcal{H},$$

Entropy difference between boundary layer and middle troposphere *increases* with temperature at constant relative humidity

Change in Frequency when T held constant in χ_m

1. 1995

Synthetic Track Generation, Using Synthetic Wind Time Series

- Postulate that TCs move with vertically averaged environmental flow plus a "beta drift" correction (Beta and Advection Model, or "BAMS")
- Approximate "vertically averaged" by weighted mean of 850 and 250 hPa flow

Synthetic wind time series

 Monthly mean, variances and co-variances from NCEP re-analysis data

Synthetic time series constrained to have the correct mean, variance, co-variances and an power series

Track:

 $\mathbf{V}_{track} = \alpha \mathbf{V}_{850} + (1 - \alpha) \mathbf{V}_{250} + \mathbf{V}_{\beta},$

Empirically determined constants:

 $\alpha = 0.8,$ $u_{\beta} = 0 \, m s^{-1},$

 $v_{\beta} = 2.5 \, ms^{-1}$

6-hour zonal displacements in region bounded by 10° and 30° N latitude, and 80° and 30° W longitude, using only post-1970 hurricane data

250 hPa zonal wind modeled as Fourier series in time with random phase:

$$u_{250}(x, y, \tau, t) = \overline{u}_{250}(x, y, \tau) + \sqrt{u'_{250}^2(x, y, \tau)}F_1(t)$$

$$F_{1} \equiv \sqrt{\frac{2}{\sum_{n=1}^{N} n^{-3}} \sum_{n=1}^{N} n^{-3/2} \sin\left(2\pi \left(\frac{nt}{T} + X_{1n}\right)\right)}$$

where *T* is a time scale corresponding to the period of the lowest frequency wave in the series, *N* is the total number of waves retained, and X_{1n} is, for each *n*, a random number between 0 and 1.

Seasonal Cycles

Western North Pacific

MDR Lower Stratospheric Temperature

Contributions to North Atlantic Potential Intensity

Contributions to North Atlantic Hurricane Power Dissipation:

Enhanced Apparent Dependence on Sea Surface Temperature

Global Atmospheric Temperature Trend Patterns (1979-2005)

Fu, Johanson, Wallace (2006, Science, in press)

Scientific Basis of the "Natural Cycles" Story

The Atlantic Multi-Decadal Oscillation (AMO)

NOAA's take on Atlantic Hurricane Variability:

"Research indicates that the effect of global climate change on hurricanes, if any, is relatively small, whereas the fluctuations of activity associated with multidecadal changes in ocean temperatures is very large"

– NOAA talking points Q&A

Third rotated EOF of the non-ENSO residual 1856-1991 de-trended SST data. From Goldenberg et al., 2001, adapted from Enfield et al., 1999, *J. Climate*

Variation with time of amplitude of third rotated EOF of the non-ENSO residual 1856-1991 de-trended SST data

Same, but showing global distribution. From Enfield et al., 1999

Source: Hadley Centre Global Surface Temperature Data

De-trended Aug-Oct NH surface T

Goldenberg et al. AMO index

Sulfate Aerosol Forcing (Kiehl et al., JGR, 2000)

Plate 3. Geographic distribution of the annual mean direct forcing (W m⁻²) due to anthropogenic sulfate aerosols.

Gray et al., Geo. Res. Lett., 2004: PCA's of tree rings from 12 trees in Europe and North America...curve fit amplitudes of first 5 PCs to instrumental record of detrended North Atlantic SSTs

Knight et al., 2005: 1400 year simulation with coupled global model (HADCM3): Multidecadal fluctuations in thermohaline strength, associated with North Atlantic SST variations of ~0.1 C

