Tropical Cyclone Winds

Florida Governor's Hurricane Conference

May 12, 2008 Michelle Mainelli Hurricane Specialist National Hurricane Center

To be discussed...

- Intensity Definition
- Estimation of Current Intensity
- Factors that Influence Intensity Change
- Official Intensity Forecasts / Models
- Factors of Winds over Land
- Decision Making Tools

WHAT IS THE INTENSITY OF A TROPICAL CYCLONE?

It is defined as the maximum sustained surface wind:

The maximum wind, averaged over a 1- minute interval at an altitude of 33 ft (10 m), associated with the circulation of the tropical cyclone at a given point in time

With very, very, few exceptions direct measurements of this quantity are <u>not available</u>

NHC Wind Forecasts

- Initial & forecast intensity out through 5 days
- 64/50/34 kt wind radii @ initial, 12h, 24h, 36h
 50/34 kt wind radii @ 48h and 72h
- Wind radii are roughly estimated into four quadrants:

NE - SE - SW - NW

**** Only depicts the maximum extent of winds in each quadrant ****

HOW DO WE ESTIMATE INTENSITY?

- Satellites (primary)
 - Geostationary infrared & visible images (Dvorak Technique)
 - Microwave soundings (AMSU)
 - Scatterometer derived surface winds (QSCAT)

- Surface observations
 - Ships, buoys, land stations (limited)

HOW DO WE ESTIMATE INTENSITY Cont. ?

- Aircraft Reconnaissance
 - Flight-level winds
 - GPS dropsondes

Stepped-Frequency Microwave Radiometer (SFMR)

- Doppler radar
 - Land-based (WSR-88D)
 - Airborne

Can we use central pressure to estimate TC intensity ?

Pressure / Wind Relationships

Reconnaissance Based "Best Track" Pressure-Wind Relationship (1998-2005)

Ranges in MSLP by TC Category

Strong TS (50-63 kt) 974-1010 mb (36 mb)

Category 1 Hurricane 962-1004 mb (42 mb) Category 2 Hurricane 947-994 mb (47 mb)

Category 3 Hurricane Category 4 Hurricane Category 5 Hurricane 927-971 mb (44 mb) 892-964 mb (72 mb) 892-933 mb (41 mb)

FACTORS AFFECTING TC INTENSITY

- Sea surface temperature / upper ocean heat content.
- Environmental winds, esp. vertical wind shear.
- Trough interactions.
- Temperature and moisture patterns in the storm environment.
- Internal effects (e.g. eyewall replacement cycles).
- Interaction with land.

VERTICAL WIND SHEAR

TROUGH INTERACTION: HURRICANE BERTHA, JULY 12 1996

NOAA/TPC/NATIONAL HURRICANE CENTER

Eyewall Replacement Cycles

In addition to large-scale environmental influences, tropical cyclone intensity change can be caused by inner-core processes, such as eyewall replacement cycles:

In stronger hurricanes, we often see a concentric eyewall develop at a larger distance from the center than the radius of the original eyewall.

When this outer eyewall becomes dominant, some weakening usually occurs.

However, this outer eyewall could contract, in which case the hurricane would re-intensify.

CONCENTRIC EYEWALL CYCLE HURRICANE FLOYD

13/0116Z 13/1122Z 13/1347Z 13/2240Z 14/0104Z 14/1110Z 14/2228Z

CONCENTRIC EYEWALL CYCLE HURRICANE FLOYD

13/0116Z 13/1122Z 13/1347Z 13/2240Z 14/0104Z 14/1110Z 14/2228Z

Wind Speed (kt)

Best Track Intensity - Hurricane Floyd September 1999

TROPICAL CYCLONE INTENSITY FORECAST MODELS

- Statistical Models:
 - **Decay SHIFOR** (Statistical Hurricane Intensity FOR ecast with inland decay).
 - Based on historical information climatology and persistence (uses CLIPER track).
 - Measure of skill of intensity forecasts

Statistical/Dynamical Models:

- SHIPS (Statistical Hurricane Intensity Prediction Scheme):
 - Based on climatology, persistence, and statistical relationships to current and forecast environmental conditions.
- **DSHIPS** (Decay SHIPS):
 - Same as SHIPS except when track forecast points are over land when a decrease in intensity following an inland decay model is included.
- LGEM (Logistics Growth Equation Model from SHIPS)
 - Uses the same predictors as SHIPS but uses them in a different way similar to population growth
 where there is a limiting capacity to grow

• Dynamical Models:

- HWRF, GFDL, GFDN, GFS, UKMET, NOGAPS.
 - Based on the present and the future by solving the governing equations for the atmosphere (and ocean).

A STATISTICAL TECHNIQUE TO AID IN THE FORECAST OF RI :

The 7 predictors used to estimate the probability of Rapid Intensification (defined as an increase in maxwind speed of at least 25 kt over 24 h):

Predictor	Definition
PER	Previous 12 h intensity change
SHR	850-200 mb vertical shear
D200	200 mb divergence
РОТ	Maximum Potential Intensity (a function of SST) minus Current Intensity
RHLO	850-700 mb relative humidity
STDIR	Standard deviation of IR brightness temperature
PIX	Percentage of GOES pixels colder than -30 C

VERIFYING: 160 KNOTS	*	ATLANTIC SHIPS INTENSITY FORECAST GOES/OHC INPUT INCLUDED WILMA 10/18/05 18 UTC						*					
TIME (HR) V (KT) NO LAND	0 70	6 75	12 81	18 86	24 92	36 100	48 105	60 108	72 109	84 106	96 101	108 92	120 80
V (KT) LAND	70	75	81	86	92	100	105	108	109	106	101	67	61

** 2005 ATLANTIC RAPID INTENSITY INDEX ** (25 KT OR MORE MAX WIND INCREASE IN NEXT 24 HR)

WILMA 10/18/05 18 UTC

12 HR PERSISTENCE (KT):	Value: 10.0	Range:	-20.0	to	25.0	Scaled va	alue: (0.90
850-200 MB SHEAR (KT) :	Value: 8.1	Range:	42.5	to	2.5	Scaled va	alue: (0.86
SST (C) :	Value: 29.3	Range:	24.3	to	30.4	Scaled va	alue: (0.82
POT = MPI-VMAX (KT) :	Value: 92.0	Range:	27.1	to	136.4	Scaled va	alue: (0.59
850-700 MB REL HUM (%):	Value: 81.6	Range:	57.0	to	88.0	Scaled va	alue: (0.79
<pre>% area w/pixels <-30 C:</pre>	Value: 98.0	Range:	17.0	to	100.0	Scaled va	alue: (0.98
STD DEV OF IR BR TEMP :	Value: 15.8	Range:	37.5	to	8.0	Scaled va	alue: (0.74

Scaled RI index= 5.68 Prob of RI= 59.4% is 4.9 times the sample mean(12.1%)

OFFICIAL FORECAST CALLED FOR 90-100 KNOTS IN 12-24 HOURS

INITIAL 18/2100Z 16.7N 81.5W 70 KT 12HR VT 19/0600Z 17.3N 82.3W 90 KT 24HR VT 19/1800Z 18.2N 83.5W 100 KT 36HR VT 20/0600Z 19.1N 84.5W 110 KT 48HR VT 20/1800Z 20.2N 85.2W 115 KT 72HR VT 21/1800Z 22.5N 85.5W 110 KT 96HR VT 22/1800Z 25.0N 82.5W 100 KT 20HR VT 23/1800Z 30.5N 75.5W 70 KT

TC INTENSITY DYNAMICAL FORECAST MODELS

- HWRF, GFDL, NCEP Global Model (GFS), UKMET (U.K. Met Office), NOGAPS (U.S. Navy), ECMWF (European)
- These models are of limited use, because of...
 - sparse observations.
 - inadequate resolution (need to go down to a few km grid spacing; the HWRF and GFDL, our highest-resolution operational hurricane models, are currently about 9 km).
 - incomplete understanding and simulation of basic physics of intensity change.
 - biases in upper-level wind forecasts.
 - (becoming less of a problem)

GFDL model did capture some of Wilma's rapid deepening.

(qm) Pressure FOR TPC/NHC IN HOUSE USE ONLY !!!!!!!

ATTENTION...NATIONAL HURRICANE CENTER

NCEP COUPLED GFDL HURRICANE MODEL FORECAST MADE FOR

TROPICAL STORM PHILIPPE 17L

INITIAL TIME 18Z SEP 18

DISCLAIMER ... THIS INFORMATION IS PROVIDED AS GUIDANCE. IT REQUIRES INTERPRETATION BY HURRICANE SPECIALISTS AND SHOULD NOT BE CONSIDERED AS A FINAL PRODUCT. PLEASE SEE THE TPC/NHC OFFICIAL FORECAST.

FORECAST STORM POSITION

3	HOUR	LAT	LONG	PRES	WIND observe	DIR/SPD
	HOUR 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96	LAT 15.5 15.8 16.2 16.7 17.0 17.3 17.8 18.1 18.5 19.1 19.7 20.4 21.2 21.9 22.7 23.5 24.4	LONG -55.8 -56.1 -56.5 -57.0 -57.4 -57.8 -58.2 -58.5 -58.5 -58.4 -58.5 -58.4 -58.3 -58.3 -58.2 -58.4 -58.3 -58.2 -58.5 -58.4 -58.3 -58.2 -58.5 -58.0	PRES 1001 995 987 974 963 963 957 951 942 946 946 943 941 940 944 946 948	WIND observe 51 59 63 80 94 65 96 100 100 100 110 55 111 106 114 110 40 112 107 103 105	DIR/SPD 340/7 308/4 318/6 316/7 311/4 307/5 317/6 319/4 4/4 11/6 350/6 6/7 8/8 2/7 341/8 342/8 343/9
	84 90 96 102	22.7 23.5 24.4 25.0	-58.5 -58.8 -59.0 -59.2	944 946 948 950	107 103 105 100	341/8 342/8 343/9 348/6
	108 114 120 126	25.7 26.5 27.4 28.5	-59.3 -59.3 -59.0 -58.4	954 955 956 956	92 93 91 <u>30</u> 92 ◀	348/7 5/8 16/10 -28/12 observed: dissipated
2						

Early GFDL forecasts for Ernesto showed a strong hurricane in the middle of the Gulf (Category 4 in this case).

Later on, the GFDL track was much better, but it depicted Ernesto reaching southeast Florida and the Carolinas as a hurricane.

060828/0600 UTC Maximum Surface Wind Speed (knots) for ernesto051

NHC OFFICIAL INTENSITY FORECAST

- HURRICANE EVACUATION ROUTE
- Based on statistical guidance from SHIPS and D-SHIFOR, qualitative guidance from dynamical models.
- Persistence is used quite a bit!
- Obvious signs in the environment, i.e. cooler waters, increasing upper-level winds, are taken into account.
- Generally corresponds to what is *normal* for a storm in any particular situation (e.g. the standard Dvorak development rate).
- Tends to be conservative; extreme events are almost never forecast.
- For forecasts 24 h and beyond, the average error is roughly 1 SSHS Category (15-20 knots).

Ng_ittle progress with intensity

Intensity Forecasting Guidance from 2008

070820/2215 GOES12 VIS

Intensity forecasts for Hurricane Dean

NCEP COUPLED GFDL HURRICANE MODEL FORECAST MADE FOR	NCEP COUPLED HWRF HURRICANE MODEL FORECAST MADE FOR
HURRICANE DEAN 04L	HURRICANE DEAN 04L
INITIAL TIME 12Z AUG 16	INITIAL TIME 12Z AUG 16

HOUR	LAT	LONG	PRES	WIND	DIR/SPD		HOUR	LAT	LON	PRES	WIND	DIR/SPD
0	10 5				005 / 01							/
0	13.5	-53.3	990	/6	275/21		0	13.6	-53.6	982	78	275/21
6	13.9	-55.4	989	81	280/20		6	13.8	-55.9	980	69	275/22
12	14.3	-57.3	986	85	282/19		12	14.2	-57.9	980	78	281/20
18	14.5	-59.6	985	86	277/22		18	14.4	-60.2	967	90	275/22
24	14.7	-61.8	987	78	273/21		24	14.8	-62.1	962	87	282/19
30	15.2	-63.9	982	85	283/21	Missed 1 st	30	15.1	-64.0	957	85	279/19
36	15.2	-65.8	978	80	271/18	Intensification	36	15.5	-65.8	948	93	283/18
42	15.4	-67.5	972	89	277/17	Intensitication	42	15.8	-67.4	940	102	281/16
48	15.8	-69.3	964	101	283/17	130 kt oper	48	16.1	-68.9	933	115	281/15
54	16.2	-71.1	965	98	281/18		54	16.4	-70.3	928	110	282/14
60	16.6	-72.9	960	99	282/18	145 Kt post	60	16.5	-71.5	926	114	275/12
66	17.0	-74.7	952	114	283/17	-	66	16.6	-72.8	919	121	274/12
72	17.6	-76.5	945	118	289/18		72	16.9	-74.1	921	117	283/13
78	18.2	-78.5	951	114	287/20		78	17.5	-75.4	914	132	295/14
84	18.8	-80.1	949	118	289/16		84	18.1	-77.0	919	118	291/16
90	19.5	-81.8	939	123	292/18	Hit 2 nd	90	18.6	-78.6	921	121	287/16
96	20.4	-83.3	925	135	301/18		96	19.0	-80.1	905	135	285/15
102	21.4	-84.8	923	139	304/17	Intensification	102	19.4	-81.7	899	127	284/16
108	22.6	-86.2	916	142	311/17	115 kt oper	108	19.8	-83.0	898	132	287/13
114	23.8	-87.7	916	143	307/18		114	20.3	-84.3	889	135	291/13
120	25.0	-89.1	913	142	312/18	150 kt post	120	21.0	-85.5	888	145	300/13
126	26.2	-90.5	913	139	311/17		126	21.6	-86.9	890	138	293/14

Obj. Aid Time Intensity for 04L for 081518

Intensity (kts)

Hurricane Dean 5 day HWRF forecasts of max. winds starting from 8/19/06Z

Humberto intensified from a TD to a hurricane in 18 hours!

HUMBERTO

Obj. Aid Time Intensity for 09L for 091212

Intensity (kts

Summary of Intensity...

- HURRICANE EVACUATION ROUTE
- Intensity forecasting is not as advanced as track forecasting.
- There is less skill for intensity forecasting than there is for track forecasting.
- Current guidance is provided mainly by DSHIPS and GFDL, HWRF (still evaluating)
- We have significant difficulty in forecasting rapidly intensifying and rapidly weakening storms.
- The main hope for the future lies in improved dynamical models, coupled with enhanced observations and understanding of the hurricane's inner core. This is a long-term project - HFIP !

Factors of Winds over Land

Size of storm

Effects of terrain

Forward motion of the storm
 Storm moving inland at 25 mph vs. 9 mph

Reder image from Mallanel Weather Service: KAMX 11:13 UTC 10/24/2005

Wind Radii (size of storm) Watch-Warning Graphic

ROUTE

Typical Cat-4 MEOW – 9 mph

 \blacksquare >34Kt(39mph) \blacksquare >50Kt(58mph) \blacksquare >64kt(74mph) \blacksquare >80Kt(92mph) \blacksquare >95Kt(109mph) \blacksquare >110kt(127mph)

Typical Cat-4 MEOW – 25 mph

■ >34Kt(39mph) = >50Kt(58mph) = >64kt(74mph) = >80Kt(92mph) = >95Kt(109mph) = >110kt(127mph)

Wind Speed Probabilities

EVACUATION

Tools you can use....

1) For <u>planning purposes</u> before the season use the MEOWs as guidance:

2) When a <u>storm is approaching</u>

use the wind speed probabilities to determine the potential risk for the inland extent of tropical storm and hurricane force winds

Tools you can use....

3) When the system is <u>approaching land or making landfall</u> use the initial wind radii graphic to get a picture of the current size of the storm and the potential area affected by strong winds

ROUTE

Thanks!

