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Preface

This monograph is a collection of methods for calculating induced
charge distributions in gas proportional detectors of conventional geometry.
These methods have been mainly taken from papers already published, in
collaboration with colleagues, by the writer, but there are also additional
notes and comments.

The task of gathering together this previously scattered work was
originally motivated by the wish for greater convenience; to have the in-
formation all in one place. There was also the satisfaction of attempting
to arrange material with a common theme in a logical and self-consistent
manner. It is hoped, however, that the final result may also be of assistance
or interest to younger colleagues working with proportional detectors, and
perhaps especially, to research students just encountering them.

Special computer programmes for field calculations are now becom-
ing more widely available, and their use is indeed necessary for tackling
irregular geometry, and most three-dimensional, problems. However for con-
ventional geometry detectors the theoretical analysis can usually be carried
through to a sufficiently late stage that such special packages become quite
unnecessary. The real advantage of employing this more analytical approach,
however, is that a fuller, more productive understanding necessarily emerges
of detector operation and of the basic physics involved.

It should be stressed that this monograph does not attempt in any
way to present a history of wire chambers or proportional detectors. It
is only a collection, restricted and specialised, of topics on induced charge
calculation. General references have been given to help the reader, and of
course previous work directly relevant to the establishment or development
of a particular calculation has been acknowledged. However the background
history of each topic has not been referenced; this would be inappropriate
in a small monograph of such limited aims. If, within these limitations, I
have unintentionally omitted to give correct priority to any research work
then I apologise to those concerned, and would be grateful to be informed.

Theoretical calculations in isolation are totally barren. It is only
in interplay with measurement and observation that they gain any mean-
ing. I am deeply grateful in this respect to my colleagues Dr. G.C. Smith
(Brookhaven National Laboratory), Dr. T.J. Harris (Leicester University)
and Dr. J.S. Gordon (V.S.W. Sci. Instr.). Their special skills and knowl-
edge have been essential in placing some experimental flesh on my theoretical
skeletons.

E. Mathieson Leicester University, England
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Chapter 1.

BASIC THEORY AND DEFINITIONS

1.1 Methods of calculating induced charge

There are essentially two different approaches to the calculation of
induced charge. The first, using the reciprocity theorem, is by far the most
useful and will be employed in most of the applications described below.
The second method, the evaluation of the surface field, has to be employed
in special circumstances.

(i) The reciprocity method

Consider the system of conductors shown in Fig. 1.1. The relation-
ship between the charges qi and the potential Vi may be expressed in terms
of geometrical configuration coefficients cij [1,2]. Thus,

qi =

3∑
j=1

cijVj

Suppose we wish to calculate the charge q1 induced on conductor 1 by charge
q2 on conductor 2, all conductors other than 2 being grounded. Then

q1 = c12V2 and q2 = c22V2

Thus
q1 = q2 c12/c22

To calculate the ratio c12/c22 consider now that conductor 1 is raised to
unit potential, conductor 2 is insulated and uncharged and conductor 3 is
grounded. Let P be the potential to which conductor 2 rises. Then

1
2

3

Figure 1.1
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0 = c12 + c22 P or P = −c21/c22
But it is a property of the configuration coefficients that cij = cji

(Green’s reciprocal theorem). Thus

q1 = −Pq2
The conductor 2 may be considered to be physically very small. That is we
may regard a positive ion of charge q2 mathematically as conductor 2.

Thus, to summarise, the charge qi induced on the surface of a par-
ticular conductor by a point charge q0 at (x, y, z) is equal to −q0P , where P
is the potential at (x, y, z) when that conductor is at unit potential all other
conductors being grounded.

qi = −q0P (1.1)

To illustrate the great power of this simple theorem consider the
infinite parallel plate system of Fig. 1.2. If plate 1 is raised to unit potential
with plate 2 grounded then the potential at distance y is simply

P (y) = (h− y)/h

Thus, by Eqn. 1.1 the charge induced on plate 1 by a point charge q0 at y is

qi = −q0(1 − y/h) (1.2)

This would otherwise be a quite lengthy calculation. However note
that this particular application cannot yield the distribution of induced
charge. The surface field method would have to be used, and this would
involve summation of the field due to an infinite series of image charges.
(See however Chapter 6.)
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(ii) The surface field method

If the field En at the surface of a conductor can be evaluated, by
any of the standard electrostatic methods, then the induced charge density
is ε0En, where ε0 is the electrical space constant. This method has been
employed below to calculate the induced charge distribution in a coaxial
chamber (Chapter 7).

1.2 Ion trajectories

In order to investigate the development with time of the induced
charge qi, it is necessary to follow the trajectory x(t), y(t) of the inducing
charge q0. This latter is generally a separate calculation and should not be
confused with the former. The induced charge on a particular electrode,
N say, is −q0 PN(x, y) where PN(x, y) is the potential at (x, y) due to unit
potential on electrode N all other electrodes being grounded. The trajectory
x(t), y(t), however, is formed from the derivatives of the potential P (x, y),
where P (x, y) is the potential at (x, y) due to the operating potentials on
all chamber electrodes. PN(x, y) and P (x, y) may represent quite different
calculations.

The positive ion mobility µ may usually be regarded as constant and
the velocity of the ion is given by

v = µE (1.3)

where E is the electric field due to the chamber operating voltages. Methods
of calculating ion trajectories using this formula are given in detail below
(Section 3.2)

It may sometimes be more useful to calculate directly the electrode
induced current ii(x, y) rather than induced charge qi(x, y). This calculation
can be represented, formally, as follows. Let the induced charge on electrode
N be −q0 PN(x, y). Then the induced current is given by

ii = −q0dPN
dt

= −q0dPN
d`

v

where d` represents an increment of path in the direction of ion motion, that
is in the direction of the applied field E. Thus

ii = −q0µ(EN · E) (1.3)

where EN = − grad PN . Of course calculation of ii as a function of time
also required knowledge of the ion trajectory x(t), y(t).
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1.3 Induced charge and signal charge

Let the charge induced on the surface of electrode N by point charge
q0 be −qN , see Fig. 1.3. From Eqn. (1.1) −qN = −q0 PN . Then the signal
charge, that is the observable charge, is −(−qN) = qN .

Thus signal charge qN and signal current iN are given by, respec-
tively,

qN = q0 PN(x, y) (1.4a)

iN = q0
dPN(x, y)

dt
(1.4b)

The resulting signal waveforms depend also on the signal processing of iN
(see Section 1.5 below).

Of course in proportional counters and chambers, one electrode, the
anode, receives a negative (electron) charge. This is usually assumed to
occur as a delta function of time (but for exception see comment in Section
1.5). If the ion charge is q0 then this electron charge must have been −q0.
Thus if electrode A is the anode of the system, the net anode signal charge
is

qa = −q0 + qA = −q0(1 − PA) (1.5)

If there are only two electrodes, with electrode C enclosing electrode
A (e.g. a coaxial counter) then

qa = −q0(1 − PA)

qc = q0 − qA = q0(1 − PA) = −qa
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1.4 Nomenclature

An attempt will be made to employ a consistent nomenclature, that
employed above, throughout these notes. Thus the inducing point charge,
positive, will be denoted by q0. The induced charge on the surface of elec-
trode N will be −qN so that the signal (observable) charge is then qN . The
net charge on electrode N , will be denoted by use of lower case subscript, as
in the previous section. If the signal charge and net charge are the same (i.e.
no collected charge) then lower case subscript will generally be used. The
potential due to unit potential on electrode N , all other electrodes being
grounded, will be PN(x, y).

If these conventions are not able to be followed then special comment
will be made.

1.5 Signal processing

It is not the intention to discuss signal processing in detail in these
notes but, for completeness, some very brief observations may be made in
this introductory section. (see also Section 2.4).

If qn(t) or in(t) is obtained (generally numerically) then the pro-
cessing system output may be obtained by convolution with the appropriate
system impulse response. In every case of practical interest this convolution
has to be performed numerically but, using library integration routines now
available, completely adequate accuracy can be readily achieved.

If the primary excitation is not itself a delta function, for example
due to diffusion before the avalanche or due to finite photoelectron range,
then the output waveform must be further convoluted with the primary
waveform to obtain a final result. This last procedure is required in certain
circumstances (for example if accurate knowledge of the initial slope of the
output waveform is of importance, as in pulse shape discrimination).

1.6 The avalanche charge q0

The avalanche is assumed to produce an electron charge −q0 and
therefore also a positive ion charge q0. In all wire chambers it will be assumed
that the final stage of this avalanche occurs so close to the anode wire surface
that the electron component of the anode signal is negligible. (See Appendix
7 for quantitative justification.) This cannot be assumed in a parallel plate
chamber. In both wire chambers and parallel plate chambers the avalanche
electron collection time is assumed to be negligible.

Determination of the magnitude of q0 in terms of the anode potential
and gas physics, that is the determination of gas gain, is a complicated
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problem that would require a further monograph to unravel. A few brief
comments to indicate how the magnitude of q0 might be estimated are given
in Appendix 6.

1.7 Geometry limitations

Readers of this monograph are reminded that most of the problems
studied concern systems in which the electrode geometry can be regarded
as remaining constant with respect to one coordinate (the z-axis). Thus
chamber wires are normal to the x − y plane and mathematical infinitely
long. Under these conditions the potential distribution due to the electrode
potentials becomes a function of x, y only, and hence several powerful and
well-established methods (the use of complex variables) may be used to
obtain suitable solutions.

References

1. J.C. Maxwell, A treatise on electricity and magnetism (3rd Ed.), Oxford
University Press, London, 1892.

2. W.R. Smythe, Static and dynamic electricity, McGraw-Hill, New York,
1950.
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Chapter 2.

COAXIAL GEOMETRY I

The simple results derived below are long-established and well-known.
However it will be very convenient for later work to have collected here some
important, basic formulae.

2.1 Formulae for field, potential and capacitance [1]

Consider a coaxial chamber, with anode radius ra and cathode radius
rc, length very large compared with rc, anode at potential Va and with
grounded cathode, Fig. 2.1. Then the field at radius r is given by

E = 2CVa/r (2.1)

where
C = 1/ ln(rc/ra)

2 (2.2)

The capacitance per unit length of anode is

C1 = 4πε0C (2.3)

where ε0 is the electrical space constant.*
The potential at radius r is given by

P = Va[1 − C ln(r/ra)
2] (2.4)

Va

Figure 2.1

* 4πε0 = 0.1113 pF/mm
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2.2 Anode induced and net charges

Unit potential on the anode, the cathode being grounded, produces
a potential distribution, from Eqn. 2.4,

PA = 1 − C ln(r/ra)
2

Thus if the avalanche results in a positive point charge q0 at radius r then,
from Eqn. 1.1, the anode induced charge is

−qA = −q0[1 − C ln(r/ra)
2] (2.5)

and therefore, from Eqn. 1.5, the anode net charge is

qa = −q0C ln(r/ra)
2 (2.6)

Clearly the cathode signal, and net, charge is qc = −qa.
That is

qc = q0C ln(r/ra)
2 (2.7)

2.3 Time development of anode charge

The ion velocity is radial and of magnitude given by, Eqns. 1.2
and 2.1,

dr

dt
= µE =

2µCVa
r

(2.8)

Thus ∫ r

ra

r dr = 2µCVat

or
(r/ra)

2 = 1 + 4µCVat/r
2
a (2.9)

It is convenient to define a characteristic counter time t0.

t0 = r2
a/4µCVa (2.10)

Thus
(r/ra)

2 = 1 + t/t0 (2.11)

and
qa(t) = −q0C ln(1 + t/t0) (2.12)

This functional dependence on time t was obtained by Wilkinson [2]. Typical
values for C and t0 for a small coaxial counter are 0.07 and 0.5 nanoseconds
respectively.
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Despite the very fast rise time of the charge pulse, as shown by
Eqn. 2.12, the ions are not collected at the cathode until a time tc many
orders of magnitude greater than t0. It follows from Eqn. 2.12 that

tc/t0 = (rc/ra)
2 − 1

The collection time tc may be several tens to several hundred of microsec-
onds.

At very high count rates a large counter may contain an appreciable
charge of drifting positive ions. The effects of this positive ion space charge
are described briefly in Section 3.6.

2.4 Signal processing

As a brief illustration consider the standard system shown in Fig. 2.2.
A charge-sensitive amplifier is followed by an amplifier with differentiating
time constant T1 and integrating time constant T2. (In practice T1, T2 are of
the order 0.2 to 2µs.) The transfer impedance for the system is H(s) given
by

H(s) = − 1

sC0

s

s+ 1/T1

1/T2

s+ 1/T2

and hence the impulse response is

h(t) = − 1

C0

T1

T1 − T2

(
e−t/T1 − e−t/T2

)
Then it is easily shown that for counter current, from Eqn. 2.12,

i(t) = −q0C/(t+ t0) (2.13)

the output voltage is given by

v(t) = q0
C

C0

T1

T1 − T2

{f(t, t0, T1) − f(t, t0, T2)}
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where

f(t, t0, T ) = e−(t+t0)/T

∫ (t+t0)/T

t0/T

ez

z
dz

Thus even in this very simple case a final analytical solution is not possible.
However the exponential integral can now be evaluated numerically to any
required degree of accuracy (with sufficient care; see Appendix 4). Special
treatment is required for T1 = T2, but presents no difficulties.*

This method can be readily adapted to treat all standard signal
processing methods.

References

1. W.R. Smythe, Static and dynamic electricity, McGraw Hill, New York
1950.

2. D.H. Wilkinson, Ionisation chambers and counters, Cambridge Univer-
sity Press, Cambridge, 1950.

* If T1 = T2 = T , say, then

ν(t) = q0
C

C0

{
t+ t0
T

f(t, t0, T ) + e−t/T − 1

}
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Chapter 3.

MULTIWIRE GEOMETRY I.
Weber approximation

3.1 Introduction

The multiwire proportional chamber, developed originally by Char-
pak and his colleagues at CERN [1], has been applied over a remarkably
wide range of investigations. These have included important, central ex-
periments in high-energy physics, X-ray crystalography and astrophysics.
Further applications are still being developed.

The geometry of a conventional, symmetric multiwire chamber is
shown schematically in Fig. 3.1. As in all the multiwire geometries studied
in this monograph it is assumed that ra � s, and that the electrodes extend
mathematically to infinity normal to the x− y plane.

If it can be further assumed that the anode, cathode spacing h is
such that cosh 2πh/s� 1, where s is the (constant) anode wire pitch, then
the Weber approximation [2] for potential distribution may be employed
(see Appendix 1). This leads to considerable simplifications in the formal
analysis. In practice this approximation is generally useful for h >∼ 2s.

This chapter will develop formulae assuming that the Weber ap-
proximation is valid. There are however many important problems which
cannot be treated in this formulation, quite apart form the validity of
cosh 2πh/s � 1. These include the calculation of cathode charge distri-
bution, the analysis of chambers with wire cathodes and drift regions, the
calculation of induced charge on isolated wires or particular groups of wires,
etc. These and other problems will be addressed in Chapter 4, where a
general method of approach will be described.

y

h

s
x

cathode

cathode

anodes

Figure 3.1

3.1



3.2 Potential, capacitance and field formulae

3.2.1 Potential distribution. Anode at unit potential

It is shown in Appendix 1 that the potential function PW (x, y) due to
the anode in Fig. 3.1 being at unit potential, the cathodes being grounded,
is

PW (x, y) = 1 − C ln
2(cosh 2πy/s− cos 2πx/s)

(2πra/s)2
(3.1)

where
C = 1/ ln(rc/ra)

2 (3.2a)

and
rc ≡ (s/2π)eπh/s (3.2b)

It is instructive to note the form of Eqn. 3.1 in the two limiting
regions.
i) x, y � s.

By expansion of the curly bracket in Eqn. 3.1, and by placing (x2 +
y2)1/2 = r, it is found that

PW (r) = 1 − C ln(r/ra)
2 (3.3)

Thus, as expected, close to an anode wire, the potential has coaxial
form.
ii) cosh 2πy/s� 1 then

PW (y) =
2πC

s
(h− |y|) (3.4)

In this case, in the main body of the chamber, the potential falls
uniformly with |y|. The field in this region, per unit anode potential, is
simply ±2πC/s.

3.2.2 Potential distribution. Cathode at unit potential

If the upper cathode, in Fig. 3.1, is at unit potential and the anode
wires and lower cathode are grounded then the analysis of Appendix 1 shows
that the potential function PC(x, y) is given by

PC(x, y) =
y

2h
+
C

2
ln

2(cosh 2πy/s− cos 2πx/s)

(2πra/s)2
(3.5)

It is again interesting to note the form of PC in the limiting regions.
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i) x, y � s

PC =
y

2h
+
c

2
ln

(
r

ra

)2

(3.6)

ii) cosh 2πy/s� 1

PC =
1

2

(
1 +

y

h

)
− πCh

s

(
1 − |y|

h

)
(3.7)

3.2.3 Capacitance per unit length

It was shown in Section 3.2.1 that the potential close to an anode
wire has coaxial form, Eqn. 3.3. The capacitance per unit length of each
anode wire is therefore C1 given by

C1 = 4πε0C (3.8)

where C has been defined in Eqn. 3.2.
Further formulae for C will be developed, for h � s (Section 4.2),

and for the general case (Section 4.3.2).

3.2.4 Field formulae

These are obtained at once by partial differentiation of Eqn. 3.1.
Thus, for anode potential Va, the cathodes being grounded

Ex = −Va∂PW
∂x

= 2CVa
π

s

sin 2πx/s

cosh 2πy/s− cos 2πx/s
(3.9a)

Ey = −Va∂PW
∂y

= 2CVa
π

s

sinh 2πy/s

cosh 2πy/s− cos 2πx/s
(3.9b)

The resultant field E = (E2
x + E2

y)
1
2 is given by

E = 2CVa
π

s

{
cosh 2πy/s+ cos 2πx/s

cosh 2πy/s− cos 2πx/s

}1/2

(3.10)

The two limiting regions have very simple forms
i) x, y � s E = 2CVa/r coaxial field

ii) cosh 2πy/s� 1 Ex = 0, Ey = ±2πCVa/s uniform field
See, however, Section 4.3 for a further discussion of the approxima-

tion near region i).
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3.3 Field lines and ion trajectories

3.3.1 Field line formulae

From the analysis given in Appendix 1 it is seen that the field lines,
from the central anode wire to the cathode, are described by the expression

tanhπy/s = tanπx/s tanα (3.11)

where α is the angle, measured from the x-axis, at which a field line leaves
the anode wire surface, Fig. 3.2.

If cosh 2πy/s� 1 then there is a simple linear relationship between
the coordinate in the uniform field region, x0, and α. From Eqn. 3.11

α =
π

2

(
1 − 2x0

s

)
(3.12)

This equation is relevant when considering the effects of avalanche
angular localization [3].

If for some reason the upper cathode is not grounded but held at a
potential VR relative to the anode potential then the analysis of Appendix 1
shows that the field line equation becomes modified to

tanhπy/s = tanπx/s · tan

{
α− xVR

4hC(1 − VR/2)

}
(3.13)
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3.3.2 Ion trajectories

In order to calculate ion trajectories as a function of time it is nec-
essary to determine the velocity components through the equations

∂x

∂t
= −µVa∂PW

∂x
(3.14a)

∂y

∂t
= −µVa∂PW

∂y
(3.14b)

In numerical calculations it is very convenient to employ normalised
quantities. Thus Eqn. 3.14 above can be written

∂x′

∂t′
= −∂PW

∂x′ (3.15a)

∂y′

∂t′
= −∂PW

∂y′
(3.15b)

where x′ = x/s, y′ = y/s and t′ = t/T0 where

T0 = s2/µVa (3.16)

Linear dimensions are normalized to the anode wire pitch s, and
times are normalized to the quantity T0. In a typical MWPC T0 has the
value of a few microseconds.

The numerical method employed by the writer to calculate ion tra-
jectories may be described very briefly as follows. A small path increment
is chosen, of the order 1µm but actual value depending upon the partic-
ular situation. Velocity components, and resultant velocity are calculated
according to Eqn. 3.15. From the resultant velocity components the two
spatial components of the path increment are obtained. Thus a new point
on the trajectory can be constructed. This is a very simple procedure where
accuracy clearly depends upon the initial choice of the path increment. For
normal situations adequate accuracy is easily and quickly obtained.

3.4 Ion collection times

3.4.1 Average ion collection time

Although not dependent upon the Weber approximation it is conve-
nient at this point to present a very general argument by which the average
ion collection time can be determined [4].

Consider a tube of electrical flux dφ, of unit depth along the z-axis,
and a position where the cross-sectional area is say dA, Fig. 3.3. Let the
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anode wires of the chamber each be counting at the rate n1 per unit length,
generating for each event a charge q0. It will be assumed that the avalanche
events are uniformly distributed round each wire. Thus the ion current into
the tube of flux is

di = n1q0dα/2π (3.17)

where dα is the angular width of the tube at the surface of the wire. This
current remains constant along the tube.

Let the ion charge density at the cross-section dA be ρ. Then the
current through dA is µEρdA = µρdφ/ε0. However the flux dφ is given, in
terms of anode voltage Va, by

dφ = C1Vadα/2π

where C1 is the capacitance per unit length of anode wire. Thus

di = 2µCVaρdα (3.18)

where C1 has been replaced by 4πε0C, Eqn. 3.8. Thus equating the two
expressions for the current di, Eqns. 3.17 and 3.18, an expression for ρ is
obtained.

ρ =
n1q0

4πµCVa
(3.19)

Thus, remarkably, the average ion charge density ρ is independent of posi-
tion. Further, the derivation of Eqn. 3.19 was not specific to a particular
geometry; the result applies to both coaxial and multiwire chambers [4].
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Considering now the multiwire geometry of Figs 3.1 and 3.2 the
volume per unit length of each anode wire cell is 2hs. Thus the average
stored charge per unit length of cell is simply 2hsρ. But the average current
per unit length of wire is n1q0. Hence the average collection time for ions is
tav = 2hsρ/n1q0, or,

tav =
hs

2πµCVa
= T0

h/s

2πC
(3.20)

where T0 = s2/µVa.

This is a useful, general result and important in considering the
reduction in pulse height in MWPCs due to high count rates. (See Section
3.6)

In a typical small chamber tav is of the order 50µs.

3.4.2 Minimum ion collection time

In the present approximation, cosh 2πh/s � 1, a simple analytical
expression can be obtained for the minimum ion collection time, that is
when α = π/2, Fig 3.2. In this case, since x = 0 in Eqn. 3.9,

Ey = 2CVa
π

s
coth

πy

s

Then

tmin =

∫ h

ra

dy

µEy
=

s

2πµCVa

∫ h

ra

tanh
πy

s
dy

=
(s/π)2

2µCVa
ln

coshπh/s

coshπra/s

Since coshπh/s� 1 and ra � s this last result may be written

tmin = T0

h/s

2πC

(
1 − ln 2

πh/s

)
(3.21)

Thus, for example, for h = 2s the minimum collection time is about
11% less than the average collection time tav.
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3.5 Anode and cathode charge waveforms

3.5.1 Coaxial region approximation

If the ions can be considered as moving in the essentially coaxial
region of the avalanche anode wire then the anode waveform can be written
down at once, from Eqns. 2.12 and 3.2. That is

qa(t) = −q0C ln(1 + t/t0)

where C = 1/ ln(rc/ra)
2, rc = (s/2π)eπh/s and t0 = r2

a/4µCVa. For typical
MWPC geometry this waveform should be a useful approximation for t
below about one microsecond.

3.5.2 General case

If signal processing time constants are long enough that the ions
have moved from the coaxial region then, generally, the anode and cath-
ode waveforms must be constructed numerically. That is, from Eqns. 1.5
and 1.4a,

qa = −q0[1 − PW (x, y)] (3.22)

qc = q0PC(x, y) (3.23)

where PW (x, y) and PC(x, y) have been given in Equs 3.1 and 3.5 respec-
tively. The trajectory x(t), y(t) can be constructed using the formulae of
Section 3.3.

Because of the finite differentiating time constant that must be em-
ployed in any signal processing system, the variation of PW (x, y) with initial
angle α (Section 3.3) results in a small but significant dependence of output
pulse height on α. Quantitative evaluation of this effect has been given in
ref. [4].

In a practical situation the electron avalanche must exhibit a finite
angular spread about a centroid position α. In order then to simulate the
anode waveform a weighted ‘fan’ of ion trajectories must be employed in the
model [5,6]. This procedure becomes especially important when considering
the two cathode waveforms.

It is clear already from Eqn. 3.6 that the two induced cathode charges
will be considerably more sensitive to the initial ion angle α than the anode
charge. Quantitative evaluation of qc(t) from Eqn. 3.23 has indeed allowed
a measure to be made of the avalanche angular spread [5]. Examination of
the cathode pulse heights, or rise-times, allows a very clear distinction to be
made between ‘near-side’ and ‘far-side’ events.
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3.5.3 Dependence of gas gain on α

A second effect also results in a dependence of pulse height on ion
initial angle α. Because of the finite departure from a strictly coaxial field,
even close to the anode wire where the avalanche forms, the gas gain itself
is a function of α. This effect may be evaluated quantitatively as follows.

The expression for field, Eqn. 3.10, may be expanded in the region
x, y � s, retaining second order terms as well as first order terms. The
result is

E =
2CVa
r

{
1 − 1

3

(πr
s

)2

cos 2α

}
(3.24)

where tanα = y/x.
In order to obtain a closed formula for the gas gain, let us assume

a simple linear dependence of the Townsend coeficient αT on field. That is,
αT = B(E−E0) where B and E0 are constants. (Typically B ∼ 30kV−1 and
E0 ∼ 20kV/cm.) The gas gain M may be calculated from the relationship

lnM =

∫ r0

ra

αTdr =

∫ r0

ra

B(E − E0)dr

where r0 = 2CVa/E0. The gas gain M0 at α = π/4 is readily shown to be
given by

lnM0 = 2CVaB{ln(r0/ra) − 1 + ra/r0} (3.25)

After some manipulation, and assuming that the fractional change
∆M/M0 is small compared with unity, it is found that

∆M/M0 ' −2B

3

(
π

E0

)2
(CVa)

s2

3

cos 2α (3.26)

This is a simpler formula than originally derived [4], but the depen-
dence on V 3

a /s
2 remains as before.

In reality the variation in gain with α would be rather smaller than
expressed by Eqn. 3.26 because of the finite angular spread of the avalanche.
This smoothing effect may be evaluated in the following manner. Assume
that the avalanche angular distribution can be described by a gaussian with
rms spread σ and total number of primaries n0. That is

n(α) =
n0√
2πσ2

e−(α−α0)
2/2σ2

(3.27)

and the average gas gain at centroid angle α0 is

Mav =
1

n0

∫ ∞

−∞
nMdα (3.28)
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Eqn. 3.26 may be conveniently expressed

M = M0 (1 − k cos 2α) where k =
2B

3

(
π

E0

)2
(CVa)

s2

3

Then the result of the integration, Eqn. 3.28, may be written

(Mav −M0)/M0 = ∆Mav/M0 = −k cos 2α0e
−2σ2

(3.29)

Thus the spreading of the avalanche, due to diffusion, photoelectron
range and intrinsic
avalanche processes, introduces a strong modifying factor e−2σ2

. The effect
of a non-coaxial field is therefore quite rapidly smoothed out. For example,
if σ = π/4 then this modifying factor is ∼ 0.3.

Comparison between experimental measurement and theoretical pre-
diction of the dependence of gas gain on α0 has been reported in ref. [7].
In that same report it is also demonstrated that this dependence can be
effectively suppressed by suitable geometry of the upper wire cathode.

3.6 Dependence of gas gain on count rate

It is convenient to end this chapter with some brief, but quantitative,
comments on the dependence of gas gain on count rate. Because of the
comparatively long ion collection time (tens to hundreds of microseconds), a
significant positive space charge becomes stored in a chamber when operated
at high count rates. This space charge reduces the field near the anode
wire surface and hence reduces the gas gain. This effect can be described
quantatively as follows.

Suppose, for the present argument, that a large area of chamber is
uniformly irradiated, and that each anode wire is counting at the rate n1

per unit length. Then, as shown in Section 3.4.1, the average ion charge
density in the chamber in constant, independent of position, and given by

ρ =
n1q

4πµCVa
(3.30)

Here q is the avalanche charge per count.
This positive ion space charge induces on the anode wire surfaces a

negative charge such that the wire surface is an equipotential (a zero poten-
tial superimposed, of course, on the operating voltage Va). Now provided
the anode wire radius is small compared with the other chamber dimensions
this induced charge can be considered to be uniform line charges coincident
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with the wire axes. Each line charge produces at the position of the anode
wire surface a potential −δV where +δV is the potential which would be
produced at that position in the absence of the anode wires by the space
charge. The space charge field at the wire surfaces is therefore simply that
that would be obtained by a change in operating voltage −δV . It simply
remains to relate δV and ρ.

Straightforward application of Gauss’s theorem shows that uniform
charge density ρ in the chamber would produce, in the absence of anode
wires, a potential distribution

P =
ρ

2ε0
(h2 − y2) (3.31)

Thus in the plane y = 0

δV =
ρh2

2ε0
(3.32)

or

δV =
n1qh

2

2µC1Va
(3.33)

where C1 = 4πε0C is the capacitance per unit length of wire, Section 3.2.3.
Now it is known experimentally that, for both coaxial and multiwire

chambers, over a limited range of gain change (about two to one), lnM is
a nearly linear function of Va. That is, over the typical range observed for
gain reduction due to space charge, the quantity (1/M)dM/dVa is essentially
constant. Thus if q is the avalanche charge and q0 the avalanche charge when
the ion space charge is negligible,

ln
q

q0
= − 1

M

dM

dVa
δV (3.34)

or

ln
q

q0
= − 1

M

dM

dVa

n1qh
2

2µC1Va
(3.35)

It is instructive to write this last equation in the form

ln(q/q0)

q/q0
= −n1q0

Im
(3.36)

where

Im =

(
Rm
M

dM

dVa

)−1

(3.37)
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and
Rm = h2/2µC1Va (3.38)

Thus the performance of a counter with respect to count rate may
be conveniently described by a characteristic current density Im (or a char-
acteristic resistivity Rm). Typically (1/M)dM/dVa ≈ 7 × 10−3V−1 and Im
is in the range 1–20nA/mm.

It is easily shown that for coaxial geometry, replacing Rm by Rc,

Rc = r2
c/4µC1Va (3.39)

The above analysis has considered only the case of uniform irradi-
ation over an unrestricted area. General treatments have been given, for
coaxial counters by Sipila et al. [8], and for multiwire chambers and coaxial
counters by Mathieson [9].

It was an interesting scientific accident that the detailed experiment
measurements on coaxial counters of Sipila & Vanha-Honko [10] appeared
to be in a good agreement with a theoretical formula developed by Hen-
dricks [11] which, unfortunately, was in error by a factor π. Sipila et al. [8],
who then made a more detailed study of the problem, were able to explain
their apparent agreement in terms of the finite irradiation length used in
their experiments.

Experimental verification of the theory developed for MWPCs [9]
may be found in ref. [12].
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Chapter 4.

MULTIWIRE GEOMETRY II.
General treatment

4.1 Introduction

There are several important practical situations in which the method
of Chapter 3 cannot be employed, or simply in which the basic condition
for the validity of the Weber approximation is not met. The present chap-
ter describes a general method for calculating potential, fields and induced
charges which has no restricting condition (other than ra � s, and the as-
sumption of uniform geometry in the z-direction), [1,2]. The chamber need
not be symmetric with respect to anode, cathode spacings and it may con-
tain a wire cathode and a drift region. The width of the anode plane can be
finite if necessary. The anode, or cathode, wires can have non-uniform pitch,
or non-uniform radii, although in practice these conditions are very seldom
encountered (however, see Section 4.6). Except in Section 4.6 wire radii and
wire pitch will be assumed to be constants in the following analyses.

Having calculated potentials and fields due to a specific electrode
configuration, the general methods already described in previous chapters
can be used to determine the induced charge on a particular electrode.

4.2 Potential and capacitance due to single wire

It is shown in Appendix 2 that the potential due to a line charge of
linear density q at (x0, y0), parallel to infinite grounded cathodes normal to
the x, y plane as shown in Fig. 4.1, is given by

h 2

h 1 q (x   , y   )0 0

y

x

Figure 4.1
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P (x, y, x0, y0) = − q

2πε0
L(x, y, x0, y0) (4.1a)

where

L(x, y, xo, y0) = ln

{
cosh a(x− x0) − cos a(y − y0)

cosh a(x− x0) + cos a(y + y0 − d)

}1/2

(4.1.b)

and a = π/2h, h = (h1 + h2)/2, d = h1 − h2.
This basic formula may be adapted and modified for application to

all MWPC field and potential calculations.
Before proceeding to study multiwire chambers it is instructive to

consider a simple application. Assume that a wire of radius ra small com-
pared with h1 and h2, and at potential Va, is situated at the coordinate
origin. Eqn. 4.1 above, with x0 = y0 = 0, yields the potential function, but
we need to evaluate the unknown q in terms of Va (that is, we must find the
capacitance per unit length C1). Let x → 0 and y → 0 with x2 + y2 = r2.
Then

L(r) → ln
ar/2

cos(ad/2)
(4.2)

When r = ra, that is at the wire surface, P = Va. Thus

Va = − q

2πε0
ln

ara/2

cos(ad/2)

Hence

C1 =
4πε0

ln
[cos(ad/2)

ara/2

]2

It is convenient, as in Section 3.1, to write

C1 = 4πε0C ((3.8))

and to define an effective cathode radius rc such that

C = 1/ ln(rc/ra)
2

Thus

rc =
4h

π
cos

(
πd

4h

)

If, as is usual, h1 = h2 = h then d = 0 and

rc = 4h/π (4.3)
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h 2

h 1

y

x
s

Figure 4.2

This value of rc should be compared with the value given in Eqn. 3.2. The
two equations 4.3 and 3.2 represent limiting values corresponding respec-
tively to very large and very small anode wire pitch compared with anode,
cathode spacing. Section 4.3.2 will establish a formula for the general case.

The potential distribution due to a wire, at the origin at potential
Va can now be written

P (x, y) = −2CVa L(x, y) (4.4a)

L(x, y) = ln

{
cosh ax− cos ay

cosh ax+ cos a(y − d)

}1/2

(4.4b)

The basic principles, described in Chapter 1 and in Sections 3.5 and
3.2, may now be applied to calculate the anode charge waveform qa(t).

Eqn. 4.2 may be written in terms of C

L(r) → ln

(
r

ra

)
− 1

2C

Thus for positions near the wire

P (r) = Va(1 − C ln(r/ra)
2)

This is, as expected, of coaxial form, Eqn. 2.4. The anode charge qa(t) is
then given by Eqn. 2.6 with C as defined above.

4.3 Potential, field and capacitance in multiwire chambers

4.3.1 Potential distribution

Fig. 4.2. illustrates schematically the essential geometry of a stan-
dard MWPC, (in most practical situations h1 = h2).
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The potential distribution PW (x, y) due to the anode wires being
at unit potential may be written, formally, from Eqn. 4.1 of the previous
section.

PW (x, y) = −
∑
n

CnLn(x, y, xn, yn) (4.5a)

Ln(x, y, xn, yn) = ln

{
cosh a(x− xn) − cos a(y − yn)

cosh a(x− xn) + cos a(y + yn − d)

}1/2

(4.5b)

where a = π/2h, h = (h1 + h2)/2 and d = h1 − h2.
The summation is taken over all anode wires, and the coordinates of the
nth wire are (xn, yn). It is generally convenient, but not essential, to choose
axes so that yn = 0 and x0 = 0, as shown in Fig. 4.2. It is also normal to
employ constant wire pitch s, so that xn = ns, and constant wire radius ra.
These conditions will be assumed below.

The unknown quantities Cn(= qn/2πε0) may be found in the follow-
ing manner. Let us express the potential, unity, at the mth wire surface.
That is x→ xm and y → ym. Then

1 = −
∑
n

CnLnm (4.6)

where

Lnm = ln

{
cosh as(m− n) − 1

cosh as(m− n) + cos ad

}1/2

n 6= m (4.7a)

and

Lmm = ln
ara/2

cos(ad/2)
n = m (4.7b)

Thus knowing the coefficients Lnm, the unknown vector Cn can be found by
matrix inversion of Eqn. 4.6. (This process requires only the most modest
computing power for any normal number of wires. Several inversion routines
are available in the NAG library.)

For a symmetrical chamber h1 = h2 or d = 0. Then

Lnm = ln | tanh as(m− n)/2| n 6= m (4.8a)

Lmm = ln(ara/2) n = m (4.8b)

4.3.2 Capacitance per unit length of anode wire

Suppose that the anode contains a large number of wires and that
its total width is large compared with h1 and h2. Then in the central region,
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near the axes origin, the quantities Cn are constant, equal to C0 say. From
Section 4.2.1, C0 = q0/2πε0 where q0 is the charge per unit length of anode
wire, the wire being at unit potential. The capacitance per unit length of
wire is therefore 2πε0C0.

From Eqn. 4.6, since Cn = C0 =constant,

1 = −C0

∑
n

Ln0 (4.9)

where

Ln0 = ln

{
cosh ans− 1

cosh ans+ cos ad

}1/2

n 6= 0 (4.10a)

L00 = ln

{
ara/2

cos(ad/2)

}
n = 0 (4.10b)

Following our now standard convention, Sections 3.1 and 4.3, we
express the capacitance per unit length of wire as C1 = 4πε0C and define
an effective cathode radius rc through C = 1/ ln(rc/ra)

2. Then

C = −1/2
∑
n

Ln0 (4.11a)

and therefore

ln rc = ln(4h/π) − 2

∞∑
1

Lno (4.11b)

For a symmetrical chamber Ln0 = ln tanh(nπs/4h), n 6= 0.
The general expression for rc, Eqn. 4.11, may be compared with

those for the two limiting cases.
Eqn. 4.3, for s� h rc = 4h/π
Eqn. 3.2, for cosh 2πh/s� 1 rc = (s/2π)eπh/s

4.3.3 Field formulae

Field calculations are required to determine ion, and electron, tra-
jectories. These may be found by partial differentiation of Eqn. 4.5. The
rather clumsy results may be written

−∂PW
∂x

=
a

2

∑
n

Cn
sinh θx(cos θd + cos θy)

(cosh θx − cos θy)(cosh θx + cos θd)
(4.12a)

−∂PW
∂y

=
a

2

∑
n

Cn
sin θy(cosh θx + cos θd) + sin θd(cosh θx − cos θy)

(cosh θx − cos θy)(cosh θx + cos θd)
(4.12b)

where
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θx = a(x− xn), θy = a(y − yn), θd = a(y + yn − d). (4.12c)

4.3.4 Cathode at finite potential

Suppose the upper cathode in Fig. 4.2 is not grounded but instead
at a potential Vc. (In the analyses below it is convenient to write Vc = VRVa,
where Va is the anode voltage.) This situation is easily treated as follows.

The potential Pc(x, y) due to the upper cathode alone, the anode
wires being absent, is given by

Pc(x, y) = VRVa(y + h2)/(h1 + h2) (4.13)

The potential due to the anode wires is, Eqn. 4.5,

PW (x, y) = −Va
∑
n

CnLn(x, y, xn, yn)

The resultant potential is thus

P (x, y) = Va

[
−
∑
n

CnLn + VR (y + h2) / (h1 + h2)

]
(4.14)

The quantities Cn are of course as yet unknown; they are determined not
only by the applied anode voltage Va but also by the charge induced on the
anode wires by the cathode voltage Vc. The vector Cn may be found by the
same method as employed in Section 4.3.1.

At the anode wire surfaces P = Va. Thus, as in Section 4.3.1, let
x→ xm, y → ym. Then

1 − VR(y + h2)/(h1 + h2) = −
∑
n

CnLnm (4.15)

Where the matrix elements Lnm have been given in Eqn. 4.7. Thus the
vector of quantities Cn may be found by (numerical) inversion of the matrix
equation (4.15). The potential distribution may then be calculated from
Eqn. 4.14.

The field components are clearly given by

Ex = −Va∂PW
∂x

(4.16a)

Ey = Va

[
−∂PW

∂y
− VR

(h1 + h2)

]
(4.16b)

where the differential coefficients have been given in Section 4.3.3.
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Figure 4.3

4.3.5 Chamber with drift region

A very important configuration is shown in Fig. 4.3, where a drift
region of depth dr precedes the chamber proper. It is generally convenient
to operate the (conducting) window of the drift region at zero potential,
with the cathodes at positive potential Vc = VRVa, and the anode at more
positive potential Va. The anode and cathode wire pitches are assumed
constant at sa and sc respectively and the radii are also constants at ra and
rc respectively. (Note the changed use of symbol rc in this section.)

The potential and field distributions in this geometry may be found
by exactly the same method as used in Sections 4.3.1 and 4.3.2. The re-
sultant potential P (x, y) is the sum of three components, due to the anode
wires VaPW , the upper cathode wires VaPC1

, and the lower cathode VaPC2
.

P (x, y) = Va(PW + PC1
+ PC2

) (4.17)

Here, for the anode wires, from Eqn. 4.5,

PW = −
∑
n

CnLn(x, y, n) (4.18a)

where

Ln = ln

{
cosh a(x− nsa) − cos ay

cosh a(x− nsa) + cos a(y − d)

}1/2

(4.18b)

a = π/(h1 + h2 + dr), d = h1 − h2 + dr

For the cathode wires

PC1
= −

∑
i

CiLi(x, y, i) (4.19a)

where
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Li = ln

{
cosh a(x− isc) − cos a(y − h1)

cosh a(x− isc) + cos a(y + h1 − d)

}1/2

(4.19b)

For the lower cathode

PC2
= VR(h1 + dr − y)/(h1 + h2 + dr) (4.20)

The unknown quantities Cn, Ci may be determined by the standard method
(Section 4.3.1). That is, numerical inversion is required of the matrix equa-
tion

Pj − PC = −
∑
k

CkLkj (4.21)

where, for summation over the anode wires,

Pj = 1 (4.22a)

PC = VR(h1 + dr)/(h1 + h2 + dr) (4.22b)

Lkj = ln

{
cosh a(k − j)sa − 1

cosh a(k − j)sa + cos ad

}
k 6= j (4.22c)

= ln

{
ar/2

cos(ad/2)

}
k = j (4.22d)

For summation over the cathode wires

Pj = VR (4.23a)

PC = VRdr/(h1 + h2 + dr) (4.23b)

Lkj = ln

{
cosh a(k − j)sc − 1

cosh a(k − j)sc + cos a(2h1 − d)

}1/2

k 6= j (4.23c)

= ln

{
arc/2

cos a(h1 − d/2)

}
k = j (4.23d)

Thus the LHS vector (Pj−PC) and the coefficients Lkj of the matrix equation
4.21 are all known. The vector Ck can therefore be found by (numerical) in-
version. Hence the potential distribution can be determined from Eqn. 4.17.
Partial differentiation of Eqn. 4.17. yields the two field components.

This section is particularly important since, not only can ion trajec-
tories be determined [3], but also the primary electron trajectories (ignoring
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diffusion) from the drift region to the avalanche region. These latter calcu-
lations have proved useful in determining the significance of cathode wire
pitch and registration [4].

It is clear that the present method may be easily adapted to find the
induced charge on any single wire (see Section 4.4.3) or group of wires. In
Chapter 5 it will be employed to determine the distribution of the induced
charge on the wire cathode.

4.4 Anode charge waveforms

4.4.1 Coaxial region approximation

In typical MWPC geometry the number of anode wires is large (50–
200) and the lateral width of the anode is large compared with the anode,
cathode spacings. Under these (normal) conditions the argument of Section
4.3.2 may be employed to write the general expression for potential, Eqn. 4.5,
in the somewhat simpler form

PW (x, y) = −2C
∑
n

Ln(x, y, n) (4.24)

Here Ln is given by Eqn. 4.5b, with xn = ns and yn = 0, and C by
Eqn. 4.11a.

Now consider the region near the central, avalanche, anode wire and
let x→ 0, y → 0 with (x2 + y2)1/2 = r. Eqn. 4.24 may now be written

PW (r) = −2C

{∑
n6=0

Ln0 + ln
ar/2

cos(ad/2)

}
(4.25)

The quantities Ln0 have been defined in Eqn. 4.10.
Eqn. 4.25 may therefore be written

PW (r) = −2C

{∑
n

Ln0 + ln
r

ra

}
(4.26)

But, from Eqn. 4.11a,
∑

n Ln0 = −1/2C.
Hence

PW (r) = 1 − C ln(r/ra)
2

The potential distribution close to the anode wire is, as expected coaxial,
with C given by the formulae in Section 4.2.2.
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The anode charge waveform, under these conditions, therefore has
the Wilkinson form, Eqn. 2.12.

qa(t) = −q0C ln(1 + t/t0)

4.4.2 General case

Just as already described in Section 3.5.2, if signal processing time
constants are relatively long enough that the ions have moved from the
coaxial region then the anode and cathode waveforms must be constructed
numerically. That is

qa = −q0[1 − PW (x, y)]

where PW (x, y) is one of the various expressions developed in Section 4.3.
The determination of qc is described in Section 4.5.

The method of constructing the ion trajectory x(t), y(t) has already
been described in Section 3.3.2.

4.4.3 Induced charge on isolated anode wire

By measuring the charge induced on the anode wires adjacent to
the avalanche wires it has been possible to study quantitatively the angular
localisation of the avalanche [5]. The standard theoretical methods of this
section may be applied to calculate the induced charge on a single anode
wire, or indeed on any chamber wire.

Consider the chamber of Fig. 4.2 and suppose we wish to determine
the charge induced on the kth wire. According to Eqn. 1.4 we need to
evaluate PK(x, y), the potential due to the kth anode wire being at unit
potential, all other wires and the chamber cathodes being grounded. Thus
we must determine the vector Cn by inversion of the matrix equation

Pm = −
∑
n

CnLnm (4.27)

where Pm = 0, m 6= k and Pm = 1, m = k. The coefficients Lmn have been
defined in Eqn. 4.7. The signal charge induced on the kth anode wire by
point charge q0 at (x, y) is then

qk(x, y) = q0PK (4.28a)

where

PK(x, y) = −
∑
n

CnLn(x, y, n) (4.28b)
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Of course if the kth wire is the avalanche wire then it will have
collected a negative (electron) charge −q0. The net charge is then qk =
−q0(1 − PK).

4.5 Cathode charge waveforms

4.5.1 Continuous cathodes

The standard methods may be applied here. That is we wish to find
the potential distribution PC(x, y) due to unit potential on the appropriate
cathode, all other chamber electrodes being grounded. Consider the asym-
metric chamber of Fig. 4.2 and suppose we wish to determine the signal
charge qc induced on the top electrode by a point charge q0 at (x, y).

Unit potential on the top cathode induces charge (at present un-
known) on the grounded anode wires. Thus, employing Eqn. 4.5, we may
write

PC(x, y) = −
∑
n

CnLn(x, y, n) + (y + h2)/(h1 + h2) (4.29)

The unknown quantities Cn may be determined from the condition that the
anode wire surfaces are at zero potential.

−h2/(h1 + h2) = −
∑
n

CnLnm (4.30)

where the coefficients Lnm have been given in Eqn. 4.7. Inversion of the
matrix equation 4.30 yields the vector Cn, so that PC can be calculated
from Eqn. 4.29. Then

qc = q0PC

The determination of the ion trajectory x(t), y(t) is of course a separate
calculation, as already described in previous sections.

Experimental measurement and theoretical calculations agree in
showing the very strong dependence of qc on initial ion angle α [6]. It is
generally possible, by using the cathode signals, to discriminate very clearly
between ‘near-side’ events and ‘far-side’ events [3].

4.5.2 Wire cathode

The procedure described in Section 4.4.3 for calculating the charge
induced on an anode wire can obviously be applied also to any cathode wire,
or group of cathode wires. Thus the distribution of charge on a wire cathode
may be readily evaluated [2,3]. This topic is of considerable importance in
considering the performance of position-sensitive detectors. The next chap-
ter will deal in detail with the calculation of cathode charge distributions in
MWPCs.
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4.6 Approximation to the microstrip avalanche
chamber (MAC)

The electrostatics of the MAC [7] should correctly be dealt with by
one of the generalised computer packages now becoming more widely avail-
able. Nevertheless it is possible to apply the methods of this present section
to make approximate but very simple, calculations of fields and ion tra-
jectories. These calculations allow quantitative, physical insight into MAC
operation and may indeed be quite adequate for certain purposes.

The overall geometric structure of the MAC consists of a conducting
window plane, a gas-filled drift region, an active plane and a conducting
back-electrode plane. The essential feature of the MAC is the active plane
which consists of parallel microstrip alternating anodes and cathodes de-
posited on an insulating substrate. The anode pitch is very small, of the
order 200µm, with microstrip anode width 5–10µm. Successful fabrication,
and operation, of this structure has been made possible by the develop-
ments of electron beam lithography, allowing electrode dimensions to be
determined to an accuracy of the order 0.1µm.

Primary electrons from the drift region avalanche in the high field
close to a microstrip anode, the resulting positive ions travelling, mainly,
to the two adjacent cathodes. The back electrode, at anode potential, is
essential to prevent charging of the insulating substrate surface. The advan-
tages of the MAC are seen as very high speed operation, due to the short
ion collection times, and the possibility of high spatial resolution due to the
very small anode pitch. The disadvantages are firstly the presently low gas
gains attainable (∼ 103) and, secondly, the difficulty of obtaining good po-
sitional information parallel to the microstrip electrodes. This latter results
from the necessarily very small signals induced on the back electrode and
window, (see accompanying table).

Fig. 4.4 shows schematically, but not to scale, the multiwire structure
that may be used to simulate, approximately, ion motion in a MAC. The
anode strips have been replaced by anode wires, and the cathode strips
by closely spaced cathode wires of very small radii. The relative dielectric
constant of the substrate has been assumed to be unity. This last assumption
represents the most serious approximation and will certainly affect absolute
values of field. Nevertheless, provided this limitation is not forgotten, some
instructive, guiding information can be obtained from this simple model.

The calculations of potential, field and ion trajectories follow the
standard procedures already described in Sections 4.3.1, 4.3.2 and 4.4.3.
The basic equation for potential, Eqn. 4.5 may be employed directly, re-
membering of course that in the present application neither the wire pitch
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nor the wire radii are constants. Nor are all the wires in the active plane
at the same potential. It is nevertheless a straightforward procedure to cal-
culate the signal charges on each of the chamber electrodes, and indeed on
each individual cathode wire. This latter calculation yields directly the dis-
tribution of induced charge across each cathode ‘strip’. (This distribution
of course varies with time but is found always to peak strongly on the wires
closest to the anode wire.)

Two examples of the application of this model may illustrate its
usefulness. The following parameters were employed for those particular
calculations.

anode wire pitch, sa 200µm anode voltage, Va 0.5kV
cathode width, w 45µm cathode voltage, Vc 0.0kV
drift depth, dr 2.0mm window voltage, Vw −1.0kV
substrate thickness, ds 0.5mm back-electrode voltage, Vb 0.5kV

Table 4.1 shows relative signal charges on the anode, the two adjacent
cathodes and the back-electrode. These calculations were made assuming

Table 4.1

t [ns] qa qc qb

20 −0.472 0.366 0.0255

40 −0.563 0.440 0.0295

60 −0.626 0.498 0.0277

80 −0.702 0.586 0.0222

100 −0.744 0.636 0.0193
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that the avalanche was distributed uniformly round the upper half of the
anode wire. That is, each avalanche resulted in an equally weighted ‘fan’ of
positive ions distributed, initially, uniformly round 180◦. Of course the real
avalanche distribution is not known.

The extremely rapid rise-times of the anode and cathode signal
charges should be noted. Note also the very small charge induced on the
back-electrode.

Fig. 4.5 shows ion collection time as a function of initial angle α
at the anode wire surface. (Note the logarithmic scale of the time axis.)
This curve shows that the majority of the ions generated in a uniformly
distributed avalanche are collected very rapidly. The abrupt step near 62◦

represents the switch to collection by the window.
The field lines for this particular geometry and electrode voltages

are shown in Fig. 4.6, and correspond to α = 0◦ to 180◦ at 5◦ intervals.
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4.7 Alternative approach

In the rare circumstance that a matrix inversion library programme
is not available, or if simplicity in coding and high speed operation are of
particular importance, then, under certain restricted conditions, some of the
problems treated in this chapter can be treated in a simpler manner.

Suppose that the number of anode wires is large (50−100), that the
lateral width of the anode is large compared with the anode, cathode spacing
and that the anode, and cathode, wire pitches and radii are constants. This
represents normal MWPC geometry. Then, provided the avalanche wire is
not too near the edges of the anode plane, the quantities Cn in Eqn. 4.5 may
be regarded as constant. Under these conditions, potential distributions can
be obtained from simple summations only.

It must be stressed that this simplified approach cannot be employed
to deal with the non-uniform situations treated in Sections 4.4.3 and 4.6,
and all those treated in Chapter 5.
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4.7.1 Anode charge in standard geometry, Fig. 4.2

It has already been shown in Sections 4.3.2 and 4.4.1 that if Cn can
be regarded as constant then the potential function due to the anode at unit
potential can be written, Eqn. 4.24,

PW (x, y) = −2C
∑
n

Ln(x, y, n) ((4.24))

where

C = −1/2
∑
n

Ln0 ((4.11a))

and Ln0 has been defined in Eqn. 4.10. Then

qa(x, y) = −q0[(1 − PW (x, y)]

In this case the ion trajectory x(t), y(t) can also be calculated from
PW (or rather from the differentials of VaPW ).

4.7.2 Cathode charge in standard geometry, Fig. 4.2

In this case the potential PC(x, y) due to the upper cathode being at
unit potential, the other electrodes being grounded, may be written, Eqn.
4.29, with Cn = C0 = constant,

PC(x, y) = −C0

∑
n

Ln(x, y, n) + (y + h2)/(h1 + h2) (4.31)

The constant C0 is determined from the condition that the anode wire sur-
faces are at zero potential. Thus considering the wire at the coordinate
origin

0 = −C0

∑
n

Ln0 + h2/(h1 + h2)

Hence, using Eqn. 4.11a,

C0 = −2Ch2/(h1 + h2)

Therefore

PC(x, y) = 2C
h2

h1 + h2

∑
n

Ln(x, y, n) +
y + h2

h1 + h2

(4.32)

and

qC(x, y) = q0PC(x, y)

4.16



It is easily confirmed that Eqns. 4.24 and 4.32 reduce, when x, y � s,
to the limiting forms Eqn. 3.3 and 3.6 respectively.

The ion trajectory x(t), y(t) must of course be calculated from PW ,
Eqn. 4.24.

4.7.3 Chamber with drift region, Fig. 4.3

This situation has been described in Section 4.2.5. The potential
function due to the applied electrode potentials is, Eqn. 4.17.

P (x, y) = Va(PW + PC1
+ PC2

) ((4.17))

Under the present conditions, for the anode wires,

PW = −CA
∑
n

Ln(x, y, n)

and for the cathode wires,

PC1
= −CC

∑
i

Li(x, y, i)

PC2
is given by Eqn. 4.20.

The two unknowns CA and CC may be obtained from the conditions
that at the anode wire surfaces P = Va and at the cathode wire surfaces
P = VRVa. These conditions may be written

1 − VR(h1 + dr)/(h1 + h2 + dr) = −CA
∑
n

Ln0 − Ci
∑
i

LiA (4.33)

VR − VRdr/(h1 + h2 + dr) = −CA
∑
n

LnC − Ci
∑
i

Li0 (4.34)

The four summation elements in these two simultaneous equations may be
written

Ln0 = ln

{
cosh ansa − 1

cosh ansa + cosh ad

}1/2

n 6= 0 (4.35a)

= ln

{
ara/2

cos(ad/2)

}
n = 0 (4.35b)

Li0 = ln

{
cosh aisc − 1

cosh aisc + cos a(2h1 − d)

}1/2

i 6= 0 (4.36a)
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= ln

{
arc/2

cos a(h1 − d/2)

}
i = 0 (4.36b)

LnC = ln

{
cosh ansa − cos ah1

cosh ansa + cos a(h1 − d)

}1/2

(4.37)

LiA = ln

{
cosh aisc − cos ah1

cosh aisc + cos a(h1 − d)

}1/2

(4.38)

Thus having determined CA and CC from the two simultaneous equations
4.33 and 4.34 the potential P (x, y) can be calculated from Eqn. 4.17.
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Chapter 5.

MULTIWIRE GEOMETRY III.
Cathode charge distributions

A knowledge of the distribution of cathode induced charge is of im-
portance in the prediction of performance of position-sensitive detection
systems. There are a sufficient number of aspects of this interesting topic
that they are most conveniently collected together in this separate chapter.

5.1 Exact distribution. Wire cathode

This geometry, see Fig. 4.3, has already been studied in Section 4.3.5,
and indeed most of the formulae required for the present problem have been
established there, and in Section 4.4.3. Following our standard procedure,
in order to find the signal charge qm induced, by unit point charge at (x, y),
on the mth wire of the system we need to find the potential PM(x, y) due
to that wire at unit potential all other wires and electrodes in the chamber
being grounded. Thus, from Section 4.3.5,

PM(x, y) = −
∑
m

CmLm(x, y,m) (5.1)

where Lm(x, y,m) has been given in Eqns. 4.18 and 4.19, the sum being
taken over both anode and cathode wires. The unknown vector of quantities
Cm may be determined by inversion of the matrix equation

Pj = −
∑
k

CkLkj

where Pj = 1 for j = m and Pj = 0 for all other j. The coefficients Lkj have
been given in Eqns. 4.22 and 4.23. Thus

qm(x, y) = PM(x, y)

The ion trajectory x(t), y(t) may be determined by the method de-
scribed in Section 3.3.2, but using of course the potential P (x, y), Eqn. 4.17,
derived in Section 4.3.5.

In practice it is convenient to calculate, and to measure experimen-
tally, the ratio of signal charge induced on a cathode wire to the anode signal
charge, qm(t)/qa(t).

The distribution of induced charge on a wire cathode has been ex-
amined experimentally in considerable detail [1]; very close agreement was
found with predictions of the above theory.
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5.2 Exact distributions. Continuous cathode

In many position-sensitive detection systems the sensing cathode,
although divided electrically into equal width strip, can be regarded as a
continuous conducting plane. It becomes important for predicting perfor-
mance, therefore, to determine the induced charge distribution on this plane.

It is found very convenient to employ normalised distance on the
cathode, λ = x/h, where h is the anode, cathode spacing of the (symmetri-
cal) chamber. Then −ρ(λ)dλ is the charge induced on the upper cathode of
the chamber, between λ and λ+ dλ, by a unit point charge at (x, y).

Two geometries must be distinguished. In the first case the anode
wires are normal to the x-axis, Fig. 5.1(a). For historic reasons the distribu-
tion normal to the x-axis will be denoted by ρ2(λ). In the second case the
anode wires are parallel to the x-axis, Fig. 5.1(b). The distribution parallel
to the anode wires will be denoted by ρ1(λ).

In practical situations it is very convenient to normalise the distri-
bution ρ(λ, t) to the magnitude of the net anode charge |qa(t)|. Thus

Γ(λ,t) = ρ(λ,t)/|qa(t)|

This distribution remains of course a function of time t but the gross varia-
tion with t has been removed.

5.2.1 Exact distribution ρ2

Consider an infinitesimal strip of width dλ on the upper cathode of
Fig. 5.1(a), and suppose that this strip is at unit potential, the remainder
of that cathode and all other electrodes in the chamber being grounded.
Then if the potential distribution in the chamber under these conditions is
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dPS(x, y, λ) then, by Eqn. 1.1, the charge induced on the strip by a unit
point charge at (x, y) is −dPS(x, y, λ). Thus

−ρ2(x, y, λ)dλ = −dPS(x, y, λ)

or briefly,
ρ2 = dPS/dλ (5.2)

The potential function dPS may be found in the following way.

dPS = dPs + dPw (5.3)

where dPs is the potential function due to the strip at unit potential, the
anode wires being absent, and dPw is the potential function due to the charge
distribution induced on the anode wires by the strip.

It is shown in Appendix 3 that dPs may be written

dPs =
1

4

cos ay

cosh a(x− hλ) − sin ay
dλ (5.4)

where a = π/2h.
The potential due to the induced anode charges may be written, Eqn. 4.5
with d = 0 and yn = 0,

dPw = −
∑
n

dCnLn(x, y, n) (5.5)

However each anode wire surface must be at zero potential. That is
dPS → 0 as x→ ms+ ra, y → ra. Thus Eqn. 5.3 becomes

−1

4
sech a(ms− hλ) = −

∑
n

dCn
dλ

Lnm (5.6)

where the coefficient Lnm have been given in Eqn. 4.7 (with d = 0). The
unknown vector dCn/dλ may thus be found by numerical inversion of the
matrix Eqn. 5.6. Then, finally, from Eqn. 5.3,

ρ2(λ) =
1

4

cos ay

cosh a(x− hλ) − sin ay
−
∑
n

dCn
dλ

Ln(x, y, n) (5.7)

5.2.2 Exact distribution ρ1

In this section we will employ, for the only time in these multiwire
studies, three-dimensional geometry. This analysis is an extension of that
first presented by Gatti et al. [2].
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The basic approach is of course the same as that employed in the
previous section. However in this case the positive ion trajectory remains
always in the plane x = 0. The charge induced on an infinitesimal cathode
strip of width dλ at λ by a unit charge at (0, y, z),−ρ1(λ)dλ, is from Eqn. 1.1,
equal to the negative of the potential at (0, y, z) due to that strip being at
unit potential, the remainder of that cathode and all other electrodes being
at zero potential. This potential function is necessarily an even function of λ
and is therefore equal to the potential dPS(x, y, z) due to the unit potential
strip dλ being situated at λ = 0.
Thus

ρ1(λ) = dPS/dλ (5.8)

where, as before
dPS = dPs + dPw (5.9)

dPs is again given by Eqn. 5.4, but with x = 0.
The calculation of dPw, however, is entirely different from that in the

previous section. There the anode wire induced charge density was uniform
along the length of the wire, although of course varying from wire to wire.
In the present case the induced charge density now varies along the wires,
but is the same function for all wires. Let us denote this charge density by
dq. (The differential has been used, as in the previous section, since this
charge distribution is induced by the infinitesimal strip of width dλ.) The
charge induced on an infinitesimal length dx′ at x′ of each wire is dq(x′)dx′.

We may now employ standard electrical image theory to write down
a formal expression for the potential dPw(x, y, z) due to the induced anode
charge.

dPw =

∞∑
k=−∞

∞∑
n=−∞

∫ ∞

−∞

dq(x′)
4πε0

cosπn

{(x− x′)2 + (y − 2nh)2 + (z − ks)2} 1
2

dx′

(5.10)
The integer k represents the kth anode wire; the integer n represents the
nth image of that wire.

Equation 5.10 may be re-written in terms of λ = x/h and λ′ = x′/h

dPw/dλ =

∫ ∞

−∞
f(λ′)h(λ− λ′) dλ′ (5.11)

where

f(λ) =
1

4πε0

dq

dλ
(5.12)

h(λ) =
∑
k

∑
n

cosπn

(λ2 + b2)
1
2

(5.13)
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and

b2 = (y/h− 2n)2 + (z/h− ks/h)2 (5.14)

The function f(λ) is determined by the condition that the surfaces of the
anode wires must be at zero potential. This condition may be written, to
an excellent approximation (ra � s, h), from Eqn. 5.9,

0 =
1

4
sech

(
πλ

2

)
+

∫ ∞

−∞
f(λ′)h0(λ− λ′) dλ′ (5.15)

where

h0(λ) =
∑
k

∑
n

cosπn

(λ2 + b20)
1
2

(5.16)

and

b20 = (ra/h)2 + (2n)2 + (ks/h)2 (5.17)

The convolution integral (5.15) shows that the Fourier transform F (ω) of
f(λ) is given by

F (ω) = G0(ω)/H0(ω) (5.18)

where

G0(ω) = −1

2
sech (ω) (5.19)

and

H0(ω) =
∑
k

∑
n

2 cos(πn)K0(b0ω) (5.20)

Here K0 is the zero order of Bessel function of the second kind.
It now follows from the convolution integral Eqn. 5.11 that the

Fourier transform of dPw/dλ is given by

G(ω) = F (ω)H(ω) = G0(ω)H(ω)/H0(ω) (5.21)

where

H(ω) =
∑
k

∑
n

2 cos(πn)K0(bω) (5.22)

Thus dPw/dλ can be found as the (numerical) transform of G(ω) given by
Eqn. 5.21. Then

ρ1(λ) =
1

4

cosπy/2h

coshπλ/2 − sinπy/2h
+
dPw
dλ

(5.23)

It should be especially noted that the numerical evaluation of H0(ω)
and H(ω), Eqns. 5.20 and 5.22, require special attention if high accuracy is
to be achieved. Full details of suitable procedures are given in Appendix 5
(and in ref. [3]).
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5.3 Approximate distributions

Although the functions ρ1 and ρ2 determined in the two previous
sections represent accurate descriptions of the cathode charge distributions,
in many practical applications such detail is not required. Approximate
distributions representing average behaviour may be more useful. This is
particularly so if distributions independent of time can be formulated. The
two sections below show how such average, time independent, distributions
can be determined.

The approximations employed are basically the same for the two
geometries. Having, as before, determined dPw from the condition that
dPs + dPw = 0 at the anode wire surfaces, the potential function near the
anode wire is then approximated by dPw alone. A further approximation
for dPw, valid for r � s, is then employed.

5.3.1 Approximate distribution ρ2

The first term of Eqn. 5.9 is assumed negligible compared with the
second. That is

ρ(λ)dλ = dPw (5.24)

In order to estimate dPw recall, from Section 4.2.1, that the induced
charge per unit length of an anode wire is 2πε0dCn. Thus, applying Gauss’s
theorem, the radial induced field close to the central anode wire is dC0/r.
Thus, since the wire surface is at zero potential, the potential function must
be given by

dPw = −dC0 ln(r/ra) (5.25)

Thus

ρ2(λ) = −1

2

dC0

dλ
ln

(
r

ra

)2

(5.26)

For ions moving in the coaxial field region close to the avalanche wire
the net anode signal has the simple form, Eqn. 2.6 with q0 = 1,

qa = −C ln(r/ra)
2 (5.27)

where C has been defined in Section 4.3.2. Thus

Γ2(λ) ≡ ρ2(λ)

|qa| = − 1

2C

dC0

dλ
(5.28)

The quantity dC0/dλ must of course be determined by matrix inversion of
Eqn. 5.6, despite the approximation implied by Eqn. 5.24.

It should be especially noted that Γ2(λ) is independent of r and
hence of time t. The distribution is , naturally, an approximation; it cannot
represent the effects of avalanche angular localisation.
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A necessary condition to be met in any numerical evaluation of Γ2

is that ∫ ∞

−∞
Γ2(λ)dλ =

1

2
(5.29)

This forms a valuable check on accuracy.

5.3.2 Approximate distribution ρ1

The first term of Eqn. 5.2.3 is assumed negligible compared with the
second. That is

ρ1(λ)dλ = dPw (5.30)

where dPw is the potential function due to the induced charge density dq.
Applying Gauss’s theorem, the induced field very close to an anode wire
is dq/2πε0r, and, since the wire is at zero potential, the potential function
must be given by

dPw = − dq

2πε0
ln

(
r

ra

)
(5.31)

or, from Eqn. 5.12,

dPw = −2f(λ)dλ ln

(
r

ra

)
Thus

ρ1(λ) = −f(λ) ln(r/ra)
2 (5.32)

Again, for ions moving in the coaxial field region close to the ava-
lanche wire, the net anode signal has the simple form, Eqn. 2.6 with q0 = 1,

qa = −C ln(r/ra)
2

where C has been defined in Section 4.3.2. Thus

Γ1(λ) ≡ ρ1(λ)

|qa| = −f(λ)

C
(5.33)

f(λ) is obtained as the inverse Fourier transform of F (w) given by Eqn. 5.18.
As noted in Section 5.2.2, the evaluation of H0(w) requires special attention
(see Appendix 5).

The function Γ1(λ) is independent of r and hence of time t. It
is an approximation and cannot describe the effects of avalanche angular
localisation.

An important check on accuracy in numerical evaluation of Γ1 is the
necessary condition ∫ ∞

−∞
Γ1(λ)dλ =

1

2
(5.34)
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5.4 Limiting approximate distributions

It is of both theoretical and practical interest to examine the form of
the approximate distributions Γ1 and Γ2 for the limiting situations, s � h
and s� h.

5.4.1 Approximate distribution, pill-box geometry

The pill-box counter has only a single wire and can be approximated
by s � h. In this case there is only the central dominant term, m = 0, in
the summation of Eqn. 5.6

1

4
sech

πλ

2
=
dC0

dλ
ln
(πra

4h

)
(5.35)

Further, as shown in Section 4.1, for this situation s� h,

C = 1/ ln(4h/πra)
2

Thus, from Eqn. 5.28,

Γ2(λ) =
1

4
sech

πλ

2
(5.36)

A distribution proportional to sech (πλ/2) was first employed by Endo et
al. [4]. Gatti et al. [2] have shown that in the limit s → ∞ then ρ1(λ) also
becomes proportional to sech (πλ/2). That is Γ1 = Γ2.

5.4.2 Approximate distribution, parallel plate geometry

If s � h then geometry approaches parallel plate conditions; the
anode plane tends to a continuous conducting surface. To preserve the
symmetry of the system it must be assumed that the charge induced on the
upper cathode is due to an avalanche producing 0.5 units of positive ion
charge above the anode plane and 0.5 units below the plane. If the anode
is a conducting plane at zero potential, the potential function due to an
infinitesimal cathode strip of width dλ at λ = 0 may now be written (see
Appendix 3)

dPs =
1

2

sinπy/h

coshπλ+ cosπy/h
dλ (5.37)

For y � h

dPs =
πy

4h
sech2πλ

2
dλ

Thus the signal charge induced on an infinitesimal cathode strip of width
dλ at λ, by 0.5 units of charge at (0, y), is given by

ρ(λ)dλ =
πy

8h
sech2πλ

2
dλ (5.38)
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The net anode charge due to unit avalanche charge is, from Eqn. 1.2,

qa = −y/h (5.39)

Thus

Γ(λ) ≡ ρ(λ)

|qa| =
π

8
sech2πλ

2
(5.40)

A distribution proportional to sech2πλ/2 was first proposed by Lee et al. [5].

5.5 Single parameter empirical formula

Although the approximate distributions of Section 5.3 may be de-
termined very rapidly it is nevertheless more convenient for some practical
applications to employ a simple empirical formula. For such purposes a
three-parameter empirical formula was proposed by Gatti et al. [2]. In the
present terminology this formula may be written

Γ(λ) = K1

1 − tanh2K2λ

1 +K3 tanh2K2λ
(5.41)

However in the present formulation the total signal charge induced
on a cathode is 1/2. That is, Eqns. 5.29 and 5.34,

∫ ∞

−∞
Γ(λ)dλ =

1

2

This condition shows that there are now only two independent parameters,
K2 and K3.

K1 =
K2K

1/2
3

4 tan−1K
1/2
3

(5.42)

It is instructive, following the example of Gatti et al. [2], to form a
table showing the three parameter values at the extreme limits of h/s. These
values may be obtained from the limiting distributions Eqns. 5.36 and 5.40.

h/s K1 K2 K3

0 1/4 π/4 1

∞ π/8 π/2 0
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Calculations have been made of Γ1 and Γ2, from Section 5.3, for
a wide range of chamber geometries in order to find a simple empirical
expression for K2 in terms of K3. Close fitting to the distribution (rms
deviation of the order 0.1% or less of peak volume) has been obtained by
the following relationship [6, 7]

K2 =
π

2

(
1 − 1

2
K

1/2
3

)
(5.43)

This empirical expression for K2 now allows the normalised distribution
Γ(λ), Eqn. 5.41, to be determined by the single parameter K3.

The FWHM of the distribution may be written

FWHM

h
=

4 tanh−1(2 +K3)−1/2

π(1 − 0.5K
1/2
3 )

(5.44)

Values of K3 as a function of chamber parameters h/s and ra/s
are shown in Figs. 5.2 and 5.3 (a) and (b). For small h/s(<∼ 1.0) the two
empirical distributions Γ1 and Γ2 differ somewhat but great significance
should not be attached to this; neither is correct!

ρ(λ)

qa
= K1

1 − tanh2(K2λ)

1 +K3 tanh2(K2λ)
λ =

x

h

K1 =
K2K

1/2
3

4 tan−1K
1/2
3

K2 =
π

2

(
1 − 1

2
K

1/2
3

)
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The use of Figs.5.2 and 5.3 and the empirical distribution Eqn. 5.41
should be of assistance in making estimates of differential non-linearity in
position-sensitive MWPCs. In situations with small DFNL, say of the order
2% or less, this procedure should be of quite adequate accuracy. However
its limitations should be borne in mind if a detailed description is essential.
The cathode distributions for ‘near-side’ and ‘far-side’ avalanches differ in
shape as well as in magnitude so that with some read-out systems, or near
the edges of the field, double images can be generated. This behaviour can
not be predicted by the ‘average’ distribution Eqn. 5.41. Some comparisons
between exact and approximate distribution functions are shown in Fig. 5.4.

A typical comparison between experimental measurement of cathode
charge distribution and theoretical prediction (as described in Section 5.1)
is shown in Fig. 5.5. The two curves correspond to α = +π/2, near-side
events, and α = −π/2, far-side events. The detailed conditions for these
particular investigations are described in ref. [1].
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Chapter 6.

PARALLEL PLATE GEOMETRY
Anode and cathode charge distributions

6.1 Introduction

This chapter’s contents are mainly a reproduction of ref. [14].
The development with time of the current in the external circuit of

a parallel plate avalanche chamber (PPAC) is very well understood. Theo-
retical analyses have been presented by Schmidt [1] and Draper [2] and,
in great detail, in the comprehensive study of Raether [3]. Understand-
ably these early analyses were not concerned with the spatial distribution
of the currents at the chamber electrodes. Experimentalists, however, soon
realised the potential of the PPAC as a position-sensitive device so that, de-
spite considerable technical difficulties, successful detectors have now been
developed for localising X-rays, see for example refs. [4–8], and particles, see
for example refs. [9,10].

Surprisingly, a simple theory of the spatial distribution of the charges
appearing on the anode and cathode of a PPAC does not yet appear to
have been presented. Such knowledge is necessary in estimating differential
non-linearities and resolution in position-sensitive chambers. The essential
feature of the present approach is that one obtains, analytically, the Fourier
transform of the electrode charge distributions. Simple numerical inverse
transformation then yields the actual distributions. This analysis is con-
cerned mainly with X-ray detection but the method should be adaptable
also to the case of particle radiation.

6.2 Theory

6.2.1 Basic formulae

The geometry for the present analysis is shown in Fig. 6.1. The
cathode of the PPAC is a fine mesh or closely spaced wire grid which allows
an electron swarm, from an ionising event in the drift region, to enter the
high-field avalanche region. The locus of the centre-of-charge of the electron
swarm defined the y-axis. The cathode is situated in the plane y = h and
the anode in the plane y = 0.

Under normal operating conditions the avalanche process is known
to be completed very rapidly, within a few nanoseconds; in the present
analysis it will be assumed that this time is always very small compared
with any signal processing times and therefore can be regarded as effectively
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Figure 6.1 Geometry of parallel plate avalanche chamber, with drift region

zero. Change in the electrode charges after time t = 0 is then due to the
relatively slow drift of the positive ions created in the avalanche. It will be
assumed initially that the time taken for the electron swarm to cross the
cathode plane is also zero; the modifications required to treat the case of
finite crossing duration, tens of nanoseconds, will be discussed later.

Suppose a number N electrons enter the avalanche region in a very
short time interval. Then, if α is the first Townsend coefficient, the number
of electrons at distance y from the anode is NM exp(−αy) where M =
exp(αh) is the mean gas gain. The linear charge density of positive ions
created at t = 0 by the avalanche is therefore αq0 exp(−αy), where −q0 is
the total electron charge arriving at the anode (−q0/M is the initial electron
charge entering the avalanche region). Let the drift velocity of the positive
ions be v, and, for convenience, define a total collection time T = h/v (T
is of the order tens of microseconds). Then after a time t the linear charge
density of the ions becomes

p(y, t) = αq0M
−(y/h−t/T ), t/T ≤ y/h ≤ 1. (6.1)

If y/h < t/T then p = 0.
Let the charges induced on the anode and cathode surfaces by the

positive ions be −qA and −qC respectively, and let the electron charge ar-
riving at the anode and the positive ion charge arriving at the cathode be
qe and qp respectively. Then the net, observable charge signals at the anode
and cathode are qa and qc given by

qa = qA + qe, qc = qC + qp (6.2.a, b)
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It is readily shown that these charges are given by the following expressions

qA
q0

= 1 − t

T
− 1 −M−(1−t/T )

lnM
,

qe
q0

= −1, (6.3a, b)

qC
q0

= 1 − qA
q0

−M−(1−t/T ),
qp
q0

=
M t/T − 1

M
. (6.4a, b)

If, as is usual, M � 1 then these expressions reduce for the case t � T to
the well-known result qa/q0 = −qc/q0 = −1/ lnM .

6.2.2 Induced charge distributions

The analysis given in Appendix 3 shows that a unit point charge at
x′, y′ induces electrode charge density ρ0 (charge per unit width measured
in the x-direction) given by

ρ0
A,C =

1

2h

sinπy′/h
coshπ(x− x′)/h∓ cosπy′/h

. (6.5)

The negative sign in the denominator refers to the anode and the positive
sign to the cathode.

Now we assume, with Raether [3], that the avalanche results in a
positive ion distribution which has a Gaussian spread normal to the y-axis,
the rms width increasing as the square root of the avalanche depth. Further-
more, after t = 0, this ion distribution drifts with uniform velocity h/T in
the y-direction. That is, using Eqn. 6.1, the ion charge between the planes
y′ and y′ + dy′ and between the planes x′ and x′ + dx′ at time t, is given by

p(x′, y′, t)dx′ dy′ = αq0M
−(y′/h−t/T ) 1√

2πσ2
y

e−x
′2/2σ2

ydx′ dy′, (6.6)

where

σ2
y = σ2

A(1 − y′/h+ t/T ). (6.7)

Here σA is the rms spread of the electron avalanche at the anode. If y′/h <
t/T then p(x′, y′, t) = 0.

By multiplying Eqn. 6.6 by Eqn. 6.5 and integrating appropriately,
formal expressions are obtained for the electrode induced charge distribu-
tions. Less clumsy nomenclature results if we now employ normalised quan-
tities. That is, define λ = x/h, λ′ = x′/h, θ = πy′/h, sy = σy/h and
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Γ(λ) = ρ(λ)/q0, where −ρ(λ)dλ is the charge induced on the electrode sur-
face between λ and λ+ dλ. Then, after some manipulation

ΓA,C(λ,M,
t

T
) =

lnMM
t
T

2π

∫ π

πt
T

M− θ
π

∫ ∞

−∞

e−λ
′2/2s2y√
2πs2y

sin θ

coshπ(λ− λ′) ∓ cos θ
dλ′dθ

(6.8)
The inner integral, S(λ) say, may be written

S(λ) =
1

2π

∫ ∞

−∞
F (k)H(k) cos kλ dk, (6.9)

where

F (k) = exp(−k2s2y/2) (6.10)

and

H(k) =

∫ ∞

−∞

sin θ cos kλ

cosh πλ∓ cos θ
dλ (6.11)

= 2
sinh k(1 − θ/π)

sinh k
for anode

= 2
sinh kθ/π

sinh k
for cathode.

The definite integral, Eqn. 6.11, may be found in (ref. [11] p.505). It
is now possible to carry out the outer integration over θ and hence to obtain
the Fourier transform G(k) of the distribution Γ(λ). After some further
manipulation one finds that

GA(k) = lnMe−k
2s2A/2[ke−a(1−t/T )

− k cosh k(1 − t/T ) + a sinh k(1 − t/T )]

× [(a2 − k2) sinh k]
−1
, (6.12)

GC(k) = ln M e−k
2s2A/2[k cosh kt/T + a sinh kt/T

− (k cosh k + a sinh k)e−a(1−t/T )]

× [(a2 − k2) sinh k]
−1
, (6.13)

where a = ln M − k2s2A/2 and sA = σA/h. Clearly G(0) must represent the
area under the distribution curve, that is, the total induced charge. It may
be confirmed that the Eqns. 6.12 and 6.13 reduce correctly, for k = 0, to the
Eqns. 6.3a and 6.4a.
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6.2.3 Collected charge distributions

The collected positive ion distribution, normalised to q0, may be
expressed as

Γp(λ) = ln M

∫ π

π(1−t/T )

e−λ/2s
2
c√

2πs2c
M−θ/πd

θ

π
, (6.14)

where
s2c = s2A(1 − θ/π).

Thus
Gp(k) = ln M [(eat/T − 1)/aM ]. (6.15)

It can be seen that Gp(0) becomes equal to Eqn. 6.4b. For most practical
situations M � 1 and t� T so that Γp is negligibly small.

The collected electron distribution may be written at once, again
normalised to q0, as

Γe(λ) = − 1√
2πs2A

e−λ
2/2s2a . (6.16)

6.2.4 Net charge distributions

The net distributions Γa and Γc observed on the electrodes may now
be found from Eqns. 6.12, 6.13 and 6.15, by calculating, numerically, ΓA,ΓC
and Γp, the inverse transforms of GA, GC and Gp respectively, and then
adding the appropriate induced and collected charge distributions. That is

Γ(λ) =
1

π

∫ ∞

0

G(k) cos kλdk, (6.17)

and then
Γa = ΓA + Γe and Γc = ΓC + Γp.

6.2.5 Effect of diffusion in drift space

In the present formalism this may be taken into account very easily
by multiplying each transform before numerical inversion by the transform
of the initial electron distribution. To a good approximation this multiplier
is simply exp(−k2s2d/2) where sd is the (normalised) standard deviation of
the initial distribution. That is

sd =
σd
h

=
1

h

√
2
D/µ

Ed
d0 (6.18)
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Figure 6.2 Net charge distribution on anode at time t = 0. Drift depth
(a) 3.0 mm, (b) 7.8 cm. Drift field 270 V/cm. Ar/10%CH4 at 1 atm., gas
gain 3.0 × 104.

where D/µ is the electron characteristic energy for drift field Ed and d0 is
the drift distance. D/µ can be estimated quite accurately now for many
counting gas mixtures, see for example ref. [12].

For collected electron distribution Γe(λ) it is of course only necessary
to replace the variance s2A by the resultant variance s2A + s2d.

6.3 Example distributions

Examples of anode net distributions (normalised) at time t = 0 are
shown in Fig. 6.2, for gas gain 3.0 × 104. The two curves correspond to
drift depths d0 = 3.0mm and 7.8cm in P10 gas at 1 atm with drift field
Ed = 270 V/cm. For the present illustrative calculations the value employed
for sA was 0.053, an approximate figure derived from the direct measurement
of Peisert [6] under comparable conditions. The normalised FWHM values
for these two distributions are 0.16 and 0.65, in quite acceptable agreement
with experimental values obtained under similar conditions by Peisert and
Sauli [8] of 0.20 and 0.53 respectively.
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depth (a) 3.0 mm, (b) 7.8 cm. Drift field 270 V/cm. Ar/10%CH4 at 1 atm.,
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Figure 6.4 Induced charge distribution on cathode at time t = 0. (a)
M = 103, FWHM = 0.970, (b)M = 3.0×104, FWHM = 1.09, (c) M = 106,
FWHM = 1.13.
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Fig. 6.3 shows anode induced charge distributions at time t/T =
0.2 for the same two drift cases. The two distributions, with FWHM =
0.57 and 1.1, would be very roughly similar in shape, but of course not in
magnitude, to those observed on a pick-up electrode situated ≈ h/4 below
an anode transparent to the field of the positive ions. This very crudely
models the actual situation realised in the work of Peisert and Sauli [8] who
observed widths of 0.50 and 0.80 respectively.

Fig. 6.4 illustrates the (very small) dependence of the width of the
induced charge distributions on gas gain. Conditions are as in the previous
examples, with drift depth d0 = 3.00mm, and sA has been assumed constant.

6.4 Discussion

Lack of knowledge of σA represents the largest uncertainty in the
calculations of net anode distributions. Raether [3] has given some experi-
mental figures relating to pure gases but there appears to be only one direct
measurement, that of Peisert [6], for a common counting gas mixture. Fur-
ther experimental data is required in this area. It may also be possible to
obtain quite accurate estimates of σA theoretically, see for example ref. [13].
The induced charge distributions are naturally somewhat less sensitive to
the choice of , σA.

The actual calculations Eqn. 6.17, the Fourier inversion of Eqns. 6.12,
6.13 and 6.15 are, with standard library routines now available, very simple.

If the initial electron swarm crosses the cathode with a time duration
comparable with signal processing time constants then the signal charge
functions must be obtained by convolution of the appropriate distribution
with the initial current waveform i(t). If this waveform is essentially due to
diffusion in the drift region then it may be approximated by

i(t) =
q0/M√

2πσ2
t

e−t
2/2σ2

t . (6.19)

with σt = σL/w, where w is the drift velocity in the drift region and σL is
given by Eqn. 6.18 with the lateral diffusion coefficient D replaced by the
longitudinal coefficient DL (see for example, ref. [12]).
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Chapter 7.

COAXIAL GEOMETRY II.
Cathode charge distributions

7.1 Introduction

In Chapter 2 simple formulae were derived to describe the time de-
velopment of the net anode, and cathode, charges. In some applications
it becomes necessary to determine the spatial distribution of the induced
cathode charge. For example, information may be obtained on the physi-
cal structure of streamers by examining experimentally the relative charges
induced on the segmented cathodes of a coaxial chamber [1]. Further infor-
mation may possibly be obtained on the streamer structure by comparing
experimental current waveforms with the predictions of various, theoretical
models (see Section 7.5 below).

Although involving simple coaxial geometry only the calculation of
induced charge distribution is nevertheless relatively complicated.

7.2 Basic theory

The following brief theoretical notes are intended only as a reminder
and to introduce some terminology. For a correct mathematical introduction
the reader should consult one of the many texts on functions of a complex
variable and conformal mapping (see, for example, ref [2]; see also Appendix
1).

If an analytic function W (z) of the complex variable z = x+ iy can
be expressed in the form

W (z) = P (x, y) + iQ(x, y) (7.1)

where P (x, y) and Q(x, y) are real functions of x and y, then it follows at
once that the conjugate functions P and Q are harmonic functions, that is
they are solutions of Laplace’s equation.

∂2P

∂x2
+
∂2P

∂y2
= 0 and

∂2Q

∂x2
+
∂2Q

∂y2
= 0

It also follows that the families of curves P = constant and Q = constant
intersect orthogonally. Thus P = constant may represent equipotentials and
Q = constant the corresponding field lines in a particular problem (or vice
versa).
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It may further be shown that a harmonic function remains harmonic
under conformal transformation, ref [2], p.242. Thus one problem may some-
times be transformed into another with a well-known or simple solution.
This strategy will be employed below.

7.3 Azimuthal distribution of cathode charge

7.3.1 Approximate formula

Consider the transformation, Fig. 7.1,

w = i
1 − z/rc
1 + z/rc

(7.2)

where w = u+ iv. After some manipulation Eqn. 7.2 may be re-written

u+ iv =
2(r/rc) sin θ + i(1 − (r/rc)

2)

1 + 2(r/rc) cos θ + (r/rc)2
(7.3)

where r = (x2 + y2)1/2 and θ = tan−1(y/x). Thus the circle r = rc in the
z-plane transforms to the u-axis in the w-plane. On this axis u = tan θ/2.

It is a standard result of electrostatic theory, see Appendix 2, that
the potential Ps(u, v) due to a strip on the u-axis at unit potential, the
remainder of the plane being grounded, is given by

Ps(u, v) = (α2 − α1)/π (7.4)

where, as shown in Fig. 7.1, α1 and α2 are the angles subtended by the point
(u, v) to the strip edges at u1 and u2 respectively. From Fig. 7.1

tan(α2 − α1) =
u(u2 − u1)

v2 + (u− u2)(u− u1)
(7.5)
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The axis orientation may be chosen, without loss of generality, so that the
point at which Ps is calculated is on the x-axis, θ = 0. Then, from Eqn. 7.3,

u = 0 (7.6a)

v = (1 − r/rc)/(1 + r/rc) (7.6b)

and

tan(α2 − α1) =
v(tan θ2/2 − tan θ1/2)

v2 + tan θ2/2 tan θ1/2
(7.7)

Now if an anode wire is present there must be an induced charge
on the wire, producing in the chamber an additional potential distribution
Pw. Provided ra � rc this distribution will be symmetrical and of the form
Eqn. 2.4.

Pw = Pa[1 − C ln(r/ra)
2] (7.8)

where C = 1/ ln(rc/ra)
2. Pa is determined by the condition that the surface

of the anode wire must be at zero potential, Ps + Pw = 0 at r = ra. Now
since ra � rc, near the wire surface v = 1 and (α2−α1) = (θ2−θ1)/2. Thus

Pa = −(θ2 − θ1)/2π (7.9)

Hence the potential function due to the cathode segment between θ1 and θ2
being at unit potential, the remainder of the cathode being grounded, is

P =
α2 − α1

π
− θ2 − θ1

2π
[1 − C ln(r/rc)

2] (7.10)

where tan(α2 − α1) is given by Eqns. 7.7 and 7.6.
The charge −q induced on that segment by a point charge q0 at

radius r on the x-axis is therefore given by, from Section 1.1,

q = q0P (7.11)

It may be more convenient to re-express the above result in terms of a
differential induced charge distribution. Let −ρ(θ)dθ be the charge induced
on the cathode surface between θ and θ + dθ. That is, placing θ2 = θ

ρ(θ) = q0
∂P

∂θ
(7.12)

After some manipulation, first placing θ2 = θ and θ1 = 0 in Eqn. 7.10, it is
found that

ρ(θ) =
q0
2π

{
v

v2 cos2 θ/2 + sin2 θ/2
− 1 + C ln

(
r

ra

)2
}

(7.13)
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where v = (1 − r/rc)/(1 + r/rc).

The result Eqn. 7.13 may be confirmed by evaluating the total in-
duced cathode charge by integrating ρ(θ) with respect to θ from 0 to 2π.
With the aid of the integral, ref. [3], p.325.

∫
adϕ

a2 cos2 ϕ+ sin2 ϕ
= tan−1 tanϕ

a

it is soon found that

∫ 2π

0

ρ(θ)dθ = q0C ln(r/ra)
2 (7.14)

in agreement with Eqn. 2.7.

In proportional chamber work generally it is sensible, in order to
remove gross time dependence, to normalise to the net anode signal (see
for example Chap.5). That is, we define a normalised distribution function
Γ(θ) = ρ(θ)/|qa| where, from Eqn. 2.6, qa = −q0 C ln(r/ra)

2. Clearly

∫ 2π

0

Γ(θ) dθ = 1. (7.15)

7.3.2 Exact formula

In deriving the potential function Eqn. 7.10 it was implicitly assumed
that the induced anode charge can be replaced by a line charge coincident
with the system axis. This is not quite correct, the line charge being slightly
displaced towards the inducing cathode sector. As r becomes large compared
with ra the error introduced by this assumption becomes rapidly negligible.

Erskine [4] has derived an exact formula for the potential function.
Corresponding to Eqn. 7.10, with θ1 = 0 and θ2 = θ, the exact formula is

P =
1

π

∞∑
1

1

n

(
r

rc

)n
1 − (ra/r)

2n

1 − (ra/rc)2n
sinnθ +

θ

2π
C ln

(
r

ra

)2

(7.16)

Recent numerical calculations [5] have demonstrated that, for r/ra > 3.3,
Eqns. 7.10 and 7.16 differ by less than 1%.
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7.4 Axial and azimuthal distribution of cathode charge

In order to find the complete distribution of cathode induced charge
in a coaxial counter, −σ(θ, z), the surface field method rather than the
reciprocity method must be employed. That is, if En(θ, z) is the field at the
cathode surface then

σ(θ, z) = ε0En(θ, z) (7.17)

Cylindrical coordinates are employed in this section, with the anode wire
along the z-axis.

An exact expression can be found for En, without any restriction on
the value of ra/rc. The analysis developed below parallels that employed by
Smythe [6] in a similar problem.

Suppose the inducing point charge q0 to be situated at radius r0,
azimuthal angle θ = 0 and at axial position z = 0. Then we wish to find,
initially, the potential function P (r, θ, z) due to this situation.

Define a function Fmk(µmkr) as follows

Fmk = Jm(µmkr) − Ym(µmkr)Jm(µmkra)/Ym(µmkra) (7.18)

where Jm, Ym are Bessel functions of the first, second kinds respectively [7].
It is seen that Fmk(µmkra) = 0. The coefficients µmk are determined by the
condition

Fmk(µmkrc) = 0 (7.19)

A suitable potential function can now be written

P (r, θ, z) =
q0

2πε0

∞∑
k=1

∞∑
m=0

AmkFmk(µr)e
−µ|z| cosmθ (7.20)

where, for convenience, µ has been written in place of µmk.
In order to evaluate the coefficients Amk we proceed as follows. Dif-

ferentiate with respect to z, and set z = 0. Then multiply both sides of
the resulting equation by rFnl(µnlr) cosnθ and integrate from 0 to 2π with
respect to θ and from ra to rc with respect to r.

The RHS integral over θ vanishes for all terms unless n = m. A
factor δ′m = 2π occurs if m = 0 or δ′m = π if m > 0. Further, since
Fmk(µra) = Fmk(µrc) = Fml(µra) = Fml(µrc) = 0, it can be shown that all
terms vanish unless l = k. Thus we obtain∫ rc

ra

∫ 2π

0

(
∂P

∂z

)
0

Fmk(µr)rdrθ = − q0
2πε0

Amkµδ
′
m

∫ rc

ra

rF 2
mk(µr)dr (7.21)
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Note that cosmθ does not appear in the LHS since (∂P/∂z)0 is zero for
all positions in the plane z = 0 except at the point charge itself, where
θ = 0 and hence cosmθ = 1. Thus in evaluating the LHS of Eqn. 7.21,
Fmk(µr) may be replaced by Fmk(µr0) and taken outside the integral. The
integral itself then becomes simply the flux, in one direction, of the normal
component of field over the plane z = 0 and, by Gauss’s theorem, this is
equal to q0/2ε0. Thus the LHS of Eqn. 7.21 becomes −Fmk(µr0)q0/2ε0.

Evaluation of the RHS requires the use of special properties of the
Bessel functions. It is a property of any solution Rn of Bessel’s equation
that (ref. [6], pg.176)∫ a

0

vR2
n(v)dv =

1

2
|v2

(
dRn
dv

)2

+ (v2 − n2)R2
n|a0

If Rn(a) = Rn(b) = 0, as in the present application, then∫ b

a

vR2
n(v)dv =

1

2
|v2R′2

n |ba

where R′
n(v) = dRn/dv. Employing this result, the RHS of Eqn. 7.21 may

be written
RHS = − qo

4πε0
Amkδ

′
mµ|(rF ′

mk(µr))
2|rbra

Hence Eqn. 7.21 leads to an expression for Amk

Amk = (2 − δm)
Fmk(µr0)

µ|(rF ′
mk(µr))

2|rcra
(7.22)

where δm = 1 for m = 0 and δm = 0 for m > 0. In evaluating these
coefficients it should be noted that, from the recurrence relationships [6,7],
for r = ra or r = rc,

F ′
mk(µr) = −[Jm+1(µr) − Ym+1(µr)Jm(µra)/Ym(µra)] (7.23)

The induced cathode charge per unit area −σ(θ, z) is given by

σ(θ, z) = −ε0
(
∂P

∂r

)
rc

From Eqns. 7.20 and 7.22 this expression may be written

σ(θ, z) = q0

∞∑
k=1

∞∑
m=0

Cmke
−µ|z| cosmθ (7.24)

where
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Cmk = − µ

2π
AmkF

′
mk(µrc) (7.25)

and µ = µmk is determined by Eqn. 7.19.
For comparison with any experimental situation Eqn. 7.24 would be

integrated between particular limits θ1 and θ2, and between z1 and z2, say.
A partial check on the correctness of numerical calculations may be

obtained by evaluation of total induced charge

qc = q0

∞∑
k=1

AokF
′
ok(µrc) (7.26)

where µ = µok. This expression must of course be numerically equal to
q0C ln(r0/ra)

2, Eqn. 2.7.

7.5 Current waveforms from radial streamers

7.5.1 Introduction

It is instructive to complete this chapter by considering briefly a sim-
ple model that may be of assistance towards understanding certain aspects
of streamer operation in coaxial chambers. At the University of Coimbra,
Portugal a group led by Policarpo [8] is currently making detailed experi-
mental measurements of the anode, and cathode sector, waveforms due to
streamers. These waveforms have very fast rise-times, mainly determined
by signal processing, and short overall duration, ∼ 100 ns.

The detailed shape of the current waveform must depend upon many
factors. Most important among these are the distribution of charge along the
streamer length, the streamer propagation velocity, the physical shape of the
streamer and the electron velocity within the streamer. This is a complex
situation which would clearly be difficult to explore in detail. However by
assuming a strictly radial streamer, and by making the highly simplifying
assumptions of constant electron velocity and constant streamer propagation
velocity, it becomes possible to predict anode and cathode sectors current
waveforms for various trial distribution functions. This very simple model
may thus represent a departure point for more sophisticated approaches.

7.5.2 Anode current waveforms

The following analysis may be understood with the aid of Fig. 7.2.
Suppose the streamer head is at radius rs advancing with constant

velocity vs. Then there must be a radius r1 within which there is no elec-
tron contribution to the present current (the electrons having already been
collected). That is,

(rs − r1)/vs = (r1 − ra)/ve
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where ve is the (constant) electron velocity. Thus

r1(1/vs + 1/ve) = rs/vs + ra/ve (7.27)

The electrons produced at radius r will have moved to re where

(rs − r)/vs = (r − re)/ve

or

re/ve = r(1/vs + 1/ve) − rs/vs (7.28)

In the present model we must envisage rs to increase continually but
the ionisation density ρ(r) to reduce to zero at, say, rl. The streamer length
is (rl − ra). Time thus enters the model through the equation

(rs − ra) = vst (7.29)

and the streamer propagation stops at time tl = (rl − ra)/vs.
The current does not stop then of course but continues to be carried

by the electrons and, to a much smaller extent, by the ions.
The electron contribution to the anode current, ie(t), may now be

obtained as follows. The electron charge −ρ(r)dr created at radius r has
now travelled to re, given by Eqn. 7.28. Thus, according to Eqns. 1.5b and
2.5, the present contribution to anode current is

die(t) = −ρ(r)dr
d

dt
[1 − C ln(re/ra)

2] (7.30a)

= −2Cve
ρ(r)dr

re
(7.30b)

where −dre/dt = ve, the constant electron velocity.
If t < tl

ie(t) = −2Cve

∫ rs

r1

ρ(r)dr

re
(7.31)
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Here re is a function of r, though Eqn. 7.28, and of course r1 and r2 are
functions of time t though Eqns. 7.27 and 7.29.

If t > tl and t ≤ te = (rl − ra)/ve then the streamer has stopped
but electrons, and ions, continue to flow. The upper limit of the integral in
Eqn. 7.31 must be changed from rs to rl.

ie(t) = −2Cve

∫ r`

r1

ρ(r)dr

re
(7.32)

If t > tl and t > te then electron flow has ceased, ie(t) = 0, and only a very
small ion current remains.

The positive ion contribution to the anode current, ip(t), is negligibly
small and could reasonably be omitted altogether. However it is very simple
to include a contribution, on the assumption of constant ion mobility in the
applied field. In fact the heavy space charge already existing should really
be taken into account but this problem has so far proved intractable. Thus,
ignoring the space charge, the ions move from r to rp in a time (rs − r)/vs
where according to Eqn. 2.11,

(r2
p − r2)/r2

a = 1 + (rs − r)/vst0 (7.33)

Here t0 is the characteristic time defined in Eqn. 2.10. Thus

(rp/ra)
2 = (r/ra)

2 + (rs − r)/vst0 (7.34)

The contribution dip(t) is given by a similar expression to Eqn. 7.30, with a
positive sign, but in this case the ion velocity drp/dt is not constant. From
Eqns. 2.8 and 2.10 of Chapter 2

drp
dt

=
r2
a

2torp
(7.35)

Thus

dip(t) = −Cv0ra
ρ(r)dr

r2
p

(7.36)

where, for convenience, v0 = ra/t0. Then

ip(t) = −Cv0ra

∫ ru

ra

ρ(r)dr

r2
p

(7.37)

The upper limit ru of the integral in Eqn. 7.37 is rs for t < tl and rl for
t ≥ tl.
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Figure 7.3 Anode current waveforms due to a radial streamer with Gal-
limberti [8] charge distribution. The streamer length is 3.0 mm and the
total charge is 97 pC. A constant propagation velocity of 1000µm/ns has
been assumed. The results for two (constant) electron velocities are shown,
before and after signal processing with 10–90% rise-time of 10 ns.
Chamber parameters are: anode radius 50 µm, cathode radius 12 mm,
anode voltage 5 kV.

Thus, finally, the anode current waveform is given by

ia(t) = ie(t) + ip(t) (7.38)

As mentioned above, in realistic calculations the positive ion contri-
bution proves to be negligibly small compared with the electron contribution.

The rise-time of the current waveform is very short. It is therefore
essential, if realistic comparisons are to be made with experiment, to take
into account signal processing integration. This may be accomplished by
convolution of the calculated current waveform with the appropriate im-
pulse response of the system. Fig. 7.3 shows an example of calculated anode
waveforms, before and after signal processing. The charge density ρ(r) em-
ployed for these calculations was derived by the Coimbra group [8] from a
theoretical treatment of discharge development by Gallimberti [9]. The as-
sumed velocities ve and vs, and the chamber parameters, are indicated with
the figure.

7.5.3 Cathode sector current waveform

The current waveform from a sector of the cathode can also be cal-
culated using the same model as in the previous section. However in this
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case the current is derived from the expression for induced charge derived
in Section 7.3.1.

For a streamer developing along the θ = 0 axis, Fig. 7.1, the electron
and ion contributions to the current of a cathode sector between θ1 and θ2
are given by, respectively,

ie = ve

∫ (
dP

dr

)
re

ρ(r) dr (7.39)

ip =
v0ra

2

∫ (
dP

dr

)
rp

ρ(r)

rp
dr (7.40)

where P (r, θ1, θ2) is given by Eqn. 7.10. The differentials must be evaluated
at the appropriate radii as indicated. The limits of the integrals are the
same as in the previous section. The expression for dP/dr is rather clumsy,
but straightforward.

dP

dr
= − 2a(b− v2)

π[(v2 + b)2 + v2a2]

1

rc(1 + r/rc)2
+
θ2 − θ1
π

C

r
(7.41)

where

a = tan θ2/2 − tan θ1/2

b = tan θ2/2. tan θ1/2

v = (1 − r/rc)/(1 + r/rc)
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Appendix 1.

Weber approximation for potential function
in MWPC

1.1 Mathematical preliminaries

The theoretical methods employed in this, and the following two,
appendices will be described in a physicist’s rather than a mathematician’s
terms. The reader to whom rigorous treatment has an essential priority
is advised to consult first one of the many excellent texts on functions of
a complex variable. Particularly recommended, for the treatment of rele-
vant topics, and for enjoyable further education, is the text by Spiegel [1].
The well-known, standard texts, on electricity, for example ref. [2], and on
mathematical physics [3,4], are of course also helpful.

Consider an analytic functionW (z) of the complex variable z = x+iy
that can be expressed in the form

W (z) = P (x, y) + iQ(x, y)

where the conjugate functions P and Q are real functions of x, y. Differen-
tiating partially with respect to x and y we have

∂P

∂x
+ i

∂Q

∂x
=
dW

dz
∂P

∂y
+ i

∂Q

∂y
= i

dW

dz

Thus
∂P

∂x
+ i

∂Q

∂x
=
∂Q

∂y
− i

∂P

∂y

Hence
∂P

∂x
=
∂Q

∂y
and

∂P

∂y
= −∂Q

∂x

These expressions are known as the Cauchy-Riemann equations. It follows
from these equations that

∂2P

∂x2
+
∂2P

∂y2
= 0 and

∂2Q

∂x2
+
∂2Q

∂y2
= 0

Thus conjugate functions are harmonic functions (i.e. solutions of Laplace’s
equations) and possible candidates for our attention.
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Consider the curve P (x, y) = constant. The slope of this curve at
(x, y) is (

dy

dx

)
P

= −∂P
∂x

/
∂P

∂y

The slope of the curve Q(x, y) = constant at the same point is(
dy

dx

)
Q

= −∂Q
∂x

/
∂Q

∂y

Hence, from the Cauchy-Riemmann equations,(
dy

dx

)
P

(
dy

dx

)
Q

= −1

Thus the two families of curves, P = constant and Q = constant, intersect
orthogonally. The first could represent the equipotentials in a particular
system and the second the corresponding field lines (or vice versa).

An important property of harmonic functions is that they remain
harmonic under a conformal transformation [1, p.242]. Thus it may occur
in a particular problem that the boundaries in the z-plane, may be mapped
into others, in the w-plane, for which a simple solution may be obtained.
This technique will be used in Appendices 2 and 3.

1.2 Symmetrical multiwire chamber

1.2.1 Anode at unit potential

A symmetrical multiwire chamber is shown schematically in Fig.A1.1,
the anode wires being normal to the x− y plane. The anode, cathode spac-
ing is h and the (constant) anode wire pitch is s. It is assumed, as in all the
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wire chamber treatments in this monograph, that the wire radius ra is very
small compared with s.

The assumption which characterises this present formulation, one
of the problems treated by Weber [5], is that the ratio h/s is such that
cosh(2πh/s) � 1.

Consider the complex potential function W (z) given by

W (z) = −K ln{sin(πz/s)} − i E0z + V0 (A1.1)

where K, E0 and V0 are constants. Then W (z) can be expressed as

W (z) = P (x, y) + iQ(x, y) (A1.2)

where, after some manipulation, it is found that

P (x, y) = −K ln{(cosh 2πy/s− cos 2πx/s)/2} 1
2 + E0y + V0 (A1.3)

and

Q(x, y) = −Kβ − E0x (A1.4)

where

tanβ = tanhπy/s/ tanπx/s (A1.5)

If we examine the value of the curly bracket in Eqn. A1.3 in the
close proximity to an anode wire, that is when y/s→ 0 and x′/s→ 0 where
x′ = x− ns, then it is found that

{(cosh 2πy/s− cos 2πx/s)/2} 1
2 → πr/s (A1.6)

where
r = (x′2 + y2)1/2

Now examine the value of the curly bracket in Eqn. A1.3 when
cosh 2πy/s� 1. Under these conditions

ln{(cosh 2πy/s− cos 2πx/s)} 1
2 = π|y|/s− ln 2 (A1.7)

It is convenient now, and for later work, to define an effective cathode radius
rc by means of the expression

rc = (s/2π)eπh/s (A1.8)

Then

ln{(cosh 2πy/s− cos 2πx/s)/2} 1
2 = lnπrc/s− (1 − |y|/h)πh/s (A1.9)
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We can now determine the constants K, E0 and V0. For, if the anode
is at unit potential and the two cathodes are grounded, then,
at y = h , 0 = −K lnπrc/s+ E0h +V0

at r = ra, 1 = −K lnπra/s +V0

and at y = −h , 0 = −K lnπrc/s− E0 h +V0

From these simultaneous equations it is seen that

E0 = 0

V0 = K lnπrc/s

K = 1/ ln(rc/ra)

It is useful to define a dimensionless quantity C, as in Eqn. 2.2,

C = 1/ ln(rc/ra)
2 (A1.10)

Thus
K = 2C.

Then, after some algebraic manipulation, the potential function P (x, y),
Eqn. A1.3, may be finally written

P (x, y) = 1 − C ln
{2(cosh 2πy/s− cos 2πx/s)}

(2πra/s)2
(A1.11)

It is clear, from Eqn. A1.6, that close to an anode wire this potential
function reduces, as expected, to the simple coaxial form

P (r) = 1 − C ln(r/ra)
2

In the body of the chamber, well away from the anode wire plane,
where cosh 2πy/s� 1, then using Eqn. A1.7 the potential function reduces
to

P (y) =
2πCh

s

(
1 − |y|

h

)
(A1.12)

The flux function Eqn. A1.4 may be written

Q(x, y) = −2C tan−1

(
tanhπy/s

tanπx/s

)
(A1.13)

A field line is defined by the expression Q = constant. At very small
values of y/s and (x′ − ns)/s, near an anode wire, y/x′ = α where α is the
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angle at which the field line meets the anode wire surface. Thus the field
lines are described by the family of curves

tanhπy/s = tanα. tanπx/s (A1.14)

1.2.2 Cathode at unit potential

If the upper cathode in Fig. A1.1 is at unit potential and the an-
ode and lower cathode are grounded then the constants in Eqn. A1.3 are
determined by the three equations,
at y = h , 1 = −K lnπrc/s+ E0h +V0

at r = ra, 0 = −K lnπra/s +V0

and at y = −h , 0 = −K lnπrc/s− E0 h +V0

From these conditions, and using Eqn. A1.10 again, we find

E0 = 1/2h

V0 = −C lnπra/s

K = −C

Thus in this case the potential function P (x, y) becomes

P (x, y) =
C

2
ln

{2(cosh 2πy/s− cos 2πx/s)}
(2πra/s)2

+
y

2h
(A1.15)

In the region close to the wire this function reduces to, with the aid
of Eqn. A1.6,

P (r) =
C

2
ln

(
r

ra

)2

(A1.16)

In the body of the chamber, where cosh 2πy/s � 1, then using
Eqn. A1.7,

P (y) =
1

2

(
1 +

y

h

)
− πCh

s

(
1 − |y|

h

)
(A1.17)

The field in the body of the chamber is given by

E(y) = − 1

2h

(
1 ± 2πCh

s

)
(A1.18)

where the plus, minus signs refer to the upper, lower regions respectively.
Clearly the magnitude of the field is much smaller in the lower region because
of the shielding of the anode plane.
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The flux function Eqn. A1.4 with the upper cathode at unit potential
now becomes

Q(x, y) = C tan−1

(
tanhπy/s

tanπx/s

)
− x

2h
(A1.19)

and the field lines are therefore defined by the equation

tanhπy/s = tan
(
α+

x

2Ch

)
tanπx/s (A1.20)

where α is the angle at which the field line meets the anode wire surface.
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Appendix 2.

Derivation of single-wire formula

Fig. A2.1 represents schematically a single-wire chamber. The wire,
and the grounded cathodes are normal to the x−y plane. The cathodes are
at y = h and y = −h and the wire is at complex coordinate position z0.

(Before following the analysis below it may be helpful to examine
first the preliminary section of Appendix 1.)

Consider the transformation

w = ieaz (A2.1)

where z = x+ iy, w = u+ iv and a = π/2h.
That is,

u = −eax sin ay (A2.2a)

v = eax cos ay (A2.2b)

It can be seen, therefore, that the line ABC at y = h transforms into the
negative u-axis while the line DEF at y = −h transforms into the positive
u-axis, as indicated in Fig. A2.1. All points between the cathodes map into
the upper half-space in the w-plane.

We require to calculate the potential distribution P (x, y) produced
by a line charge of linear density q0 at position z0. Now it can be shown
(ref. [1] of Appendix 1) that a harmonic function (one that satisfies Laplace’s
equation) remains harmonic under a conformal transformation. Thus, using
the transformation A2.1, we need to find the complex potential function in
the w-plane due to a line charge of density q0 at w0. This is a relatively
simple problem that can be solved by use of an image line charge.

y

z0

ABC

FED

planez -

x
y = h

y =   h

v

u
A B C D E F

planew -

w0

w0
*

−

Figure A2.1
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We first note that the real potential P at distance ρ from a single
line charge in free space is of the form

P = constant − q0
2πε0

ln ρ (A2.3)

where ε0 is the electrical space constant. Now the line charge is at w0 and
we wish to calculate the potential at a general point w distant ρ from w0.
That is

w = w0 + ρeiγ

Then the complex potential function

W (w) = constant − q0
2πε0

ln(w − w0)

has a real part equal to P , Eqn. A2.3.
Now if we place an image line charge density −q0 at the complex

conjugate position w∗
0, it is clear from symmetry considerations that the u-

axis becomes a zero equipotential. The required complex potential function
in the upper half-space of the w-plane becomes therefore

W (w) = − q0
2πε0

ln
w − w0

w − w∗
0

(A2.4)

It now only remains to express the real and imaginary parts of this function
in terms of x and y.

Firstly it is found after some manipulation that

W (z) = − q0
2πε0

ln
sinh a(z − z0)/2

cosh a(z − z∗0)/2
− i

q0
2πε0

a(z − z∗0)/2

Then, if we write W (z) = P (x, y) + iQ(x, y) it is found after further manip-
ulation that

P (x, y) = − q0
2πε0

ln

{
cosh a(x− x0) − cos a(y − y0)

cosh a(x− x0) + cos a(y + y0)

}1/2

(A2.5)

and

Q(x, y) = − q0
2πε0

(θ + ay0) (A2.6a)

where

tan θ =
sin ay − cosh a(x− x0) sin ay0

sinh a(x− x0) cos ay0

(A2.6b)

Shift of the x-axis in the negative y-direction by an amount d/2, such
that the upper cathode is at y = h1 = h + d/2 and the lower cathode is at
y = −h2 = −(h1 − d/2) produces the more general result for the potential
distribution in an asymmetrical chamber, Eqn. 4.1.
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Appendix 3.

Derivation of cathode strip formula

We require to find the potential function due to a strip of the upper
cathode, say between x1 and x2, being at unit potential, the remainder of
that cathode and the lower cathode being grounded. The situation is shown
in Fig. A3.1a.

In the following analysis it will be assumed that the preliminary
section of Appendix 1 has been read. Further, the transformation to be
used will be that employed in Appendix 2.

As described in Appendix 2, the line y = h (the upper cathode)
in the z-plane is mapped into the negative u-axis in the w-plane by the
transformation

w = ieaz (A3.1)

where z = x+ iy, w = u+ iv and a = π/2h.
Thus

u = −eax sin ay (A3.2a)

v = eax cos ay (A3.2b)

The unit potential strip x1, x2 maps into the unit potential strip
u2, u1 on the u-axis, Fig. 3.1b. It is now a relatively simple problem to
determine the potential function in the w-plane.

Consider again a logarithmic function of the type employed in Ap-
pendix 2.

f(w) = ln(w − u1)

= ln ρ1 + iθ1

where ρ1 is the distance between the points u1 and w. Thus a valid complex
potential function may be written.
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W (w) = A ln(w − u1) +B(w − u2) + C

where A,B and C are constants to be determined by the boundary condi-
tions. We now write

W (w) = Q(u, v) + iP (u, v) (A3.3)

where Q and P are real functions of u and v, and in this case we regard Q
as the flux function and P as the potential function. Thus

Q = A ln ρ1 +B ln ρ2

and
P = Aθ1 +Bθ2 + C

If θ1 = 0 and θ2 = 0 then P = 0. Therefore C = 0.
If θ1 = π and θ2 = 0 then P = 1. Therefore A = 1/π.
If θ1 = π and θ2 = π then P = 0. Therefore B = −1/π.
Hence

P = (θ1 − θ2)/π (A3.4)

and the potential function in the w-plane becomes

W =
1

π
ln

(
w − u1

w − u2

)
(A3.5)

It is convenient to derive an expression for the potential due to an
infinitesimal cathode strip of width dx2. That is, we need to find dP/dx2

where
dP

dx2

=
dP

dθ2

dθ2
du2

du2

dx2

From Eqn. A3.4 dP/dθ2 = −1/π, and from Eqn. A3.2 du2/dx2 = −aeax2 .
Further, from Fig. A3.1

tan θ2 = v/(u− u2)

Thus
dP

dx2

=
a

π
eax2

v

(u− u2)2 + v2

Then, after further algebraic manipulation, it is found that

dP (x, y) =
1

4h

cos ay

cosh a(x− x2) − sin ay
dx2 (A3.6)
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If the x-axis in Fig. A3.1a is displaced in the negative y-direction so
that it coincides with the lower cathode, and if the electrode separation 2h
is replaced by the same symbol h, then Eqn. A3.6 becomes

dP (x, y) =
1

2h

sinπy/h

coshπ(x− x2)/h+ cosπy/h
dx2 (A3.7)

This is the expression for potential employed in Section 6.2.2.
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Appendix 4.

Evaluation of the exponential integral

If RC circuitry is employed in the processing of the signal from a
coaxial counter or MWPC then a theoretical description will, inevitably,
involve somewhere integrals of the type

I =

∫ b

a

ez

z
dz (A4.1)

This has been demonstrated in Section 2.3 which describes a simple, stan-
dard signal processing system.

The integral A4.1 can be written

I = Ei(b) − Ei(a)

where Ei(x) is the exponential integral [1]. A problem may arise in evaluat-
ing the integral A4.1 in the present applications because of the small value
of the lower limit

a = t0/T

where t0 is the characteristic time of the chamber, ≤ 1 ns, Eqn. 2.10, and T
is the RC processing time constant. If T is, typically, of the order 1µs then
a ≤ 10−3. Under these conditions the numerical evaluation of A4.1 with
normal library routines may yield an inaccurate result. The problem may
be overcome as follows.

Choose a lower limit a′, less than unity, but such that the integral
of the type A4.1 can be evaluated with adequate accuracy (a′ = 0.1, say,
would be suitable).
That is

I =

∫ a′

a

ez

z
dz +

∫ b

a′

ez

z
dz

= I1 + I2, say.

In order to evaluate I1 express the exponential as an expansion

I1 =

∫ a′

a

1

z

(
1 + z +

1

2!
z2 +

1

3!
z3 + . . .

)
dz

= ln

(
a′

a

)
+

[
z +

1

2.2!
z2 +

1

3.3!
z3 + . . .

]a′
a

(A4.2)
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The summation in Eqn. A4.2 can then be performed with a sufficient number
of terms to reach the necessary accuracy.

I am grateful to Dr. J.R. Thompson, Mathematics Department, Le-
icester University, for pointing out this strategy.
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Appendix 5.

The evaluation of H0(ω) and H(ω)

The account given below is a close reproduction of that originally
given in ref. [1].

(1) It is prudent to begin with the evaluation of the simpler double

sum for H0(ω) which is, by Eqn. 5.20,
∑
k

sk(ω) where

sk(ω) =
∑
n

2 cos(πn)K0

(
2ω

√
c2k + n2

)
, (A5.1)

and

4c2k = (ra/h)2 + (ks/h)2. (A5.2)

The procedure here is to discover the equation

sk(ω) = 2π

∫ ∞

0

J0(2ωγ)φk(γ)γdγ, (A5.3)

where

φk(γ) = 1/[pk sinh(φPk)],

and

p2
k = γ2 + c2k.

This leads directly to

H0(ω) = 2π

∫ ∞

0

J0(2ωγ)φ(γ)γdγ, (A5.4)

where

φ(γ) =
∑
k

φk(γ). (A5.5)

This is a convenient starting point for numerical evaluation of H0 since the
summation A5.5 may be closed around k = ±10, and the integral A5.4 may
likewise be closed at an upper limit, γm say, around γ = 4. In both cases it
is the sinh term in the denominator that accounts for the rapid convergence.

There is, however, one feature to which attention must be paid,
which is the sharp spike in γφ(γ) occasioned by the behaviour of γφ0(γ)
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around γ = c0. Accordingly the term φ0(γ) is replaced in the summation by
φ0(γ)− 1/(πp2

0), which term should be evaluated using the series expansion

1

t sinh t
− t−2 = −1

6
+

7

360
t2 − 31

15120
t4 + . . . ,

for values of πp0 less than about 0.1. There remains the adjusting term

2π

∫ γm

0

j0(2ωγ)(1/πp2
0)γdγ,

which is equivalently

2

∫ γm

0

J0(2ωγ) − I0(2ωc0)

γ2 + c20
γdγ + I0(2ωc0) ln

γ2
m + c20
c20

. (A5.6)

For values of 2ωγ and 2ωc0 both less than about 0.1, the last inte-
grand may be evaluated by the series development

J0(s) − I0(t)

s2 + t2
= −1

4
+

1

64
(s2 − t2) − 1

2304
(s4 − s2t2 + t4) . . . .

and otherwise by use of library routines.
It cannot be emphasised too strongly that the precautions suggested

here are necessary if the integral A5.4 is to be evaluated correctly by nu-
merical means; this is because of the smallness of c0. Observe, too, that the
choice of γm, which must be made consistently throughout, is determined
by the behaviour of A5.4 and not that of A5.6.

(2) The derivation of Eqn. A5.3 from Eqn. A5.1 follows a technique
that will be found in most texts on complex analysis. The terms for positive
and negative n are combined, and by means of the calculus of residues one
has

sk(ω) = 2K0(2ωck) − 2i

∫ K0

(
2ω

√
c2k + x2

)
sinπx

dx,

where the path of integration in the complex x plane runs from ∞ + 0i
parallel to the real axis, passes between the poles at x = 0, 1 and returns to
∞−0i. This path may be displaced to the imaginary axis with indentations
at x = 0,±ick; thereupon the change of variable γ = i(c2k + x2)1/2 leads to

sk(ω) = 2K0(2ωck) − 2i

∫
K0(−2iωγ)φk(γ)γdγ,
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where the path of integration runs from −∞ to ∞ passing above the pole at
γ = ick. Capture of this pole gives a cancelling contribution −2K0(2ωck),
and there remains an integral along the real γ axis with an indentation above
the origin that serves to fix the determination of K0(−2iωγ). Combining the
contributions from each half of the axis into a single integral gives Eqn. A5.3.

(3) The evaluation of H(ω) follows the same course except that
the transformation of the integral is more delicate. In particular, terms of
opposite sign in k must be taken together to avoid problems with branch
points. This argument is not given in detail. The problem with the spike in
γφ0(γ) can be dealt with as before but the algebra is a little heavier.

In place of Eqn. A5.2 one defines

ck = abs [(ks− z)/h]/2. (A5.2′)

and, additionally,

Qk(γ) =
sinh2(πpk) cos(πy/2h)

sinh2(πpk) + sin2(πy/2h)
.

Then it may be shown that the formula parallel to Eqn. A5.5 is

φ(γ) =
∑
k

Qk(γ)φk(γ). (A5.5′)

Again the k = 0 terms requires care when y and z are both small, and the
technique employed above may be repeated since the factor Qk(γ) is well-
behaved numerically. There is, however, the complication that the term
exhibiting the logarithmic singularity,

2I0(2ωc0)

∫ γm

0

1

γ2 + c20
Q0(γ)γdγ (A5.7)

is not now directly integrable as it was earlier. Write

Q0(γ) =
π2p2

0 cos(
πy

2h
)

π2p2
0 + sin2(

πy

2h
)

+ cos(
πy

2h
)

sin2(
πy

2h
)[ sinh2(πp0) − π2p2

0][
sinh2(πp0) + sin2(

πy

2h
)
][
π2p2

0 + sin2(
πy

2h
)
] ,
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where p2
0 is γ2 +c20. The first term leads at once in Eqn. A5.7 to the singular

part

I0(2ωc0) cos(πy/2h) ln
γ2
m + c20 + sin2(πy/2h)/π2

c20 + sin2(πy/2h)/π2
,

and the second term may be integrated numerically with the numerator
calculated by means of the series development

sinh2 t− t2 =
1

3
t4 +

2

45
f6 +

1

315
t8 . . . ,

when πp0 is less than about 0.1.

Reference
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Appendix 6.

Comments on gas gain formulae

The dependence of avalanche multiplication on chamber parame-
ters and gas mixture properties is a complex topic, sufficiently so indeed to
have received detailed study over nearly eighty years. An excellent, com-
prehensive description of this subject, particularly relevant to the present
applications, has been given by Raether [1]. Several other detailed accounts
of gas discharge physics may be found among them for example the very
informative monograph by Llewellyn-Jones [2].

Not surprisingly no simple and accurate theory of gas gain in pro-
portional detectors can be given. Nevertheless it is often necessary to have
available empirical formulae to allow approximate predictions to be made
of detector performance. There exist several such formulae, and it has to
be accepted that no one formula is able to predict gain over the full range
of operating voltage or over a complete range of chamber parameters. The
purpose of this appendix is to outline briefly the essential features of the
most useful of these empirical formulae.

The highly simplified theory underlying the establishment of a gas
gain formula may be formulated as follows. Let n(`) be the number of elec-
trons in an avalanche at coordinate `. Then the basic assumption, which
ignores all secondary processes and space charge effects, is that the increase
in number dn in an infinitesimal decrease in coordinate −d` may be ex-
pressed as

dn = −αnd` (A6.1)

where here α is the Townsend first ionisation coefficient [1,2]. If one electron
starts the avalanche at an average position `0 and the avalanche terminates
at position `a, producing M electrons, then∫ M

1

dn

n
= −

∫ `a

`0

αd`

or

lnM =

∫ `0

`a

αd` (A6.2)

The different empirical formulae arise from the various forms assumed for
the dependency of α on field E.

Fig. A6.1 sketches the general way in which α/p depends on S =
E/p, where p is the gas pressure (general considerations show that α/p is a
function of E/p).
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S0 S = E/p

α/p

Figure A6.1

At low values of α/p, such as would be used in PPACs, the original
Townsend form [1,2] is often employed.

α/p = ae−b/S

where a and b are constants. This form has also been assumed for coaxial
counter operation by Williams and Sara [3] to obtain a gas gain formula.

At higher values of α/p there is a fairly well-defined linear region.
Diethorn [4] has assumed direct proportionality with S to obtain a coaxial
counter gain formula. Zastawny [5,6] has employed the more realistic form
over the linear range

α/p = B(S − S0) (A6.3)

where B and S0 are constants. Zastawny has included a further constant to
take into account the non-linear region as α/p approaches zero. A simplified
analysis, based on Eqn. A6.3 only, will be given below.

Rose and Korff [7] developed a semi-empirical theory to determine
the form of α/p, finding proportionality with S1/2

Finally, (not in chronological terms) Khristov [8] has obtained a coax-
ial counter gain formula based on α/p equal to a constant.

The Zastawny description [5] appears to be the most accurate of
these various empirical formulae. A simplified, two-parameter analysis may
be developed as follows, using the symbols and formulae employed in Chap-
ter 2. For a coaxial counter

S =
E

p
=

2CVa
pr
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and therefore

dr = −2CVa
pS2

dS

Thus Eqn. A6.2 may be written

lnM = 2CVa

∫ Sa

S0

(
α

p

)
dS

S2

where Sa = 2CVa/pra. Hence, from Eqn. 6.3,

lnM = 2CVaB{ln(r0/ra) − 1 + ra/r0} (A6.4a)

where
r0 = 2CVa/pS0 (A6.4b)

Eqn. A6.4 is an extremely useful, if approximate, expression for esti-
mating changes of gain with chamber geometry, pressure or operating volt-
age (see, for example, 3.5.3). It is of course equally applicable to multiwire
chambers, at normal operating pressures, provided the appropriate value of
C is employed (Section 4.3.2).

The logarithmic slope, employed during the study of gain dependence
on count rate (Section 3.6) is given by

1

M

dM

dVa
= 2CB ln

(
2CVa
S0pra

)

The near independence of this slope from Va, over a limited range, is demon-
strated here.

Some experimental values of the two parameters B and S0 are given
in the table below.

Gas B(kV)−1 S0(V/cm torr)

CO2 [5] 19.3 69

Ar/10%CH4 [5] 30 25

Ar/20%CO2 [9] 23 18

Xe/10%CO2 [9] 27 28
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Appendix 7.

Prompt electron signal in wire chambers

In the wire chamber calculations in this monograph it has been as-
sumed that the final stages of the avalanche occur so close to the anode wire
surface that the electron component of the anode signal is negligible. This
appendix will show that under normal operating conditions, this assumption
can be completely justified quantitatively. In this analysis it will be assumed
that the electrons in the avalanche are collected in zero time and that space
charge effects can be ignored.

Let dn be the number of ions (and electrons) created in the interval
dr. Then the net anode charge, due to electron collection and positive ion
creation, is (Eqn. 2.6.)

dqe = −ednC ln(r/ra)
2

where −e is the electronic charge. Thus the total net anode signal, imme-
diately after the avalanche, becomes

qe = e2C

∫ r0

ra

ln

(
r

ra

)
dn

dr
dr (A7.1)

Here r0 is the radius at which gas multiplication starts, that is where n = 1.
The total avalanche charge is q0 = eM where M is the gas gain. Then,
integrating by parts Eqn. A7.1, we find

qe
q0

= −2C

M

∫ r0

ra

n− 1

r
dr (A7.2)

We cannot proceed further analytically with this problem. A par-
ticular gain formula must be employed to represent n(r) and no reasonable
choice allows Eqn. A7.2 to be integrated analytically.

An extremely useful and simple gain formula is the modified Za-
stawny formula described in Appendix 6. In this formulation n(r) is ob-
tained from the equation

lnn(r) = 2CBVa{ln(r0/r) − 1 + r/r0} (A7.3)

where B and r0 have been introduced in Appendix 6. The value of M is
obtained from Eqn. A7.3 by placing r equal to ra. If n(r) from Eqn. A7.3
is employed in Eqn. A7.2, and the integration performed numerically, then
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it is found that, for the normal range of chamber operating geometries and
conditions, −qe/q0 falls within the range 1 to 5%.

It should be stressed that this last result represents the abrupt jump
in anode charge immediately after the avalanche. The resultant change in
output amplitude, after signal processing, is very much smaller than this
and is quite negligible, under normal operating pressure conditions. This
can be appreciated by recalling the extremely fast rise of the anode charge
waveform. Eqn. 2.12 shows that at t = 0

dqe
dt

= −q0C
t0

where t0 is the chamber characteristic time (0.3–1.0 ns). Thus the sudden
step −qe/q0 represents a shift of the charge waveform, in the negative time
direction, by an amount ∆t given by

∆t = − t0
C

qe
q0

Since, for wire chambers and coaxial counters, C falls within the range 0.04
to 0.1 approximately it is seen that the effective time shift of the charge
waveform, under normal operating pressure conditions, is a fraction of a
nanosecond. The effect of this shift on pulse height, even with the fastest
signal processing, is negligible.

Finally, it may be noted here that the effect of finite collection dura-
tion would generally be very much greater than this present effect of positive
ion position. A simple extension of the analysis of Section 2.3 shows that
a primary spread of only a few nanoseconds can result, with the fastest
available processing systems, in a significant, measurable change in pulse
height.
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