IN PROGRESS Draft
ENVIRONMENTAL ASSESSMENT/INITIAL REGULATORY FLEXIBILITY ANALYSIS
for the Total Allowable Catch Specifications for the Year 2003 Alaska Groundfish Fisheries
Implemented Under the Authority of the Fishery Management Plansfor the Groundfish Fishery of the Bering Sea and Aleutian Islands Area and Groundfish of the Gulf of Alaska

IN PROGRESS Draft September 2002
Information necessary to complete this analysis will not be available until November 2002

Lead Agency	National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Regional Office Juneau, Alaska
Responsible Official	James W. Balsiger
	Regional Administrator
	Alaska Regional Office
For Further Information Contact Tamra Faris or Ben Muse	
	National Marine Fisheries Service
P.O. Box 21668	
Juneau, AK 99802	
(907) 586-7228	

Abstract

This Environmental Assessment analyzes the impacts of establishing the 2003 harvest specifications for groundfish target species in the groundfish fisheries of the Bering Sea, Aleutian Islands, and Gulf of Alaska fishery management areas. Impacts are considered to target species stocks, higher and lower trophic level species, and the physical and socioeconomic environment for five alternative TAC specifications. The preferred alternative is to set harvest within the range recommended by the Plan Teams as modified by the North Pacific Fisheries Management Council (Council) (Alternative 2). These recommendations are not available until after the November Plan Teams' meetings and the December 2002 Council meeting. Data in this September 2002 draft EA are reflective of the Plan Teams' September work.

The federal action consists of specifying groundfish total allowable catch limits for fishing year 2003 in the exclusive economic zones of the Bering Sea and Aleutian Islands management area and the Gulf of Alaska management area. Three notices are published in the Federal Register to make this rulemaking: Proposed, Interim, and Final. Analysis predicts no significant impacts will accrue to marine resources from harvest of target species at levels being contemplated. Preparation of an Environmental Impact Statement will not be required. Section 7 consultation under the Endangered Species Act has been re-initiated for this federal action.

Comments will be taken on this analysis through December 20, 2002.
(This page is blank)

Total Allowable Catch Specifications for the Year 2003
 Environmental Assessment

Table of Contents

List of Tables V
$1.0 \quad$ Purpose and Need 1
1.1 Related NEPA Documents 2
1.2 Description of the Fisheries 3
2.0 Descriptions of Alternatives 4
2.1 TAC Alternative 1: Set F equal to $\max F_{A B C}$, 4
2.2 TAC Alternative 2: Preferred Alternative. Set F within the range of ABCs recommended by the Plan Team's and TACs recommended by the Council 4
2.3 TAC Alternative 3: Set F equal to 50% of $\max F_{A B C}$ 4
2.4 TAC Alternative 4: Set F equal to the most recent five year average actual F 4
2.5 TAC Alternative 5: Set F equal to zero 5
3.0 Affected Environment 11
4.0 Environmental and Economic Consequences 11
4.1 Effects on Target Species 13
4.1.1 Effects of Alternatives 1 Through 5 on Target Species 14
4.2 Effects on Incidental Catch of Non-specified Species 16
4.3 Effects on Forage Fish Species 17
4.4 Effects on Prohibited Species 17
4.4.1 Effects of Alternative 1 on Prohibited Species and Directed Fisheries 20
4.4.2 Effects of Alternative 2 on Prohibited Species and Directed Fisheries 22
4.4.3 Effects of Alternative 3 on Prohibited Species and Directed Fisheries 22
4.4.4 Effects of Alternative 4 on Prohibited Species and Directed Fisheries 23
4.4.5 Effects of Alternative 5 on Prohibited Species and Directed Fisheries 23
4.5 Effects on Marine Mammals 28
4.5.1 Effects of Alternatives 1 through 5 on Marine Mammals 28
4.6 Effects on Seabirds 31
4.6.1 Effects of Alternative 1 on Seabirds 32
4.6.2 Effects of Alternative 2 on Seabirds 33
4.6.3 Effects of Alternative 3 on Seabirds 33
4.6.4 Effects of Alternative 4 on Seabirds 34
4.6.5 Effects of Alternative 5 on Seabirds 34
4.7 Effects on Marine Benthic Habitat and Essential Fish Habitat Assessment 35
4.8 Effects on the Ecosystem 36
4.9 Effects on State of Alaska Managed State Waters Seasons and Parallel Fisheries for Groundfish Fisheries 40
4.9.1 Effects of Alternatives 1 through 5 on harvest levels in state managed groundfish fisheries in the BSAI and GOA 41
4.10 Social and Economic Consequences 42
4.10.1 Description of the Fishery 42
4.10.2 Direct and Indirect Impacts of the Alternatives 49
4.10.3 Detailed Analysis of 2003 Gross Value Impacts 55
4.10.4 A note on the calculations 60
5.0 Cumulative Effects 62
6.0 Conclusions 63
6.1 Adverse or beneficial impact determinations for marine resources 63
6.2 Public health and safety 63
6.3 Cultural resources and ecologically critical areas 63
6.4 Controversiality 63
6.5 Risks to the human environment 64
6.6 Future actions related to this action 64
6.7 Cumulatively significant impacts 64
6.8 Districts, sites, highways, structures, or objects listed or eligible for listing in the National Register of Historic Places 64
6.9 Impact on ESA listed species 64
6.10 Comparison of Alternatives and Selection of a Preferred Alternative 65
7.0 Initial Regulatory Flexibility Analysis 69
7.1 Introduction 69
7.2 The purpose of an IRFA 69
7.3 What is required in an IRFA? 70
7.4 What is a small entity? 70
7.5 What is this action? 72
7.6 Reason for considering the proposed action 72
7.7 Objectives of, and legal basis for, the proposed action 73
7.8 Number and description of small entities affected by the proposed action 74
7.9 Impacts on regulated small entities 82
7.10 Recordkeeping and reporting requirements 82
7.11 Federal rules that may duplicate, overlap, or conflict with proposed action 82
7.12 Description of significant alternatives 82
8.0 List of Preparers 83
9.0 References 84
Appendix A-Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea and Aleutian Islands, November 2001
Appendix B-Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Gulf of Alaska, November 2001
Appendix C-Ecosystem Considerations for 2003
Appendix D--Economic Status of the Groundfish Fisheries Off Alaska 2001, September 9, 2002

List of Tables

Table 2.0-1 2003 BSAI Interim Specifications 5
Table 2.0-2 2003 GOA Interim Specifications 7
Table 2.0-3 2003 BSAI Specification for Alternatives 1 through 5 9
Table 2.0-4 2003 GOA Specifications for Alternatives 1 through 5. 10
Table 4.0-1 Reference points for significance determinations 13
Table 4.1-1 Criteria used to estimate the significance of effects on targeted groundfish stocks in the Bering Sea, Aleutian Islands, and Gulf of Alaska 15
Table 4.4-1 Criteria used to estimate the significance of effects on stocks of prohibited species in the BSAI and GOA 24
Table 4.4-2 Criteria used to estimate the significance of effects on of harvest levels in directed fisheries targeting stock of prohibited species in the BSAI and GOA 24
Table 4.4-3 Criteria used to estimate the significance of effects on bycatch levels of prohibited species in directed groundfish fisheries in the BSAI and GOA 24
Table 4.4-4 Catch of Groundfish and Prohibited Species in the Groundfish Fisheries in the BSAI and GOA in 1999 by Target, Area, and Gear Type 25
Table 4.5-1 Criteria for determining significance of effects to marine mammals 30
Table 4.6-1 Criteria used to determine significance of effects on seabirds 35
Table 4.8-1 Indicators of ecosystem function 36
Table 4.9-1 Criteria used to estimate the significance of effects on harvest levels in state managed groundfish fisheries in the BSAI and GOA 42
Table 4.10.3-1 BSAI first wholesale gross revenues estimates by alternative 57
Table 4.10.3-2 GOA first wholesale gross revenues estimates by alternative 58
Table 4.10.3-3 Interim specification values 59
Table 4.10.4-1 Assumptions used in BSAI calculations 61
Table 4.10.4-2 Assumptions used in GOA calculations 62
Table 6.0-1 Summary of significant determinations with respect to direct and indirect impacts 66
Table 6.0-2 ESA listed and candidate species that range into the BSAI or GOA groundfish management areas and whether Reinitiation of Section 7 Consultation is occurring for these 2003 TAC specifications 68Table 7.8-4 Average revenue of vessels that caught or caught and processed less than $\$ 3.5$ million ex-vessel value or product value of groundfish by area, catcher type and gear, 1996-2000. (\$millions80
Table 7.8-5 Average revenue of vessels that caught or caught and processed more than $\$ 3.5$ million ex-vessel value or product value of groundfish by area, catcher type and gear, 1996-2000. (\$ millions 81

Total Allowable Catch Specifications for the Year 2003 Environmental Assessment

1.0 Purpose and Need

The purpose of this environmental assessment (EA) is to predict whether the impacts to the human environment resulting from setting the 2003 total allowable catch (TAC) specifications will be significant. If impacts predicted to result from the preferred alternative are insignificant, and that alternative is the chosen one, no further analysis is necessary to comply with the requirements of the National Environmental Policy Act.

TAC specifications define upper retained harvest limits, or fishery removals, for the subject fishing year. Catch specifications are made for each managed species or species group, and in some cases, by species and sub-area. Sub-allocations of TAC are made for biological and socio-economic reasons according to percentage formulas established through fishery management plan (FMP) amendments. For particular target fisheries, TAC specifications are further allocated within management areas (Eastern, Central, Western Aleutian Islands; Bering Sea; Western, Central, and Eastern Gulf of Alaska) among management programs (open access or community development quota program), processing components (inshore or offshore), specific gear types (trawl, non-trawl, hook-and-line, pot, jig), and seasons according to regulations §679.20, $\S 679.23$, and $\S 679.31$. TAC can be sub-allocated to the various gear groups, management areas, and seasons according to pre-determined regulatory actions and for regulatory announcements by NMFS management authorities opening and closing the fisheries accordingly. The entire TAC amount is available to the domestic fishery. The gear authorized in the Federally managed groundfish fisheries off Alaska includes trawl, hook-and-line, longline pot, pot, and jig (50 CFR 679.2).

Fishing areas correspond to the defined regulatory areas within the fishery management units. The BSAI is divided into nineteen reporting areas, some of which are combined for TAC specifications purposes. The Aleutian Islands group comprises regulatory Areas 541, 542, and 543. When the Aleutian Islands are referred to individually, 541 represents the Eastern Aleutian Islands, 542 the Central Aleutian Islands, and 543 the Western Aleutian Islands. The GOA is divided into eight reporting areas. The Western Gulf is Area 610, the Central Gulf includes Areas 620 and 630, and the Eastern Gulf includes Areas 640 and 650. State waters in Prince William Sound is Area 649. State waters in southeast Alaska is Area 659.

The fishing year coincides with the calendar year, January 1 to December 31 (§ 679.2 and 679.23). Depending on the target species' spatial allocation, additional specifications are made to particular seasons (defined portions of the year or combinations of defined portions of the year) within the fishing year. Any TACs not harvested during the year specified are not rolled over from that fishing year to the next. Fisheries are opened and closed by regulatory announcement. Closures are made when inseason information indicates the apportioned TAC or available prohibited species catch (PSC) limit has been or will soon be reached, or at the end of the specified season, if the particular TAC has not been taken.

TAC specifications for the federal groundfish fisheries are set annually. The process includes review by the North Pacific Fishery Management Council (Council), its Advisory Panel, and its Scientific and Statistical Committee of the SAFE reports (Appendices A, B, C, and D). Using the information from the SAFE Reports and the advice from Council committees, the Council makes both ABC and TAC recommendations toward
the next year's TAC specifications. NMFS packages the recommendations into specification documents and forwards them to the Secretary of Commerce for approval.

1.1 Related NEPA Documents

TAC-Setting EIS The original EISs for the BSAI and GOA FMPs were completed in 1981 and 1979, respectively. The TAC setting process was not revisited in an EIS until 1998, when an SEIS on the process of TAC setting was completed 1998 (NMFS1998). In that document the impacts of groundfish fishing over a range of TAC levels was analyzed. The five alternatives were very similar to the alternatives considered in this 2003 TAC specifications EA. The Record of Decision in that action was affirmation of the status quo alternative for TAC-setting which were regulations and fishery management plans as they stood in 1997. Impacts to the human environment from the federal groundfish fisheries were displayed in that EIS. Setting TAC under the status quo procedures was not found to be having significant impacts on the issues evaluated.

Annual TAC-Specification EAs In addition to the TAC-setting EIS analysis, environmental assessments have been written to accompany each new year's TAC specifications since 1991. One exception was the 2001 harvest specifications were promulgated by emergency rule published in January 2001 without an accompanying NEPA analysis. That was done because the TAC specifications were set by Congressional action at the 2000 levels (Public Law 106-554). An EA was prepared on the 2001 TAC specifications in July 2001. The 2002 TAC specifications were also promulgated by emergency rule, however, an EA was completed and FONSI determination made prior to publication of the rule (NMFS 2001d).

Groundfish Programmatic EIS A programmatic SEIS is being prepared to evaluates the fishery management policies embedded in the BSAI and GOA groundfish FMPs against policy level alternatives. A draft Programmatic SEIS was circulated for public review and comment from January 25 through July 25, 2001 (NMFS 2001a). Revision of that analysis and publication of a second public review draft is expected in 2003. For more information see the www.fakr.noaa.gov/sustainablefisheries/seis/default.htm website.

Steller Sea Lion Protection Measures SEIS A supplemental environmental impact statement was completed in 2001 (NMFS 2001c) to evaluate modifications of fishery management measures being made to mitigate impacts on Steller sea lions. The purpose of that SEIS was to provide information on potential environmental impacts that could occur from implementing a suite of fisheries management measures such that the western population of Steller sea lions existence is not jeopardized nor its critical habitat adversely modified by the groundfish fisheries in the GOA and the BSAI. Fisheries management measures considered were designed to allow commercial groundfish fishing in the North Pacific while assuring that the fisheries would neither jeopardize the continued existence of both western and eastern Steller sea lion stocks, nor adversely affect their critical habitat. Alternative 4, the area and fishery specific approach, was selected in the Record of Decision. Revision of fishery management measures in accordance with that decision have been promulgated through proposed and final rulemakings in accordance with Magnuson-Stevens Act procedures.

American Fisheries Act Amendments 61/61/13/8 EIS This EIS (NMFS 2002a) was prepared to evaluate sweeping changes to the conservation and management program for the pollock fishery of the Bering Sea and Aleutian Islands (BSAI) and to a lesser extent, the management programs for the other groundfish fisheries of the BSAI and Gulf of Alaska, the king and Tanner crab fisheries of the BSAI, and the scallop fishery off Alaska. Under the Magnuson Act, the Council prepared Amendments $61 / 61 / 13 / 8$ to implement the provisions of the AFA in the groundfish, crab and scallop fisheries. Amendments $61 / 61 / 13 / 8$ incorporated the relevant provisions of the AFA into the FMPs and established a comprehensive management program to implement the AFA. The EIS analysis provided an evaluation of the environmental and economic effects of the
management program that was implemented under these Amendments, as well as developed scenarios of alternative management programs for comparative use.

Gulf of Alaska Groundfish Rationalization SEIS In this new analysis just begun in May 2002, the Council is considering alternative management approaches to "rationalize" the Gulf of Alaska (GOA) groundfish fisheries. Rationalization may improve the economic stability to the various participants in the fishery. These participants may include harvesters, processors, and residents of fishing communities. The Council is considering these new management policies at the request of the GOA groundfish industry to address its increasing concerns about the economic stability of the fisheries. Some of these concerns include changing market opportunities and stock abundance, increasing concern about the long-term economic health of fishing dependent communities, and the limited ability of the fishing industry to respond to environmental concerns under the existing management regime. The Council may consider rationalizing the fishery through individual fishing quotas, allocations to communities or processors, or cooperatives. Alternatively, the Council may choose to modify the License Limitation Program or maintain the existing management system. As yet, specific alternatives have not been selected, and the SEIS will guide the Council in its decision making process. For more information see the www.fakr.noaa.gov/sustainablefisheries/goa_seis/default.htm website.

1.2 Description of the Fisheries

Detailed descriptions of the fishery may be found in the following reports. All of these are public documents and are readily available in printed form or over the Internet at links given in the references:

Alaska Groundfish Fisheries. Draft Programmatic Supplemental Environmental Impact Statement (NMFS 2001 a). This report contains detailed fishery descriptions and statistics in Section 3.10, "Social and Economic Conditions," and in its Appendix I, "Sector and Regional Profiles of the North Pacific Groundfish Fisheries."
"Economic Status of the Groundfish Fisheries off Alaska, 2001" (Hiatt et al. 2002) is also known as the " 2002 Economic SAFE Report." This document is produced and updated each fall in the NMFS Alaska Fisheries Science Center. The 2002 edition contains 49 historical data tables summarizing a wide range of fishery information through the year 2001.

Steller Sea Lion Protection Measures Supplemental Environmental Impact Statement (NMFS 2001c) contains several sections with groundfish fishery descriptions focused on three species - pollock, Pacific cod, and Atka mackerel. Section 2.3 contains a complete set of calculations for theoretical TAC by area, species, season, and gear using 2001 stock assessment information quantifying how the modifications to management measures to avoid jeopardy to Steller sea lions and adverse modification of critical habitat would effect TAC specifications. Section 3.12 .2 provides extensive background on existing social conditions, Appendix C provides extensive information on fishery economics, Appendix D provides extensive background information on groundfish markets, Appendix E documents harvest amounts and location by week throughout one fishing year.

Final Environmental Impact Statement for American Fisheries Act Amendments 61/61/13/8 (NMF S 2002a) provides a survey of the Bering Sea and Aleutian Islands groundfish fishery paying particular attention to the pollock fishery and the management changes introduced into it following the American Fisheries Act. The fisheries information is contained in Section 3.3, "Features of the human environment."

2.0 Descriptions of Alternatives

The alternatives to be evaluated in this analysis are variations of amounts of total allowable catch that could be set for managed species and species groups for fishing year 2003. The combined TAC will still have to be within overall conservation limits established by the fishery management plans. Setting TAC above the overfishing level determined for a particular target species or target species group for the upcoming fishing year is an alternative that will be considered, but ruled out as unlikely, therefore not analyzed in detail. Differences between alternatives are the TAC levels set by species and species group within the two groundfish complexes. Alternative TAC levels are evaluated to display a wide range of viable alternatives and their impacts to the environment.

So that fishing may begin January 1, interim TAC specifications are set based upon the proposed specifications. The interim specification authorize the release of one-fourth of each proposed TAC and apportionment thereof, one-fourth of each PSC and apportionment thereof and the first seasonal allowance of pollock, Atka mackerel, and Pacific cod. Interim specifications are published in the Federal Register in December and are superceded by the final specifications. The proposed interim specification ABCs for fishing year 2003 are detailed in Tables 2.0-1 and 2.0-2 of this document. The Council's action on these specifications is their final recommendation on interim specifications.

The measurable impacts of an alternative TAC specification accrue to the target resources themselves, other species in the ecosystem, the state fisheries that occur in adjacent marine waters, and those that benefit both from consumptive and non-consumptive users of living marine resources. The harvest levels contemplated by species by alternative will be detailed in Tables $2.0-3$ and $2.0-4$ once they are available, which is generally after the Council's Groundfish Plan Teams meet in November. Acceptable biological catch (ABC) is included at the second draft EA stage because that is what is available from the Council's Groundfish Plan Teams. Those ABC data will become total allowable catch (TAC) as the decision making moves through the North Pacific Fishery Management Council process. Fishing mortality (retained and discarded) is indicated as F. TAC specifications are harvest quotas that include both retained catch and discarded catch.
2.1 TAC Alternative 1: Set \boldsymbol{F} equal to $\boldsymbol{\operatorname { m a x }} \boldsymbol{F}_{A B C}$, " $\max F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56. Historically, TAC has been constrained by ABC, so this alternative provides a likely upper limit for setting TAC within the limits established by the fishery management plan. (Column 1 of Tables 2.0-3 and 2.0-4).
2.2 TAC Alternative 2: Preferred Alternative. Set F within the range of ABCs recommended by the Plan Team's and TACs recommended by the Council. Under this scenario, F is set equal to a constant fraction of $\max F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value recommended in the assessment to the $\max F_{A B C}$. The recommended fractions of $\max F_{A B C}$ may vary among species or stocks, based on other considerations unique to individual species or stocks. (Column 2 of Tables 2.0-3 and 2.0-4). At its December 2001 meeting, the Council selected Alternative 2 as its preferred alternative.
2.3 TAC Alternative 3: Set \boldsymbol{F} equal to $\mathbf{5 0 \%}$ of $\boldsymbol{m a x} \boldsymbol{F}_{A B C}$. This alternative provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward should stocks fall below reference levels. (Column 3 of Tables 2.0-3 and 2.0-4).
2.4 TAC Alternative 4: Set \boldsymbol{F} equal to the most recent five year average actual \boldsymbol{F}. This alternative recognizes that for some stocks, TAC may be set well below ABC, and recent average F may provide a better indicator of $F_{T A C}$ than $F_{A B C}$. (Column 4 of Tables 2.0-3 and 2.0-4).
2.5 TAC Alternative 5: Set \boldsymbol{F} equal to zero. This alternative recognizes that, in extreme cases, TAC may be set at a level close to zero. This is the no action alternative. Alternative 5, effectively, "set all TACs equal to zero," has been chosen as the baseline alternative, against which the impacts of the other alternatives have been measured. This has been done to simplify the comparison of the alternatives and does not imply any preference among them. (Column 5 of Tables 2.0-3 and 2.0-4).

Regulations at $50 \mathrm{CFR} § 679.20$ (a) specify that the annual optimal yield (OY) for groundfish in the BSAI is 1.4 to 2.0 million metric tons. The optimal yield in the GOA is 116,000 to 800,000 metric tons. The sum of the annual TACs in each year cannot be greater than the optimal yield in that area. While the sum of TACs in the GOA implied by the different alternatives do not approach the upper end of the OY range in 2003, in the BSAI Alternatives 1 and 2, as constituted, both totals exceed the OY. Before a decision on TAC specifications is made, however, individual target species or species groups TACs will be reduced to bring the overall total within bounds specified by the FMPs.

Table 2.0-1 2003 BSAI Interim Specifications

Species	ABC			Interim
Pollock	EBS		2,088,880	721,917
		Aleutian Islands	23,800	900
		Bogslof District	4,310	90
Pacific cod	BSAI		252,020	128,530
Sablefish		BS	2,100	223
		AI	2,770	147
Atka mackerel	Total		59,600	25,330
		WAI	23,960	10,183
		EAI/BS	6,690	2,843
		CAI	28,950	12,304
Yellowfin sole	BSAI		114,370	24,304
Rock sole	BSAI		203,870	43,322
Greenland turbot	Total		27,590	5,863
67\%		BS		3,928
33\%		AI		1,935
Arrowtooth flounder	BSAI		99,285	21,098
Flathead sole	BSAI		74,440	15,819
Alaska Plaice	BSAI		142,070	30,190
Other flatish	BSAI		18,100	3,846
Pacific ocean perch	BSAI		15,060	3,200
		BS	2,666	567
		Al total	12,394	2,634
		WAI	5,759	1,224
		CAI	3,114	662
		EAI	3,521	748
Northem rockfish	BSAI		4,700	999
		BS		3
		AI		996
Shortraker rockfish	BSAI		766	163
Rougheye rockfish	BSAI		262	56
Other rockfish		BS	361	77
		AI	676	144
Squid	BSAI		1,970	419
Other species	BSAI		39,100	8,309
Total			3,176,100	1,034,947

Notes: All proposed amounts are based on the Council's BSAI Groundfish Plan Team preliminary ABC recommendations. Except for Aleutian Islands and Bogoslof pollock, other flatfish, other rockfish, squid and other species the proposed amounts are based on November 2001 SAFE Report model projections and 2002 catch projections. All interim amounts are based upon the Council's total allowable catch (TAC) recommendations for 2002 and are detailed below.
${ }^{1}$ Except for pollock and portions of sablefish allocated to hook-and-line or pot gear, 15 percent of each proposed amount is put into a reserve. Except for pollock, squid, and the hook-and-line or pot gear allocation of sablefish, one half of the amount placed in reserve, or 7.5 per-cent, is designated as a Community Development Quota (CDQ) reserve for use by CDQ participants (see § 679.31).
${ }^{2}$ The Interim amount for each species except for pollock, Atka mackerel, Pacific cod and sablefish, after the subtraction of the reserve is one-fourth of each proposed amount.
${ }^{3}$ The American Fisheries Act requires that ten percent of the annual pollock TAC be allocated as a directed fishing allowance for CDQ sector. NMFS then subtracts 4 percent of the remainder as an incidental catch allowance (ICA) of pollock, which is not apportioned by season or area. The Iiterim amount for pollock after the subtraction of the CDQ and ICA amounts is forty percent ofeach proposed amount. The Aleutian Islands subarea and Bogoslof district pollock interim amounts are placed at levels for ICA amounts with ten percent placed in reserves for CDQ.
${ }^{4}$ The interim amount for Pacific cod after the subtraction of the reserve is sixty percent of each proposed amount.
${ }^{5}$ The interim amount for Atka mackerel after the subtraction of the reserve is fifty percent of each proposed amount.
${ }^{6}$ The interim amount for sablefish is for trawl gear only. Regulations at § 679.20(c)(2)(ii) do not provide for the establishment of an interim amount for the hook-and-line or pot gear allocation of sablefish. 7.5 percent of the sablefish TAC allocated to trawl gear is reserved for use by CDQ (see § $679.31(\mathrm{c})$). The trawl allocation is fifty percent in the Bering sea subarea and twenty-five percent in the Aleutian Islands subarea. The interim amount for trawl allocation of sablefish after subtraction offiffeen percent for the reserves is one-fourth ofthe proposed amount.

Table 2.0-2 2003 GOA Interim Specifications.

Species	Area	$A B C$	Interim
Pollock	610	14,270	2,343
	620	18,550	6,927
	630	7,930	917
	640	940	235
Subtotal WYK/C/W		41,690	10,422
	650	6,460	1,615
Total GOA		48,150	12,037
Pacific cod	GOA	50,520	23,177
	W	23,750	10,687
	C	22,730	10,672
	E	4,040	1,818
Flatish	GOA	49,550	5,105
Shallow water	W	23,550	1,125
	C	23,080	3,250
	WYK	1,180	295
	SEO	1,740	435
Rex sole	GOA	9,470	2,367
	W	1,280	320
	C	5,540	1,385
	WYK	1,600	400
	SEO	1,050	262
Flathead sole	GOA	22,690	2,320
	W	9,000	500
	C	11,410	1,250
	WYK	1,590	397
	SEO	690	173
Flatfish	GOA	4,880	1,220
Deep water	W	180	45
	C	2,220	555
	WYK	1,330	333
	SEO	1,150	287
Arrowtooth flounder	GOA	140,410	9,500
	W	16,300	2,000
	C	102,390	6,250
	WYK	16,470	625
	SEO	5.250	625
Sablefish	GOA	13,930	3,482
	W	2,430	608
	C	5,900	1,475
	WYK	2,110	527
	SEO	3.490	872
Pacific ocean perch	GOA	13,300	3,325
	W	2,630	657
	C	8,290	2,073
	WYK	780	195
	SEO	1,600	400

Species	Area	$\begin{gathered} \text { Proposed } \\ \text { ABC } \end{gathered}$	Interim
Shortraker/rougheye	GOA	1,620	405
	W	220	55
	C	840	210
	E	560	140
Other rockfish	GOA	5,040	248
	W	90	22
	C	550	138
	WYK	260	38
	SEO	4,140	50
Northem rockfish	GOA	4,700	1,175
	W	760	190
	C	3,940	985
	E	na	na
Pelagic shelf rockfish	GOA	5,490	1,372
	W	510	127
	C	3,480	870
	WYK	640	160
	SEO	860	215
Thomyhead rockfish	GOA	1,990	498
	W	360	90
	C	840	210
	E	790	198
Demersal shelf rockfish	SEO	350	88
Atka mackerel	GW	600	150
Subtotal		372,690	66,469
Other species	GW	na	3,323
Total			69,792

Notes: All proposed amounts are based GOA Plan Teampreliminary ABC recommendations.
All interim TACs are based upon the Council's TAC recommendations for 2002 and are detailed below.
Pollock: The P lan Teams ABC recommendation for the combined WYK/C/W area of the GOA takes into account an anticipated GHL of $1,700 \mathrm{mt}$ in the state managed pollock fishery in PWS.
It is assumed that the Council will recommend that TACs be set at the Plan Team recommended ABC levels. The interim TACs for the Western and Central GOA are based on 25% of the annual TAC for the area ($10,187 \mathrm{mt}$) apportioned 23% to Area $610,68 \%$ to Area 620, and 9% to Area 630 as in 2002.
Pacific cod: It is assumed that the annual TAC will be based upon ABC levels recommended by the Plan Team less the anticipated GHLs for the state managed P.cod fisheries in the GOA. These amounts are $1,010 \mathrm{mt}(25 \%)$ in the Eastern, $4,944 \mathrm{mt}(21.75 \%)$ in the Central, and $5,938 \mathrm{mt}(25 \%)$ in the Western. The interim TACs are based upon 60% (the A season apportionment) of the annual TACs of $3,030 \mathrm{mt}, 17,786 \mathrm{mt}$, and $17,812 \mathrm{mt}$ in the Eastern, Central, and Western GOA respectively.
Shallow-water flatfish, flathead sole, arrowtooth flounder, other rockfish: Interim TACs are based on 25% of the Council's recommended annual TAC levels for 2002.
Rex sole, deep-water sole, Pacific ocean perch, Shortraker and rougheye rockfish, northern rockfish, pelagic shelf rockfish, thornyhead rockfish, demersal shelf rockfish, and Atka mackerel: Interim TACs are based upon 25% of the Plan Teams recommended ABC levels which were recommended as annual TAC levels by the Council for 2002.
Sablefish :Interim TACs are based upon 25% of the Plan Teams recommended ABC levels which were recommended as annual TAC levels by the Council for 2002. The Plan Teams ABC reco mmendation GOA makes 5% of the Eastern GOA ABC available for use as bycatch for trawl in the West Yakutat Disctrict.
Other species: The interim TAC is based on 5% of the sum $(66,469)$ of all other interim TACs.

Table 2.0-3 2003 BSAI Specification for Alternatives 1 through 5

Species		Area	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Pollock	EBS						0
		Aleutian Islands					0
		Bogslof District					0
Pacific cod	BSAI						0
Sablefish	BS						0
		AI					0
Atka mackerel	Total						0
		WAI					0
		EAI/BS					0
		CAI					0
Yellowfin sole	BSAI						0
Rock sole	BSAI						0
Greenland turbot	Total						0
		BS					0
		AI					0
Arrowtooth flounder	BSAI						0
Flathead sole	BSAI						0
Alaska Plaice	BSAI						0
Other flatish	BSAI						0
Pacific ocean perch	BSAI						0
	BS						0
		Al total					0
		WAI					0
		CAI					0
		EAI					0
Northem	BSAI						0
		BS					0
		AI					0
Shortraker/Rougheye	BSAI						0
		BS					0
		AI					0
Other rockfish	BS						0
		AI					0
Squid	BSAI						0
Other species	BSAI						0
Total							0

Table 2.0-4 2003 GOA Specifications for Alternatives 1 through 5.

3.0 Affected Environment

The other NEPA documents listed above contain extensive information on the fishery management areas, marine resources, ecosystem, social and economic parameters of these fisheries and the TAC setting process. Rather than duplicate an affected environment description here, readers are referred to those documents. Additionally, the Ecosystem Considerations section of the 2003 SAFE reports is included as Appendix C to this EA. It contains summaries and pointers to recent studies and information applicable to understanding and interpreting the criteria used to evaluate significance of impacts that will result from setting harvest quotas at levels contemplated under these five alternatives.

4.0 Environmental and Economic Consequences

This section forms the scientific and analytic basis for the issue comparisons across alternatives. As a starting point, each alternative under consideration is perceived as having the potential to significantly affect one or more components of the human environment. Significance is determined by considering the context in which the action will occur and the intensity of the action. The context in which the action will occur includes the specific resources, ecosystem, and the human environment affected. The intensity of the action includes the type of impact (beneficial versus adverse), duration of impact (short versus long term), magnitude of impact (minor versus major), and degree of risk (high versus low level of probability of an impact occurring). Further tests of intensity include: (1) the potential for compromising the sustainability of any target or nontarget species; (2) substantial damage to marine habitats and or essential fish habitat; (3) impacts on public health or safety; (4) impacts on endangered or threatened species or critical habitat of listed species; (5) cumulative adverse effects; (6) impacts on biodiversity and ecosystem function; (7) significant social or economic impacts; and (8) degree of controversy (NAO 216-6, Section 6.02).

Differences between direct and indirect effects are primarily linked to the time and place of impact. Direct effects are caused by the action and occur at the same time and place. Indirect effects occur later in time and/or further removed in distance from the direct effects (40 CFR 1508.27). For example, the direct effects of an alternative which lowers the harvest level of a target fish could include a beneficial impact to the targeted stock of fish, a neutral impact on the ecosystem, and an adverse impact on net revenues to fishermen, while the indirect effects of that same alternative could include beneficial impacts on the ability of Steller sea lions to forage for prey, neutral impacts on incidental levels of prohibited species catch, and adverse impacts in the form of multiplier effects reducing employment and tax revenues to coastal fishing communities.

The intent of TAC setting deliberations is to strike an informed balance between amounts of fish taken by these fisheries during fishing year 2003 and amounts left swimming in the water. The effects of the alternatives are evaluated for all resources, species, and issues that may directly or indirectly interact with these fisheries within the action area as result of TAC levels set. The direction of impact intensity applies to the particular resource, species, or issue being evaluated (as opposed to always applying to the target species).

Each section below contains an explanation of the criteria used to establish significance and a determination of significance, insignificance or unknown for each resource, species, or issue being treated. The criteria for significance are summarized in each section. The following ratings for significance are used; significant (beneficial or adverse), insignificant, and unknown. Where sufficient information on direct and indirect effects is available, rating criteria are quantitative in nature. In other instances, where less information is available, the discussions and rating criteria used are qualitative in nature. In instances where criteria to determine an aspect of significance (significant adverse, insignificant, or significant beneficial) do not logically exist, no criteria are noted. These situations are termed "not applicable" in the criteria tables. An example of an undescribable situation is evaluating the impact vector of incidental take on marine mammals. In that situation, criteria to determine significant adverse and insignificant are describable (though with less precision than perhaps desired by decision makers), however, within the band of effects known to be insignificant the point of no incidental take impact is reached, therefore, a criterion for significant beneficial is not applicable.

The rating terminology used to determine significance is the same for each resource, species, or issue being treated, however, the basic "perspective" or "reference point" differs depending on the resource, species or issue being treated. Table 4.0-1 summarizes the reference points for the topics addressed in this analysis. The first three reference points relate to the biological environment, while the latter two are associated with the human environment. For each resource or issue evaluated, specific questions were considered in the analysis. In each case, the questions are fundamentally tied to the respective reference point. The generic definitions for the assigned ratings are as follows:

S+ Significant beneficial effect in relation to the reference point; this determination is based on interpretations of available data and the judgement of the analysts who addressed the topic.

I Insignificant effect in relation to the reference point; this determination is based upon interpretations of data, along with the judgement of analysts, which suggests that the effects are small and within the "normal variability" surrounding the reference point. When evaluating an economic or management issue it is used when there is evidence the status quo does not positively or negatively affect the respective factor.

S- Significant adverse effect in relation to the reference point and based on interpretations of data and the judgement of the analysts who addressed the topic.

U Unknown effect in relation to the reference point; this determination is made in the absence of information or data suitable for interpretation with respect to the question of the impacts on the resource, species, or issue.

Table 4.0-1 Reference points for significance determinations

Reference Point	Application
Current population trajectory or harv est rate of subject species	(1) Marine mammals (2) Target commercial fish species (3) Incidental catch of non-specified species (4) Forage species (5) Prohibited species by catch (6) ESA list Pacific salmon (7) Seabirds
Current size and quality of marine benthic habitat and other essential fish habitat	Marine benthic habitat and other essential fish habitat
Application of principles of ecosystem management	Ecosystem
Current management and enforcement activities	(1) State of Alaska managed fisheries (2) Management complexity and enforcement
Current rates of fishing accidents	Human safety and private property (vessels)

4.1 Effects on Target Species

The general impacts of fishing mortality within FMP Amendment 56/56 ABC/OFL definitions are discussed in Section 2.7.4 of the Draft Programmatic SEIS (NMFS 2001a), and apply to all fish species for which a TAC is specified. Beginning in 2003, a modified harvest control rule will apply to the directed fisheries for pollock, Pacific cod, and Atka mackerel that will result in no directed fisheries when the spawning biomass is estimated to be less than 20% of the projected unfished biomass. This new harvest control rule was evaluated in the Steller Sea Lion Protection Measures SEIS (NMFS 2001c).

Assessing the effects of each alternative on target commercial fish species was accomplished by asking the following questions of each of the five alternatives for each target species or species group for which a TAC amount is being specified:

1. How much effect does the alternative have on fishing mortality?
2. How much effect does the alternative have on spatial or temporal concentration of the species?
3. How much effect does the alternative have on the availability of prey for the target species?
4. How much effect does the alternative have on the target species' habitat?

The reference point against which each question is assessed is the current population trajectory or harvest rate of the subject target fish species (Table 4.1-1).

4.1.1 Effects of Alternatives 1 Through 5 on Target Species

Analyses are prepared for each stock, species or species group in the Bering Sea and Aleutian Islands and the Gulf of Alaska and are contained in the stock assessment and fishery evaluation reports (Appendix A and B). The criteria used to estimate the significance of direct and indirect impacts of TAC setting Alternatives 1 through 5 on the B SAI and GOA stocks of target species are summarized in Table 6.0-1. The ratings utilize a minimum stock size threshold (MSST) as a basis for positive or negative impacts of each alternative. A thorough description of the rationale for the MSST can be found in the National Standard Guidelines 50 CFR Part 600 (Federal Register Vol. 63, No. 84, 24212 - 24237). Under all alternatives, the spawning stock biomass of all target species that have calculated spawning stock biomasses are expected to be above their MSST. The probability that overfishing would occur is low for all of the stocks. The target species stocks that have calculated MSSTs are currently above their MSSTs and the expected changes that would result from harvest at the levels proposed are not substantial enough to expect that the genetic diversity of reproductive success of these stocks would change. None of the alternatives would allow overfishing of the spawning stock. Therefore the genetic integrity and reproductive potential of the stocks should be preserved.

Impacts to the target species stock, species or species group are predicted to be insignificant for all target fish evaluated because the following significance criteria are met: (1) they would not be expected to jeopardize the capacity of the stock to produce maximum sustainable yield on a continuing basis; (2) they would not alter the genetic sub-population structure such that it jeopardizes the ability of the stock to sustain itself at or above the minimum stock size threshold; (3) they would not alter harvest levels such that it jeopardizes the ability of the stock to sustain itself at or above the minimum stock size threshold; (4) they would not alter harvest levels or distribution of harvest such that prey availability would jeopardize the ability of the stock to sustain itself at or above the minimum stock size threshold; and (5) they would not disturb habitat at a level that would alter spawning or rearing success such that it would jeopardize the ability of the stock to sustain itself at or above the minimum stock size threshold. See the individual species and species groups stock assessments in the SAFE reports (Appendix A and B) for additional information and documentation of this year's assessment process.

Table 4.1-1 Criteria used to estimate the significance of effects on targeted groundfish stocks in the Bering Sea, Aleutian Islands, and Gulf of Alaska

Intensity of the Effects				
Direct Effects	Signif icant Adverse	Unknown	Insignificant Impact	Signif icant Beneficial
Fishing mortality	Reasonably expected to jeopardize the capacity of the stock to produce MSY on a continuing basis: mean F2001-2006>FOFL	Unknown fishing mortality rate	Reasonably not expected to jeopardize the capacity of the stock to produce MSY on a continuing basis: mean F2001-2006<=FOFL	NA
Spatial temporal distribution of catch				
Leads to change in genetic structure of population	Evidence of genetic sub-population structure and evidence that the distribution of harv est leads to a detectable reduction in genetic diversity such that it jeopardizes the ability of the stock to sustain itself at or above the MSST	MSST and genetic structure is unknown, theref ore no information to ev aluate whether distribution of the catch changes the genetic structure of the population such that it jeopardizes or enhances the ability of the stock to sustain itself at or above the MSST	Evidence that the distribution of harvest is not sufficient to alter the genetic subpopulation structure such that it jeopardizes the ability of the stock to sustain itself at or above the MSST	Evidence of genetic subpopulation structure and evidence that the distribution of harvest leads to a detectable increase in genetic div ersity such that it enhances the ability of the stock to sustain itself at or above the MSST
Change in reproductive success	Evidence that the distribution of harvest leads to a detectable decrease in reproductive success such that it jeopardizes the ability of the stock to sustain itself at or above MSST	MSST is unknown theref ore no inf ormation regarding the potential impact of the distribution of the catch on reproductive success such that it jeopardizes or enhances the ability of the stock to sustain itself at or above the MSST	Evidence that the distribution of harvest will not change reproductive success such that it jeopardizes the ability of the stock to sustain itself at or above the MSST	Evidence that the distribution of harvest leads to a detectable increase in reproduc-tive success such that it enhances the ability of the stock to sustain itself at or above MSST

Intensity of the Effects				
Direct Effects	Significant Adverse	Unknown	Insignificant Impact	Signif icant Beneficial
Change in prey av ailability	Evidence that current harvest levels and distribution of harvest lead to a change prey av ailability such that it jeopardizes the ability of the stock to sustain itself at or above the MSST	MSST is unknown theref ore no inf ormation that current harv est levels and distribution of harvest lead to a change in prey av ailability such that it enhances or jeopardizes the ability of the stock to sustain itself at or above the MSST	Evidence that current harvest levels and distribution of harvest do not lead to a change in prey av ailability such that it jeopardizes the ability of the stock to sustain itself at or above the MSST	Evidence that current harv est levels and distribution of harv est lead to a change prey av ailability such that it enhances the ability of the stock to sustain itself at or above the MSST
Habitat: Change in suitability of spawning, nursery, or settlement habitat, etc. due to fishing	Evidence that current levels of habitat disturbance are sufficient to lead to a decrease in spawning or rearing success such that it jeopardizes the ability of the stock to sustain itself at or above the MSST	MSST is unknown theref ore no inf ormation that current levels of habitat disturbance are sufficient to lead to a detectable change in spawning or rearing success such that it enhances or jeopardizes the ability of the stock to sustain itself at or above the MSST	Evidence that current levels of habitat disturbance are not sufficient to lead to a detectable change in spawning or rearing success such that it jeopardizes the ability of the stock to sustain itself at or above the MSST	Evidence that current levels of habitat disturbance are sufficient to lead to an increase in spawning or rearing success such that it enhances the ability of the stock to sustain itself at or above

4.2 Effects on Incidental Catch of Non-specified Species

The information available for non-specified species is much more limited than that available for target fish species. Estimates of biomass, seasonal distribution of biomass, and natural mortality are unavailable for most non-specified species. Predictions of impacts from different levels of harvest are therefore qualitatively described. Management concerns, data limitations, research in progress, and planned research to address these concerns are discussed in Section 4.5 of the Draft Programmatic SEIS (NMFS 2001a). Direct effects include the removal of non-specified species from the environment as incidental catch in the groundfish fisheries. One question was asked: Would each alternative induce a different level of non-specified species bycatch as compared to average levels of bycatch between 1997 and 1999? In the Steller Sea Lion Protection Measures SEIS the reference point against which the question was assessed was the current population
trajectory or harvest rate of the subject target fish species (Table 4.0-1 of NMFS 2001c). The criterion for evaluating significance was whether a substantial difference in bycatch amount would occur $(+>50 \%=$ adverse or $->50 \%=$ beneficial). Indirect effects include habitat disturbance by fishing gear and disruption of food web interactions by disproportionate removal of one or more trophic levels. No attempt was made to evaluate the significance of indirect effects. Insufficient information exists to estimate the indirect effects of changes in the incidental catch of non-specified species. The indicators of ecosystem function included in this EA (Table 4.8-1) include two indicators that relate to non-specified species. These are the EBS jellyfish indicator with the observation that large increases in 2000 relative to 1999 and that biomass increased since 1990 which is interpreted to mean jelly fish biomass is high. The second non-specified species indicator is the bycatch indicator. The observation is that bycatch was higher in 2000 relative to 1999 but similar to the 1997 rate. Interpretation is that the dominant species in non specified bycatch were jellyfish, grenadier, and starfish.

4.3 Effects on Forage Fish Species

In this analysis the species referred to as forage fish species are limited to those species included in FMP Amendments 36 in the BSAI and 39 in the GOA. A great many other species occupy similar trophic levels in the food chain to forage fish as species preyed upon by higher trophic levels at some period during their life history, such as juvenile pollock and Pacific cod. Management concerns, data limitations, research in progress, and planned research to address these concerns are discussed in Section 4.5 of the Draft Programmatic SEIS (NMFS 2001a). Estimates of biomass and seasonal distribution of biomass are unavailable for forage fish species, therefore the effects of different levels of target species harvest on forage fish species cannot be quantitatively described. Direct effects include the removal of forage fish species from the environment as incidental catch in the groundfish fisheries.

In the Steller Sea Lion Protection Measures SEIS (NMFS 2001c) the reference point against which forage fish effects is assessed is the current population trajectory or harvest rate of the subject target fish species (Table 4.0-1). The criterion for evaluating significance was substantial difference in bycatch amount ($+>50 \%$ $=$ adverse or $->50 \%=$ beneficial). Indirect effects include habitat disturbance by fishing gear and disruption of food web interactions by disproportionate removal of one or more trophic levels. Insufficient information is available to estimate the indirect effects of changes in the incidental catch of forage species. Even though the amount of biomass and seasonal distribution is unknown for the individual forage fish groups, the small amount of average incidental catch in the BSAI of 39 mt and in the GOA of 61 mt (1997 to 1999) is not likely to affect stocks (abundance) of forage fish species by more than 20%. In both the BSAI and the GOA more than 90% of the incidental catch by weight of all forage fish species is smelt taken in pollock fisheries.

In section 4.8 below are ecosystem function indicators for forage species that are useful in determining if the proposed fishery harvest quotas will have impacts on forage fish (Table 4.8-1). Interpretation of these forage indicators is that higher smelt catch rates were observed in the year 2000 in the eastern Bering Sea than in the years 1997-1999, and in the Gulf of Alaska than in 1999. Also age-0 Walleye pollock (a forage fish not classified in the forage fish category) were observed to be higher in abundance around the Pribilof Islands in 2001.

4.4 Effects on Prohibited Species

Prohibited species in the groundfish fisheries include: Pacific salmon (chinook, coho, sockeye, chum, and pink), steelhead trout, Pacific halibut, Pacific herring, and Alaska king, Tanner, and snow crab. The most recent review of the status of crab stocks may be found in theCrab SAFE (NPFMC 2001) and for the other species in Section 3.5 of the Steller Sea Lion Protection Measures SEIS (NMFS 2001c). The effects of the groundfish fisheries in the BSAI and GOA on prohibited species are primarily managed by conservation
measures developed and recommended by the Council over the entire history of the FMPs for the BSAI and GOA and implemented by federal regulation. These measures can be found at 50 CFR part 679.21 and include prohibited species catch (PSC) limitations on a year round and seasonal basis, year round and seasonal area closures, gear restrictions, and an incentive plan to reduce the incidental catch of prohibited species by individual fishing vessels. These management measures are discussed in Section 3.5 of the Steller Sea Lion SEIS (NMFS 2001c) and in a review paper by Witherell and Pautzke (1997).

This analysis focuses on the effects of the alternatives on four aspects of prohibited species management measures; 1) effects of PSC limitations and other management measures on the stocks of prohibited species; 2) effects of PSC limitations and other management measures on harvest levels in the directed fisheries for those prohibited species; and 3) effects of PSC limitations and other management measures on recent levels of incidental catch in the groundfish fisheries.

1) Criteria used to estimates effects of Alternatives 1 through 5 on stocks of prohibited species in the BSAI and GOA.

Pacific salmon are managed by the State of Alaska on a sustained yield principal. Predetermined escapement goals for each salmon stock are monitored on an inseas on basis to insure long term sustainable yields. When escapement levels are low commercial fishing activities are curtailed, if escapement levels exceed goals commercial fishing activities are enhanced by longer open seasons. In instances where minimum escapement goals are not met, sport and subsistence fishing activities may also be curtailed. The benchmark used to determine the significance of effects under each alternative on salmon stocks was whether or not salmon minimum escapement needs would reasonably expected to be met. If the alternative was reasonably not expected to jeopardize the capacity of the salmon stocks to produce long term sustainable yields it was deemed insignificant, if the alternative was reasonably expected to jeopardize the capacity of the salmon stocks to produce long term sustainable yields it was deemed significantly adverse, it is rated unknown where insufficient information exists to make such conclusions the alternative's effects are unknown.

The International Pacific Halibut Commission (IPHC) is responsible for the conservation of Pacific halibut resource. The IPHC uses a policy of harvest management based on a constant exploitation rates. The constant exploitation rate is applied annually to the estimated exploitable biomass to determine a constant exploitation yield (CEY). The CEY is adjusted for removals that occur outside the directed hook-and-line harvest (incidental catch in the groundfish fisheries, wastage in halibut fisheries, sport harvest, and personal use) to determine the directed hook-and-line quota. Incidental catch of halibut in the groundfish fisheries results in a decline in the standing stock biomass, a lowering of the reproductive potential of the stock, and reduced short and long term yields to the directed hook-and-line fisheries. To compensate the halibut stock for these removals over the short term, halibut mortality in the groundfish fisheries is deducted on a pound for pound basis each year from the directed hook-and-line quota. Halibut incidentally taken in the groundfish fisheries are of smaller average size than those taken in the directed fishery, this results in further impacts on the long term reproductive potential of the halibut stock, this impact on average is estimated to reduce the reproductive potential of the halibut stock by 1.7 pounds for each 1 pound of halibut mortality in the groundfish fisheries. These impacts are discussed by Sullivan et. al. (1994). The benchmark used to determine the significance of effects under each alternative on the halibut stock was whether or not incidental catch of halibut in the groundfish fisheries would reasonably expected to lower the total CEY of the halibut stock below the long term estimated yield of 80 million pounds. If the alternative was reasonably not expected to decrease the total CEY of the halibut stock below the long term estimated yield of 80 million pounds it was rated insignificant, if the alternative was reasonably expected to lower the total CEY of the
halibut stock below the long term estimated yield of 80 million pounds it was rated significantly adverse, where insufficient information exists to make such conclusions the alternative's effects are rated unknown.

Pacific herring are managed by the State of Alaska on a sustained yield principal. Pacific herring are surveyed each year and the Guideline Harvest Levels (GHLs) are based on an exploitation rate of 20% of the projected spawning biomass, these GHLs may be adjusted inseason based on additional survey information to insure long term sustainable yields. The ADF\&G have established minimum spawning biomass thresholds for herring stocks which must be met before a commercial fishery may occur. The benchmark used to determine the significance of effects under each alternative on herring stocks was whether minimum spawning biomass threshold levels would reasonably expected to be met. If the alternative was reasonably not expected to jeopardize the capacity of the herring stocks to reach minimum spawning biomass, threshold levels it was deemed insignificant, if the alternative was reasonably expected to jeopardize the capacity of the herring stocks to reach minimum spawning biomass threshold levels it was rated significantly adverse, where insufficient information exists to make such conclusions the alternative's effects are rated unknown.

Alaska king, Tanner, and snow crab stocks in the BSAI are protected by area trawl closures and PSC limitations. Minimum stock size thresholds (MSST) have been established for these crab species stocks to help prevent overfishing. The benchmark used to determine the significance of effects under each alternative on crab stocks was whether MSST levels would reasonably expected to occur. If the alternative was reasonably not expected to jeopardize the capacity of the crab stocks to maintain MSST levels it was rated insignificant, if the alternative was reasonably expected to jeopardize the capacity of the crab stocks to reach maintain MSST levels it was rated significantly negative, where insufficient information exists to make such conclusions the alternative's effects are rated unknown. These criteria are summarized in Table 4.4-1.
2) Criteria used to estimate effects of Alternatives 1 through 5 on harvest levels of prohibited species in their respectively directed fisheries in the BSAI and GOA.

For all prohibited species, if under the alternative considered the catch in the directed fisheries for those species was expected to increase or decrease by more than 20% from 1999 levels (chosen as the benchmark year for purpose of comparison), the effect was rated significantly beneficial or adverse respectively. If under the alternative considered, the catch in the directed fisheries for those species was not expected to increase or decrease by more than 20% from 1999 levels (chosen as the benchmark year for purpose of comparison and presented in Table 4.4-4), the effect was rated insignificant as harvest levels based on stock conditions offen vary over this range from year to year. If under the alternative considered, insufficient information exists to estimate changes in harvest levels, the effect was rated as unknown. The authors acknowledge that individual fishing operations with substantial reliance upon participation in these state fisheries may experience adverse or beneficial effects at changes in harvest levels below the 20% level. These criteria are summarized in Table 4.4-2.
3) Criteria used to estimate effects of Alternatives 1 through 5 on bycatch levels of prohibited species in the directed groundfish fisheries in the BSAI and GOA.

The establishment by the Council of annual halibut PSC limits in the directed fisheries of the GOA and the annual and seasonal apportionments thereof of all PSC limits to gear types and targets in the BSAI and GOA is of critical importance each year in both minimizing the incidental catch of prohibited species and in maximizing the optimum yield from the groundfish resources to the fishing industry. In section 4.5 of the Steller Sea Lion Protection Measures SEIS (NMFS 2001c) the effects of alternatives to provide protection to the endangered western population Steller sea lions on prohibited species incidental catch levels in the pollock, Pacific cod, and Atka mackerel fisheries were examined using average catch for the period 1997
through 1999. The authors however noted that in the B SAI pollock fishery the 1997 and 1999 average catch of halibut and crab was not expected to continue due to additional management measures to protect prohibited species became effective in 1999. For this reason in this analysis 1999 prohibited species incidental catch and directed groundfish catch is presented for comparison to the groundfish TAC alternatives in Table 4.4-4.

Under the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA) National Standard 9 directs that when a regional council prepares and FMP they shall to the extent practicable minimize bycatch and to the extent bycatch cannot be avoided, minimize the mortality of such bycatch. Over the years since the enactment of the MSFCMA in 1976, over 30 FMP amendments designed to help minimize the incidental catch and mortality of prohibited species have been implemented. Levels of incidental catch of prohibited species in each fishery in 1999 (Table 4.4-4) were used to estimate the effects TAC levels set for each fishery on incidental catch levels of prohibited species under each alternative. It was assumed for each fishery that an increase or decrease in TAC would result in a proportional increase or decrease in incidental catch, increases were not assumed to exceed PSC limitations where applicable. For all prohibited species if under the alternative considered the incidental catch of prohibited species in the directed fisheries for groundfish was expected to increase or decrease by more than 50% from 1999 levels (chosen as the benchmark year for purpose of comparison) the effect was rated significantly beneficial or adverse respectively. If under the alternative considered the incidental catch in the directed fisheries for groundfish was not expected to increase or decrease by more than 50% from 1999 levels the effect was rated insignificant as incidental catch of prohibited species in the directed groundfish fisheries often vary over this range from year to year. If under the alternative considered insufficient information exists to estimate changes in harvest levels the effect was rated as unknown. These criteria are summarized in Table 4.4-3.

4.4.1 Effects of Alternative 1 on Prohibited Species and Directed Fisheries

Under Alternative 1 catch quotas would be set at the $\max F_{a b c}$ level, in the GOA this would amount to $444,239 \mathrm{mt}$ which falls within the optimum yield range of $116,000 \mathrm{mt}$ to 800,000 however in the BSAI this would amount to $3,393,711 \mathrm{mt}$ which would be constrained by the upper limit established for optimum yield of $2,000,000 \mathrm{mt}$ for the BSAI (CFR § 679.20(a)). Alternative 1 sets catch quotas at the highest levels considered, even so PSC limits established for the BSAI by regulation and halibut PSC limitations recommended by the Council for the GOA in 2003 along with other factors such as market demand for the different groundfish targets will likely constrain the harvest of groundfish in both the BSAI and the GOA as in previous years. In the worst case the entire PSC limit for each prohibited species would be reached in both the BSAI and GOA, and that in the GOA for prohibited species without PSC limits, incidental catch rates would be similar to those in 1999. For Pacific salmon these PSC numerical limits are very low compared to recent average returns and would not be expected to prevent salmon returns from reaching escapement goals. There are concerns for several chinook and chum stocks in the Bering Sea. In an analysis on the effects on salmon returns in the EA prepared for BSAI FMP Amendment $21 b$ to reduce chinook salmon bycatch it was estimated that with the elimination of all incidental catch in the groundfish fisheries chinook salmon returns on average would increase by 4.4% in the Nushagak and by 1.7% in the Yukon Rivers, similar estimates of increases in chum salmon runs are not available. For these reasons the effect of Alternative 1 on salmon stocks is rated insignificant. Because incidental catch of halibut in the groundfish fisheries, as well as all other removals, is accounted for in setting the directed hook-and-line fishery CEY for halibut and the total CEY for the fishery is above the estimated long term CEY of 80 million pounds, the effect of incidental catch of halibut on the halibut stock under Alternative 1 is rated insignificant. The PSC limitation for herring of 1% current biomass estimates in the BSAI and the low volume of herring bycatch in the GOA (1997 through 1999 average 15 mt (NMFS 2001c)) would not be expected to reduce herring stocks below minimum spawning biomass thresholds under Alternative 1 and the effects are rated insignificant. In the BSAI PSC limits for crab are set at a proportion of the estimated number of animals with upper limits approximately
0.5% for red king crab, 1.2% for Tanner crab, and 0.1% for snow crab. Given these low levels, even if crab PSC limits were reached it is unlikely that any effects on crab stocks could be detected. Incidental catch of crab in the GOA is very low, in 1999 a total of 238 red king crab and 81,074 Tanner crab (Table 4.4-4). Because incidental catch is small relative to other sources of mortality, time and area closures for trawl gear in the BSAI and GOA are thought to be more effective in reducing effects on crab stocks (Witherell and Harrington 1996) and the effect of Alternative 1 on all crab stocks in the BSAI and GOA is rated insignificant.

Due to the low numbers of salmon incidental take in the GOA and salmon PSC limitations for chum and chinook salmon in the BSAI, present levels of salmon incidental catch are not likely to affect escapement totals. For those western stocks of chinook salmon of concern in the EA prepared for Amendment 21 b to the BSAI FMP, a reduction in incidental catch of 40,000 chinook was estimated to increase commercial catches on average by 2,700 chinook in the Nushagak and 2,200 chinook in the Yukon Rivers. This amount represents 2.5% of the average commercial catch of 194,000 chinook in these drainages. Similar estimates on effects on chum salmon are not available. As an increase or decrease of less than 20% to the commercial salmon fisheries would not be expected given the reduced chinook PSC cap of 37,000 fish in the BSAI, the current PSC limit of 42,000 chum in the BSAI, and current incidental catch rates in the GOA the effect of incidental catch on the commercial catch of salmon under Alternative 1 is rated insignificant. In the 1998 assessment of Pacific halibut for the 1999 fishing year the total CEY for Alaska was $60,748 \mathrm{mt}$. If the combined halibut PSC limits in Alaska totaling $6,825 \mathrm{mt}$ were reached ($6,572 \mathrm{mt}$ in 1999 T able 4.4-4) this would represent a reduction in the amount of the total CEY available to the directed fishery of about 12% and as such is rated insignificant. However it is worth noting that the reductions in CEY amounts for the directed commercial fishery are not proportional over all halibut management areas. The halibut CEY amount for the directed fishery in Area 4 is reduced between 20% and 50% (Clark and Parma 2000). The halibut PSC limits are fixed, rather than floating with the condition of halibut stocks. Indirect effects of a downstream reduction in the potential yield of the halibut stock (1.7 pounds on average for each 1 pound of mortality) coupled with projected declines in the exploitable biomass in the halibut stock suggest that at some future time the effect of incidental catch of halibut in the groundfish fisheries could have an adverse effect on the directed halibut fishery in the future. Due the herring PSC limit of 1% of estimated biomass in the BSAI and the present low volume of incidental catch in the GOA and increase or decrease in the commercial catches herring would not be likely to increase or decrease by more than 20% under Alternative 1 and the effect on the commercial herring fisheries is rated insignificant. For these same reasons floating PSC limits based on stock abundance in the BSAI and the present low numbers of animals taken in the GOA the effect of incidental catch in the groundfish fisheries along with seasonal and area closures to trawl gear on all crab stocks the effect on commercial crab fisheries is rated insignificant.

The apportionment of annual and seasonal PSC limits to the groundfish targets by gear type is of critical importance in order to optimize the harvest of groundfish within PSC limitations. Although average incidental catch of prohibited species by gear type, season, and target are extremely useful in anticipating incidental catch needs to support the harvest of the different groundfish targets the complex interactions between the distribution of fishing effort and variation in incidental catch rates of prohibited species invariably result in grounding fishing closures due to reaching PSC limits each year. Where PSC limits can be expected to constrain the groundfish fisheries, apportionments are based primarily on socioeconomic concerns. One such example is in the trawl fisheries in the GOA. During the first quarter of the year when incidental catch of halibut in the Pacific cod fishery is at its lowest a greater proportion of the annual halibut allowance is apportioned to the shallow water targets (which include Pacific cod) than at other times of the year and during the summer months when the incidental catch of halibut in the rockfish fisheries is at its lowest a greater proportion of the annual halibut allowance is apportioned to the deep water targets (which
include rockfish). With such apportionments the intent is to maximize, up to TAC levels, the harvest of the most valuable species.

Assuming incidental catch rates of prohibited species in 2003 similar to 1999 levels in the BSAI and GOA (Table 4.4-4) TAC levels under Alternative 1 in combination with seasonal and fishery specific PSC apportionments, the total incidental catch of each prohibited species group would not be expected to increase or decrease by more than 50%. The effect of Alternative 1 on levels of incidental catch of prohibited species in the groundfish fisheries is therefore rated insignificant in the BSAI and GOA.

4.4.2 Effects of Alternative 2 on Prohibited Species and Directed Fisheries

Under Alternative 2 catch quotas (TACs) would be set at levels recommended by the Council at its December 2001 meeting. It the BSAI this would amount to $2,000,000 \mathrm{mt}$ and in the GOA $237,888 \mathrm{mt}$. For the reasons discussed under Alternative 1, the effect of Alternative 2 on stocks of prohibited species is rated insignificant (Table 6.0-1) because PSC limits, even if reached, would not have a significant impact on stocks of prohibited species. Additionally for the reasons discussed under Alternative 1 the effects of Alternative 2 on the directed fisheries for prohibited species is rated insignificant (Table 6.0-1) because PSC limits, even if reached, would not significantly reduce the amount harvested by the directed fisheries which are permitted to target prohibited species.

In section 4.5.1.4 the Steller sea lion Protection Measures SEIS (NMFS 2001c) the effects of the preferred alternative on the incidental catch levels of prohibited species were estimated to result in an increase of herring and other salmon incidental catch in the pollock fisheries of 16% and 7% respectively while the incidental catch of chinook salmon was estimated to result in a reduction of 9%. In the Pacific cod fisheries reductions of incidental catch of halibut (11\%), Tanner crab (30\%), chinook (25%) and other salmon (8\%) were expected. Assuming incidental catch rates of prohibited species in 2003 similar to 1999 levels in the BSAI (Table 4.4-4) TAC levels under Alternative 2 in combination with seasonal and fishery specific PSC apportionments, the total incidental catch of each prohibited species group would not be expected to increase or decrease by more than 50%. The effect of Alternative 2 on levels of incidental catch of prohibited species in the groundfish fisheries is therefore rated insignificant in the BSAI (Table 6.0-1). In section 4.5.2.4 the Steller sea lion Protection Measures SEIS (NMFS 2001c) the effects of the preferred alternative on the incidental catch levels of prohibited species in the GOA were estimated to range from an increase of up 15% (Tanner crab in the pollock fishery) to a decease of 11% (other salmon in the pollock fishery) for TACs set at 2000 levels. Assuming incidental catch rates of prohibited species in 2003 similar to 1999 levels in the GOA (Table 4.4-4) TAC levels under Alternative 2 in combination with seasonal and fishery specific PSC apportionments, the total incidental catch of each prohibited species group would not be expected to increase or decrease by more than 50%. The effect of Alternative 2 on levels of incidental catch of prohibited species in the groundfish fisheries is therefore rated insignificant in the GOA (Table 6.0-1).

4.4.3 Effects of Alternative 3 on Prohibited Species and Directed Fisheries

Under Alternative 3 catch quotas would be set at 50% of the $m a x F_{a b c}$ level in the BSAI this would amount to $1,843,654 \mathrm{mt}$ and in the GOA $219,474 \mathrm{mt}$. For the reasons discussed under Alternative 1 the effect of Alternative 3 on stocks of prohibited species is rated insignificant (Table 6.0-1) because PSC limits, even if reached, would not have a significant impact on stocks of prohibited species. Additionally for the reasons discussed under Alternative 1 the effects of Alternative 3 on the directed fisheries for prohibited species is rated insignificant (Table 6.0-1) because PSC limits, even if reached, would not significantly reduce the amount harvested by the directed fisheries which are permitted to target prohibited species.

Assuming incidental catch rates of prohibited species in 2003 similar to 1999 levels in the BSAI (Table 4.4-4) TAC levels under Alternative 3 in combination with seasonal and fishery specific PSC apportionments, the total incidental catch of each prohibited species group would not be expected to increase or decrease by more than 50%. In section 4.5 .2 .4 of the Steller sea lion Protection Measures SEIS (NMFS 2001c) the effects of the preferred alternative on the incidental catch levels of prohibited species in the GOA was estimated to range from an increase of up 15% (Tanner crab in the pollock fishery) to a decease of 11% (other salmon in the pollock fishery) for TACs set at 2000 levels.

In combination with TAC recommendations, annual halibut PSC limits and seasonal and fishery specific PSC apportionments, and incidental catch rates in the different fisheries unchanged from 1999 (Table 4.4-4), the total incidental catch of each prohibited species group would not be expected to increase or decrease by more than 50%. The effect of Alternative 3 on incidental catch levels of prohibited species in the groundfish fisheries is therefore rated insignificant in the BSAI and GOA (Table 6.0-1).

4.4.4 Effects of Alternative 4 on Prohibited Species and Directed Fisheries

Under Alternative 4 catch quotas would be set at levels equal the most recent 5 year average F, in the BSAI this would amount to $1,639,477 \mathrm{mt}$ and in the GOA $212,699 \mathrm{mt}$. Alternative 4 sets TAC at levels that fall within the range of $1,400,000$ to $2,000,000 \mathrm{mt}$ in the BSAI and $116,000 \mathrm{mt}$ to $800,000 \mathrm{mt}$ in the GOA established for optimum yield. For the reasons discussed under Alternative 1 the effect of Alternative 4 on stocks of prohibited species is rated insignificant (Table 6.0-1) because PSC limits, even if reached, would not have a significant impact on stocks of prohibited species. Additionally for the reasons discussed under Alternative 1 the effects of Alternative 4 on the directed fisheries for prohibited species is rated insignificant (Table 6.0-1) because PSC limits, even if reached, would not significantly reduce the amount harvested by the directed fisheries which are permitted to target prohibited species.

In combination with TAC recommendations and seasonal and fishery specific PSC apportionments and incidental catch rates in the different fisheries unchanged from 1999 (Table 4.4-4), the total incidental catch of each prohibited species group would not be expected to increase or decrease by more than 50%. In section 4.5.2.4 of the Steller sea lion Protection Measures SEIS (NMFS 2001c) the effects of the preferred alternative on the incidental catch levels of prohibited species in the GOA was estimated to range from an increase of up 15% (Tanner crab in the pollock fishery) to a decease of 11% (other salmon in the pollock fishery) for TACs set at 2000 levels. The effect of the preferred alternative on levels of incidental catch of prohibited species in the groundfish fisheries is therefore rated insignificant (Table 6.0-1) in the BSAI and GOA.

4.4.5 Effects of Alternative 5 on Prohibited Species and Directed Fisheries

Under Alternative 5 catch quotas would be set at zero, and if adopted the effect of this alternative would be to close directed fishing for groundfish for the 2003 year. The adoption of this alternative is considered unlikely as harvest levels would be set at levels below the lower limits established for optimum yield in the BSAI of $1,400,000 \mathrm{mt}$ and in the GOA of $116,000 \mathrm{mt}$. Another effect of Alternative 5 would be to reduce incidental catch of prohibited species in the groundfish fisheries to zero. However for the reasons discussed under Alternative 1, even if incidental catch were reduced to zero, the effect on stocks of prohibited species and harvest levels in the directed fisheries for these prohibited species would be insignificant (Table 6.0-1). A 100% reduction in harvest levels of groundfish (to zero) would reduce the incidental catch level of prohibited species in the groundfish fisheries also to zero ($>50 \%$) and is rated significantly positive (Table 5.0-1).

Table 4.4-1 Criteria used to estimate the significance of effects on stocks of prohibited species in the BSAI and GOA

Effect	Significant Adverse	Insignificant	Significant Beneficial	
Incidental catch of prohibited species	Reasonably ex pected to jeopardize the capacity of the stock to maintain benchmark population levels	Reasonably not expected to jeopardize the capacity of the stock to maintain benchmark population levels	NA	Insufficient information
available				

Benchmarks: Salmon - minimum escapement goals, Pacific halibut - estimated long term CEY level, Pacific herring - minimum spawning biomass threshold, crab - minimum stock size threshold. NA: not applicable.

Table 4.4-2 Criteria used to estimate the significance of effects on of harvest levels in directed fisheries targeting stock of prohibited species in the BSAI and GOA

Effect	Significant Adverse	Insignificant	Significant Beneficial	
Harvest levels in directed fisheries targeting catch of prohibited species	Substantial decrease in harvest levels in directed fisheries targeting prohibited species $(>20 \%)$	No substantial increase or decrease $(<20 \%)$ in harvest levels in directed fisheries targeting prohibited species	Substantial increase in harvest levels in directed fisheries targeting prohibited species $(>20 \%)$	Insufficient information available

Table 4.4-3 Criteria used to estimate the significance of effects on bycatch levels of prohibited species in directed groundfish fisheries in the BSAI and GOA

Effect	Significantly Adverse	Insignificant	Significant Beneficial
$\begin{array}{l}\text { Harvest levels of } \\ \text { prohibited species } \\ \text { in directed fisheries } \\ \text { targeting groundfish } \\ \text { species }\end{array}$	$\begin{array}{l}\text { Substantial decrease in } \\ \text { harvest levels of } \\ \text { prohibited species in } \\ \text { directed fisheries } \\ \text { targeting groundfish } \\ \text { species }(>50 \%)\end{array}$	$\begin{array}{l}\text { No substantial } \\ \text { increase or decrease } \\ (<50 \%) \text { in harvest } \\ \text { levels of prohibited } \\ \text { species in directed } \\ \text { fisheries targeting } \\ \text { groundfish species }\end{array}$	$\begin{array}{l}\text { Substantial increase in } \\ \text { harvest levels of } \\ \text { prohibited species in } \\ \text { directed fisheries } \\ \text { targeting groundfish } \\ \text { species }(>50 \%)\end{array}$
Insufficient			
information			
available			

Table 4.4-4 Catch of Groundfish and Prohibited Species in the Groundfish Fisheries in the BSAI and GOA in 1999 by Target, Area, and Gear Type
Groundfish and Prohibited Species Catch by Trawl Gear in the BSAI.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon
Atka mackerel	61,769	149	559	0	50	505
Pacific cod	86,441	1,364	120,360	7,941	2,205	33
Other flatfish	2,761	50	15,496	34	107	2
Flathead sole	31,340	373	172,520	68	4	285
Rock sole	27,264	427	130,315	62,456	177	439
Greenland turbot	1,980	19	1,049	0	0	0
Arrowtooth	1,136	47	554	0	0	0
Yellowfin sole	102,067	865	437,913	76,644	0	412
Rockfish	13,530	52	0	0	0	0
Pollock (bottom)	8,716	52	1,319	91	47	24
Pollock (midwater)	849,007	72	1,078	0	10,331	44,587
Non-retained Groundfish	1,291	0	1,510	0	0	9
Total	$1,187,302$	3,470	882,673	147,234	12,921	46,296

Groundfish and prohibited Species Catch by Trawl Gear in the BSAI (continued)

Target	Total Catch $^{1}(\mathrm{mt})$	Numbers of Snow crab	
Rock sole and other flatish	61,365	256,443	2
Pacific cod	86,441	22,390	1
Pollock, Atka mackerel, and other species	920,783	1,370	804
Yellowfin sole	102,067	378,964	88
Rockfish	13,530	0	0
Greenland turbot, sablefish, and arrowtooth	3,116	0	1
Total	$1,187,302$	659,167	896

Groundfish and Prohibited Species Catch by Hook-and-Line Gear in the BSAI.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon
Pacific cod	92,266	500	2,842	7,924	4	0
Greenland turbot	4,880	81	7	6	0	24
Sablefish	1,405	Not Available	0	2	0	6
Rockfish	25	1	0	0	0	0
Other species	3	0	0	0	0	0
Arrowtooth	1	0	0	0	0	0
Non-retained groundfish	2	0	0	0		
Total	95,582	582	2,849	7,932	4	

Groundfish and Prohibited Species Catch by Pot Gear in the BSAI.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon
Pacific cod	17,031	3	40,564	978	0	0
Sablefish	32	0	0	0	0	0
Greenland turbot	31	1	0	0	0	0
Other species	1	0	0	0	0	0
Total	17,095	4	40,564	978	0	0

Total Groundfish and Prohibited Species Catch by All Gear Types in the BSAI.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon 3
All	$1,302,979$	4,056	926,086	156,144	12,925	46,326

Groundfish and Prohibited Species Catch by Trawl Gear in the GOA.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon 3
Pacific cod	41,129	1,235	22,518	0	1,537	94
Deep water flatfish	3,872	140	2,225	0	16	5
Rex sole	8,313	244	1,414	0	1,854	322

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon 3
Shallow water flatfish	1,447	54	967	1	3	1
Arrowtooth	3,954	130	2,194	0	157	102
Rockfish	22,101	303	557	231	572	1,529
Other species	822	6	0	0	33	0
Sablefish	16	0	0	0	0	0
Pollock (bottom)	3,644	10	72	0	1920	200
Pollock (midwater)	93,024	15	0	0	24,507	1,845
Total	178,322	2,137	29,947	232	30,599	4,098

Groundfish and Prohibited Species Catch by Hook-and-Line Gear in the GOA.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon
Pacific cod	13,981	342	0	53	0	0
Rockfish	467	4	0	0	0	0
Other species	67	2	4	0	0	0
Deep water flatfish	2	0	0	0	0	0
Total 4	14,517	348	4	53	0	0

Groundfish and Prohibited Species Catch by Pot Gear in the GOA.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon
Pacific cod	19,265	41	51,123	3	0	0
Other species	31	0	0	0	0	0
Arrowtooth	12	0	0	0	0	0
Total	19,308	41	51,123	3	0	0

Total Groundfish and Prohibited Species Catch by All Gear Types in the GOA.

Target	Total Catch (mt)	Halibut Mortality (mt)	Numbers ${ }^{2}$ of Bairdi Crab	Numbers of Red King Crab	Numbers of Chinook Salmon	Numbers of Other Salmon
All	212,147	2,526	81,074	288	30,599	4,098

Source: NMFS 1999 Blend Data
Notes:
1 Total catch includes all groundfish harvested, the targeted species as well as incidental catch of all other groundfish.
2 Numbers are estimates of individual animals and include estimates (in the case of crab) all animals, male and female, juvenile and adult, and should not be interpreted as an estimate of legal sized males that are targeted in directed crab fisheries.
3 Other salmon numbers include pink, chum, coho, and red salmon.
4 The total catch for hook-and-line gear in the GOA does not include catch in the sablefish fishery as estimates of prohibited species catch are not available.

4.5 Effects on Marine Mammals

Marine mammals were considered in groups that include: Steller sea lions, ESA listed great whales, other cetaceans, northern fur seals, harbor seals, other pinnipeds, and sea otters. Direct and indirect interactions between marine mammals and groundfish harvest occur due to overlap in the size and species of groundfish harvested in the fisheries that are also important marine mammal prey, and due to temporal and spatial overlap in marine mammal foraging and commercial fishing activities.

Impacts of the various proposed 2003 harvest levels are analyzed by addressing four core questions modified from Lowry (1982):

1. Do the proposed harvest levels result in increases in direct interactions with marine mammals (incidental take and entanglement in marine debris)?
2. Do the proposed harvest levels remove prey species at levels that could compromise foraging success of marine mammals (harvest of prey species)?
3. Do the proposed harvest levels result in temporal or spatial concentration of fishing effort in areas used for foraging by marine mammals (spatial and temporal concentration of removals with some likelihood of localized depletion)?
4. Do the proposed harvest levels modify marine mammal foraging behavior to the extent that population level impacts could occur (disturbance)?

The reference point for determining significant impact to marine mammals is predicting whether the proposed harvest levels will impact the current population trajectory of any marine mammal species. Criteria for determining significance are contained in Table 4.0-1 Significance ratings for each question are summarized in Table 4.5-1.

4.5.1 Effects of Alternatives 1 through 5 on Marine Mammals

Direct Effects - Incidental Take/Entanglement in Marine Debris

Annual levels of incidental mortality are estimated by comparing the ratio of observed incidental take of dead animals to observed groundfish catch (stratified by area and gear type). Incidental bycatch frequencies also reflect locations where fishing effort is highest. In the Aleutian Islands and GOA, incidental takes are offen within Steller sea lion critical habitat. In the Bering Sea takes are farther off shore and along the continental shelf. Otherwise there seems to be no apparent "hot spot" of incidental catch disproportionate with fishing effort. It is, therefore, appropriate to estimate catch ratios based on estimated TAC. The projected level of take under all proposed TAC alternatives is below that which would have an effect on marine mammal population trajectories Therefore, incidental bycatch frequencies are determined to be insignificant under all alternatives proposed.

Indirect Effects - Spatial and Temporal Concentration ofFishery

Spatial and temporal concentration effects by these fisheries have just been analyzed and modified to comply with Endangered Species Act considerations for Steller sea lions (NMFS 2001c). The criteria for insignificant effect determination is based on the assumption of the Steller sea lion protection measures analysis and section 7 biological opinion that the fishery as modified by Steller Sea Lion Protection Measures mitigates the impacts (Table 6.0-1). That determination applies to all marine mammal species in these management areas.

Indirect Effects - Disturbance Effects

Vessel traffic, nets moving through the water column, or underwater sound production may all represent perturbations, which could affect marine mammal foraging behavior. Foraging could potentially be affected not only by interactions between vessel and species, but also by changes in fish schooling behavior, distributions, or densities in response to harvesting activities. In other words, disturbance to the prey base may be as relevant a consideration as disturbance to the predator itself. For the purposes of this analysis, we recognize that some level of prey disturbance may occur as a fisheries effect. The impact on marine mammals using those schools for prey is a function of both the amount of fishing activity and its concentration in space and time, neither of which may be extreme enough under any alternative to represent population level concerns. To the extent that fishery management measures do impose limits on fishing activities inside critical habitat, we assume at least some protection is provided from these disturbance effects. The criterion set for insignificant impacts is a similar level of disturbance as that which was occurring in 2001. Thus, the effect under all alternatives is insignificant according to the criteria set for significance (Table 4.5-1).

Because of the recent change in Northern sea otter status it is being mentioned individually. Norther sea otters were designated by the US Fish and Wildlife Service (FWS) as candidate species under the ESA on August 22, 2000, in the Aleutian Islands (from Unimak Pass to Attu Island) (65 FR 67343). Funding has not been available to develop proposed rule making for listing the sea otter under the ESA. On August 21, 2001, the FWS was petitioned under the Marine Mammal Protection Act (MMPA) for the Alaska stock of sea otters to be listed as depleted. On November 2, 2001 (66 FR 55693), the FWS determined that the current population of sea otters throughout Alaska exceeds the optimum sustainable population of 60,000 animals and, therefore, does not meet the criteria to be listed as depleted under the MMPA. The FWS is continuing to evaluate the sea otter under both the ESA and MMPA. As far as interaction with the groundfish fisheries, NMFS observers monitored incidental take in the 1990-1995 groundfish trawl, longline, and pot fisheries. No mortality or serious injuries to sea otters were observed. All alternatives for setting 2003 TAC specifications will have insignificant impacts northern sea otter. The significance determinations for analysis performed in this EA are summarized in Table 6.0-1.

Table 4.5-1 Criteria for determining significance of effects to marine mammals.

Effects	Signific ance Criter ia			
	Signific ant Adverse	Insignific ant	Signific ant Benefic ial	Unknown
Incidental take/ entanglement in marine debris	Take rate increases by $>25 \%$	Level of take below that which would have an effect on population trajectories	Not Applicable	Insufficient infomation available on take rates
Spatial/ temporal concentration of fishery	More temporal and spatial concentration in key areas	Spatial concentration of fishery as modified by SSL Protection Measures	Much less temporal and spatial concentration of fishery in all key areas	Insufficient information as to what constitutes a key area
Disturbance	More disturbance (closed areas reopened)	Similar level of disturbance as that which was occurring in 2001	Not Applicable	Insufficient information as to what constitutes disturbance

Gulf of Alaska Pollock Additional discussion has occurred with respect to potential impacts of the Gulf of Alaska pollock fishery on Steller sea lions due to the magnitude of change in the Pacific cod population in the Gulf. The issue is unfolding because hydroacoustic surveys indicate the lowest adult biomass of pollock in Shelikof Strait since these surveys have been regularly conducted. Preliminary results of the 2002 survey indicate that this is the second consecutive year of low abundance of pre-spawning pollock in the Shelikof Strait. An additional survey was conducted on the shelf break near the entrance to Shelikof Strait after indications that the fishing fleet was concentrated in that area. This additional survey showed a high adult biomass concentration near the shelf break (approximately twice the adult biomass in Shelikof Strait). The pollock size composition in shelf break aggregation was similar to Shelikof Strait adults, but it was noted that the age composition data available for November Plan Team meetings would help to resolve whether these two aggregations represent a single stock. The pollock index of spawning readiness was unusually low in Shelikof Strait, suggesting changes in the timing of spawning.

At September Plan Team meetings discussion occurred on the difficulties in apportioning between management areas 610,620 , and 630 for the four GOA pollock seasons. Current management areas are not thought to correspond well to the pollock biology: spawning grounds are bisected by management lines and summer distribution patterns by management area are highly variable and imprecisely estimates. Discussion focused on ideas for apportionment, specifically to use the ternary plot presented and assume a linear movement between summer and winter data points, and several suggestions were made by the team for further analysis and consideration. Additional data that will be available later in 2002 include age composition for the Shelikof Strait survey, 2001 bottom trawl age composition, and biomass estimates and length composition from the recently completed ADF\&G crab/groundfish survey. Preliminary results indicated continuing decline of adult pollock, but also additional support for a strong 1999 year class. The model fit to the 2002 Shelikof Strait survey was poor, with the model unable to match the steep decline indicated by the survey results.

The information contained in this analysis, including the SAFE reports which comprise Appendices A and B of this analysis, comprises the biological assessment the action agency is required to present to the consulting agency under section 7 of the Endangered Species Act. NMFS is both the action and the consulting agency for consultations on Steller sea lions.

4.6 Effects on Seabirds

The five alternatives in this EA set the catch quota, by target species and region, equal to variably defined levels of fishing mortality rates used to set the $A B C$. Alternative 5 sets harvest equal to zero, and is considered the no action alternative. Impacts of fishery management on seabirds are difficult to predict due to the lack of information for many aspects of seabird ecology. A summary of incomplete and unknown information was presented in the Draft Programmatic SEIS, (Section 4.3.1) and was followed by a description of the current management regime at that time (Section 4.3.2) and then by an analysis of the effects of the Draft Programmatic SEIS alternatives on seabirds (Section 4.3.3) (NMFS 2001a). The significance determinations of analysis performed in this EA is summarized in Table 6.0-1.

Seabird Groups and Effects to Consider: Given the sparse information, it is not likely that the fishery effects on most individual bird species are discernable. For reasons explained in the Steller Sea Lion Protection Measures SEIS (NMFS 2001c), the following species or species groups are considered: northern fulmar, short-tailed albatross, spectacled eider, and Steller's eiders, albatrosses and shearwaters, piscivorous seabird species, and all other seabird species not already listed. The fishery effects that may impact seabirds are direct effects of incidental take (in gear and vessel strikes), and indirect effects on prey (forage fish) abundance and availability, benthic habitat, processing waste and offal.

Direct Effects - Incidental take The effects of incidental take of seabirds (from fishing gear and vessel strikes) are described in Section 4.3 .3 of the Draft Programmatic SEIS (NMFS 2001a). Birds are taken incidentally in longline, trawl, and pot gear, although the vast majority of that take occurs in the longline fisheries and is comprised primarily of the following species or species groups: fulmars, gulls, shearwaters, and albatrosses. Therefore, this analysis of incidental take focuses primarily on the longline fisheries and those species.

As noted in Section 4.3.3.1 of the Draft Programmatic SEIS (NMFS 2001a), several factors are likely to affect the risk of seabird incidental catch. It is reasonable to assume that risk goes up or down, partly as a consequence of fishing effort (measured as total number of hooks) each year (NMFS 2001a). But, if seabird avoidance measures used to prevent birds from accessing baited hooks are effective, then effort levels would probably be less of a critical factor in the probability of a bird getting hooked. Seabird bycatch avoidance measures are outlined on page 4.3-8 of the Draft Programmatic SEIS (NMFS 2001a).

Indirect Effects - Prey (forage fish) abundance and availability A description of the effects of prey abundance and availability on seabirds is in Section 4.3.3 of the Draft Programmatic SEIS (NMFS 2001a). Detailed conclusions or predictions cannot be made, however, the present understanding is fisheries management measures affecting abundance and availability of forage fish or other prey species could affect seabird populations (NMFS 2001a; NMFS 2001c).

Indirect Effects - Benthic habitat The indirect fishery effect on benthic habitat as utilized by seabirds are described in Section 4.3.3.1 of the Draft Programmatic SEIS (NMFS 2001a). The seabird species most likely to be impacted by any indirect gear effects on the benthos would be diving sea ducks such as eiders and scoters as well as cormorants and guillemots (NMFS 2001c). Bottom trawl gear has the greatest potential to indirectly affect seabirds via their habitat. Thus, the remainder of this analysis will be limited to the impacts of bottom trawl gear on foraging habitat.

Indirect Effects - Processing waste and offal The volume of offal and processing wastes probably changes approximately in proportion to the total catch in the fishery. Whereas some bird populations may benefit from the food supply provided by offal and processing waste, the material also acts as an attractant that may lead to increased incidental take of some seabird species (NMFS 2001c). TAC level under various
alternatives could reduce the amount of processing waste and offal that is available to scavenging seabirds, particularly in some areas near major breeding colonies. This impact would need to be considered in the balance of the beneficial and detrimental impacts of the disposal actions.

Criteria used to determine significance of effects on seabirds Significance of impacts is determined by considering the context in which the action will occur and the intensity of the action. When complete information is not available to reach a strong conclusion regarding impacts, the rating of 'unknown' is used. Table 4.6-1 outlines the qualitative significance criteria or thresholds that are used for determining if an effect has the potential to create a significant impact on seabirds.

4.6.1 Effects of Alternative 1 on Seabirds

Direct Effects - Incidental take In as much as Alternative 1 could increase fishing effort by setting the quota for harvest to $\max \mathrm{F}_{\mathrm{ABC}}$, it has the potential to increase interactions with those seabird species prone to incidental bycatch. The Draft Programmatic SEIS (NMFS 2001a) concluded that northern fulmars were the only species showing a positive linear relationship between fishing effort and numbers of birds hooked. This relationship did not exist for other bird groups. The short-tailed albatross, because of its small population and endangered species status, and the black-footed albatross, because of concerns of a population decline and high incidental take in the GOA, might also be affected by greater fishing effort (NMFS 2001c). These three species, the northern fulmar, short-tailed albatross, and black-footed albatross, may demonstrate conditionally significant negative effects from incidental take resulting from this alternative. However, because there is insufficient information to document a link between colonies or population trends and incidental take of these species, the effect was rated 'unknown'. The Steller Sea Lion Protection Measures SEIS (NMFS 2001c) examines the population trends and potential for effects of groundfish fisheries on these potentially affected species. Effort should be made to gather data and conduct analysis and modeling necessary to make a determination in future EA on TAC alternatives on these three species.

Indirect Effects - Prey (forage fish) abundance and availability The Draft Programmatic SEIS concluded that fishery influences on the abundance and availability of forage fish was considered insignificant for populations of northern fulmars and most other seabird groups (NMFS 2001a). The prey base for some piscivorous seabirds, however, could be affected by localized increases in TAC level (NMFS 2001c). The effect at the population level of high TAC for these seabird species remains unknown.

Indirect Effects - Benthic habitat Increased disturbance of the benthic habitat could potentially affect those seabirds that are primarily benthic feeders, including the eiders. The eider's dependence on benthic crustacea, which could be affected by greater trawling effort, could result in a conditionally significant negative affect on eiders. However, spatial overlap between fisheries and eider forage areas are limited, and the population level effects are unknown. Other seabirds that also utilize demersal fish or small invertebrates and crustacea include cormorants and guillemots. These latter seabird groups are generalists and can utilize a variety of other fish species, thus the application of Alternative 1 is not likely to affect populations greater than current standards.

Indirect Effects - Processing waste and offal It could be that the northern fulmar, a species known to benefit from fishery discards in the North Atlantic, experiences a benefit from North Pacific fisheries. Given the unknown effect of incidental take on northern fulmars in the BSAI and on the Pribilof Island colonies in particular, any benefit from a supplemental feeding source could be reduced by the bycatch effects associated with the fishery. Based on this information, the availability of fishery processing wastes could have a conditionally significant beneficial effect on northern fulmars under Alternative 1. It is not possible at this time to determine if this effect is significant, and thus the effect is unknown.

4.6.2 Effects of Alternative 2 on Seabirds

Direct Effects - Incidental take TAC levels under Alternative 2 are identical to those of Alternative 1 in the BSAI. In the GOA, TAC levels under Alternative 2 are equivalent to those of Alternative 1 for most species, with the exceptions of a lower TAC on Pollock, Pacific cod, and Sablefish. The promulgation of Alternative 2 is thus seen as similar in effect on seabirds as those in Alternative 1. Because the primary fisheries potentially affecting seabirds in the GOA would have lower effort, it is possible that lower incidental take could occur for species such as fulmars, albatrosses and shearwaters. The population level differences are not likely to be different than those determined under Alternative 1.

Indirect Effects - Prey (forage fish) abundance and availability T he effects on seabird prey from TAC levels under Alternative 2 are not likely different than those under Alternative 1, at the population level. It is possible that in the GOA, localized impacts on the seabird prey could be reduced, but the effect at the population level is considered insignificant, or for piscivorous birds, unknown.

Indirect Effects - Benthic habitat For benthic feeders, the impact of Alternative 2 on eiders is unknown, and for remaining seabirds, is considered insignificant.

Indirect Effects - Processing waste and offal TAC levels under Alternative 2 could have effects similar to those described under Alternative 1. In the GOA, processing waste and offal that is available to scavenging seabirds might be reduced. This indirect effect potentially has both beneficial and detrimental impacts and overall could be considered insignificant at the population level for all seabird species with high interaction levels with the fisheries, such as fulmars, albatrosses, shearwaters, and gulls.

4.6.3 Effects of Alternative 3 on Seabirds

Direct Effects - Incidental take Potentially, the overlap between longline vessels and fulmars foraging near colonies would be reduced under TAC levels of Alternative 3, and could result in reduced levels of interaction and incidental take of fulmars. Given the current levels of incidental take, the existing measures in place to reduce incidental take of seabirds, and all of the above considerations (see also NMFS 2001c), Alternative 3 is considered to have an unknown effect on fulmars at the BSAI colonies Black-footed albatrosses could be affected in the GOA by lower encounter rates under a $\mathrm{F}_{50 \%}$., thus the effect of this alternative on incidental take for albatrosses is considered unknown. Other seabird species are not likely to be affected significantly by this amount of change in fishing effort.

Indirect Effects - Prey (forage fish) abundance and availability For the reasons noted in the Draft Programmatic SEIS and summarized in NMFS 2001c, the potential indirect fishery effects on prey abundance and availability of Alternative 3 are considered insignificant or unknown for all seabirds. For most piscivorous seabirds, the effects of fishing effort under this alternative would not likely be different than under current TAC levels. Those seabirds that feed closer to shore or include benthic prey in their diets, such as guillemots, cormorants, eiders and other seaducks, might benefit from lower fishing effort under this alternative. However, the potential for effects at the population or colony level are unknown, and thus effects for these groups of birds is considered unknown.

Indirect Effects - Benthic habitat A reduction of fishing effort could have a localized beneficial affect on some benthic habitats, but the level of reduction and areas affected are not likely to alter current population trends of seabirds. A possible exception are the exclusively benthic feeders, such as eiders and other seaducks, and thus the affect for this species group is unknown.

Indirect Effects - Processing waste and offal The availability of fishery processing wastes could decline under Alternative 3, which could reduce supplemental food available to fulmars, which are closely associated with fishing vessels. However, the change in fishing effort is not likely to be sufficiently different from current TAC levels to affect population-level changes in fulmars. Furthermore, reduced fishing could also have the effect of reducing interactions subjecting the birds to incidental take, thus the effects are considered unknown for fulmars.

4.6.4 Effects of Alternative 4 on Seabirds

Direct Effects - Incidental take Under Alternative 4, fishing effort varies among target species and regions, with respect to effort under Alternatives 1-3. It is thus difficult to make a determination about the potential effects of this alternative on seabirds. In general, using the 5 -year average to set TAC levels is lower than other alternatives (with the exception of Alternative 5, no take). However, important exceptions are the pollock and Pacific cod fisheries in the GOA, which under Alternative 4 are equivalent to those of Alternative 1, the $\max _{\mathrm{ABC}}$. Given the current levels of incidental take, the existing measures in place to reduce incidental take of seabirds, and all of the above considerations, Alternative 4 is considered to have an unknown effect on fulmars, albatrosses and shearwaters. See NMFS 2001c for the analysis of the effect of incidental take on these species.

Indirect Effects - Prey (forage fish) abundance and availability For the reasons noted in the Draft Programmatic SEIS and summarized in NMFS 2001c, the potential indirect fishery effects on prey abundance and availability resulting from Alternative 4 are considered insignificant or unknown at the population level for all seabirds.

Indirect Effects - Benthic habitat The promulgation of fisheries under Alternative 4 could result in high fishing pressure in the pollock fishery in the GOA, thus potentially affecting benthic habitats. The population level effects of this level of fishing effort are unknown for those birds most dependent on benthic habitats, such as eiders and other seaducks.

Indirect Effects - Processing waste and offal This alternative has the potential of increasing offal in the GOA, and thus could affect fulmars in particular. However, the population or colony effects of TAC levels under Alternative 4 are unknown for fulmars, and are likely to be insignificant for other seabirds.

4.6.5 Effects of Alternative 5 on Seabirds

Direct Effects - Incidental take The effects of Alternative 5 with respect to incidental take are expected to benefit seabirds subject to incidental take in groundfish fisheries, since it eliminates or greatly reduces fishing effort. Thus, this alternative could have a conditionally significant positive effect on populations of fulmars, albatrosses, shearwaters, and gulls. Northern fulmars have considerable overlap between longline fisheries and colony location and distribution at sea (Appendix C Ecosystem Considerations, p. 109). Fulmars also demonstrate a direct link between fishing effort and incidental take rates (NMFS 2001a). For these reasons, a complete absence of fishing has high potential to have a significant beneficial effect on specific colonies. Similarly, short-tailed albatrosses and black-footed albatrosses should derive significant benefits by reduced incidental take. Other species, though incidental catch rates would be reduced, are not likely to be affected at the population or colony level.

Indirect Effects - Prey (forage fish) abundance and availability For the reasons noted in the Draft Programmatic SEIS and summarized in NMFS 2001c, the potential indirect fishery effects on prey abundance
and availability of Alternative 5 are considered insignificant at the population level for most seabirds, and unknown for eiders and other seaducks.

Indirect Effects - Benthic habitat Seabirds dependent on the benthic habitat, such as eiders and other seaducks, could potentially benefit from lack of fishing under Alternative 5. Because the population level effects of this action remain unknown, the effects of this alternative on eiders and seaducks is unknown.

Indirect Effects - Processing waste and offal Based on the assumptions noted in NMFS 2001c, the availability of fishery processing wastes could have a conditionally significant beneficial effect on northern fulmars, thus, a complete reduction of fishing could reduce offal availability to fulmars. Similar effects might occur for albatrosses, shearwaters, and gulls. The degree to which these populations are dependent on offal are not known, and thus the effect is considered unknown for fulmars, albatrosses, shearwaters, and gulls, and is insignificant for other seabird species.

Table 4.6-1 Criteria used to determine significance of effects on seabirds.

Effects	Rating		
	Signific ant	Insignific ant	Unknown
	Take number and/or rate increases or decreases substantially and impacts at the population or colony level.	Take number and/or rate is the same.	Take number and/or rate is not known.
Prey (forage fish) availability	Prey availability is substantially reduced or increased and causes impacts at the population or colony level.	Prey availability is the same.	Changes to prey availability are not known.
Benthic habitat	Impact to benthic habitat is substantially increased or decreased and impacts at the population or within critical habitat.	Impact to benthic habitat is the same.	Impact to benthic habitat is not known.
Processing waste and offal	Availability of processing wastes is substantially decreased or increased and impacts at the population or colony level.	Availability of processing wastes is the same.	Changes in availability of processing wastes is not known.

4.7 Effects on Marine Benthic Habitat and Essential Fish Habitat Assessment

This analysis focuses on the effects of fishing at the alternative TAC levels on benthic habitat important to commercial fish species and their prey. The analysis also provides the information necessary for an EFH (Essential Fish Habitat) assessment, which is required by the Magnuson-Stevens Act for any action that may adversely affect EFH. Two issues of concern with respect to EFH effects are the potential for damage or removal of fragile biota that are used by fish as habitat, the potential reduction of habitat complexity, which depends on the structural components of the living and nonliving substrate; and potential reduction in benthic diversity from long-lasting changes to the species mix.

Each alternative is rated as to whether it may have significant effects in three ways:

1. Removal of or damage to Habitat Areas of Particular Concern (HAPC) biota by fishing gear
2. Modification of nonliving substrate, and/or damage to small epifauna and infauna by fishing gear
3. Change in benthic biodiversity

The reference point against which the criteria are applied is the current size and quality of marine benthic habitat and other essential fish habitat. Habitat indicators of ecosystem function (Table 4.8-1) are used in the determination that for all alternatives, all three questions, the harvest specifications will have an insignificant impact on marine benthic habitat (Table 6.0-1).

Consultation on effects to Essential Fish Habitat: Except for setting TAC at zero (Alternative 5), all of the alternatives have the potential for benthic disturbances that could result in regional adverse effects on EFH, or to a component of EFH such as certain HAPC biota. In previous EFH consultations such as on the Steller Sea Lion Protection Measures, comments with respect to mitigation have been to the effect that the Council has taken numerous actions to protect vulnerable areas, or to protect sensitive life stages of species by curtailing fishing at different times and in different areas. Given that mitigation measures to minimize effects on EFH have been undertaken through ongoing fishery management measures whose principal goal was to protect and rebuild groundfish stocks but whose results have also resulted in a benefit to habitat for all managed species, the NMFS Habitat Conservation Division stated that it believes that any potential significant adverse effects by this Federal action (groundfish fishing) have been minimized to the extent practicable. None of the TAC levels that would be specified under these alternatives would have impacts beyond those displayed in previous analyses of the effects of these groundfish fisheries on marine benthic habitat, therefore, ratings of insignificant are made for 2003 proposed TAC specifications. Regardless, a consultation on essential fish habitat for the preferred alternative will be completed and available prior to publication of the 2003 TAC specifications (NMFS 2002b). The significance determinations are summarized in Table 6.0-1.

4.8 Effects on the Ecosystem

To interpret and predict the effects of these fisheries on the ecosystem different indicators of ecosystem function were examined and are summarized in Table 4.8-1. The indicators were separated into categories related to physical oceanography, habitat, target groundfish, forage, other species, marine mammals, seabirds, and the aggregate indicators which relate to trophic levels of catch in the fishery management areas. Observations were made about each of the indicators followed by an interpretation of that observation with relation to ecosystem function (third column in Table 4.8-1). Background information specific to the North Pacific ecosystem is contained in the ecosystem consideration section of this document (Appendix C).

Table 4.8-1 Indicators of ecosystem function.

TYPE ofINDEX	OBSERVATION	INTERPRETATION
Physical oceanography North Pacific Index	Sea level pressure averaged for Jan.-Feb, Near neutral slightly negative for the last few years	No major atmospheric support for the PDO shift
Arctic Oscillation Index	Shift to negative	When negative it supports a stronger Aleutian low, helps drive a positive PDO pattern

TYPE ofINDEX	OBSERVATION	INTERPRETATION
Pacific Decadal Oscillation (PDO)	Cool coastal pattern in GOA since 1998	Indicates shift in PDO to neutral or negative phase and inhibited productivity
GOA Temperature Anomaly	1 deg less negative than May 2000	2001 not as cold as 2000
EBS summer temperature	Bottomtemperatures were generally warmer and surface temperatures were colder than average	No marked changes in fish distribution were noted
GOA summer temperature	Bottomtemperatures in 2001 appeared above average	Bottom temperature at depths 50-150 did not track PDO trend this year
EBS sea ice extent	Strong southerly winds kept sea ice northward of 60N	Low ice year, kept middle shelfbottom temperatures warmer
Papa Trajectory Index	Surface water circulation in the eastern GulfofAlaska still appears to be in the northward mode	Stronger northerly drift pattern of Subarctic current
Habitat		
Ground fish bottom trawling effort in GOA	Bottomtrawl time in 2000 was similar to 1998-99 and lower than 1990-1997	Less trawling on bottom
Groundfish bottom trawling effort in EBS	Bottomtrawl time increased in 2000 relative to 1999	More trawling on bottomthough still less than 1991-98
Ground fish bottom trawling effort in AI	Slightly lower in 2000, generally decreasing trend since 1990	Less trawling on bottom
Area closed to trawling	More area closed in 2000 compared with 1999	Less trawling on bottomin certain areas though may concentrate trawling in other areas
HAPC biota bycatch by all gears	Estimated at 560 t for BSAI and 32 t for GOA in 2000	Lower in BSAI than 1997-98, about constant in GOA since 1997
Target Groundfish		
Total biomass EBS/AI	Total about same in 2000 as in 1999, pollock dominant	Relatively high total biomass since around 1981
Total catch EBS	Total catch about same in 2000 as in 1999, pollock dominant	Catch biomass about same from 1984-2000
Total catch AI	Total catch declining	Total catch returning to lower levels

TYPE ofINDEX	OBSERVATION	INTERPRETATION
	since about 1996, Atka mackerel dominant	
Total biomass GOA	Declining abundance since 1982, arrowtooth dominant	Relatively low total biomass compared to peak in 1982
Total catch GOA	Total catch lower in 2000 than 1999	Total catch similar from 1985-present
Groundfish discards	Slightly increasing rates in 2000 relative to 1999 but still lower than 1997	Slightly more target species discarding, may not be significantly different from 1999
Groundfish discards	Slightly increasing rates in 2000 relative to 1999 but still lower than 1997	Slightly more target species discarding, may not be significantly different from 1999
GOA recruitment	Groundfish recruitment in 1990s is mostly below average for age structured stocks, except POP	Groundfish recruitment is low in 1990's
EBS recruitment	Some above average recruitment in early 1990s, mostly below average	Groundfish recruitment is low in mid-late 1990's
Groundfish fleet	Total number of vessels increased in 2000 relative to 1999 (121 were H\&L, 43 pot, 8 trawl)	More groundfish fishing vessels
Forage		
Forage by catch EBS	72 t in 2000,32-49t in 97-99, mostly smelts	Higher smelt catch rates in 2000
Forage bycatch GOA	125 t in 2000, higher than 1999 (30t) but similar to 1998, mostly smelts	Higher smelt catch rates in 2000
Age-0 walleye pollock EBS	Index area counts were high in 2001 but juveniles were smaller	Higher abundance around the Pribilofs, uncertain survival
Other species		
Spiny dogfish	Observer bycatch rates show mixed trends by area in GOA	Both increasing and decreasing catch rates observed over time by area
Spiny dogfish	IPHC bycatch rates since 97 show peaks in 1998 but declines since then	Possible distribution changes caused peaks in 1998

TYPE ofINDEX	OBSERVATION	INTERPRETATION
Sleeper shark	Mixed trends by area Observer, IPHC,	Stable or slight increase in most areas, large increases noted in Kodiak region
Salmon shark	Highest bycatch rates in Kodiak region	Similar catch rates in recent years
EBS jellyfish	Large increases in 2000 relative to 1999, biomass increased since 1990	High jelly fish biomass

TYPE ofINDEX	OBSERVATION	INTERPRETATION
Seabirds	Seabird breeding chronology	
Seabird productivity	Overall seabird productivity was average or above average in 2000	Average or above average chick production
Population trends	Mixed: 12 increased, 7 showed no change, 8 decreased	Variable depending on species and site
Seabird bycatch	99 BSAI longline bycatch is lower than 98 , N. fulmar dominate the catch (GOA longline bycatch is small and relatively constant) Trawl bycatch rates are variable and perhaps increasing	Unclear relationship between bycatch and colony population trends
Aggregate indicators	Regime shift scores	
Trophic level catch EBS and AI	Constant, relatively high trophic level of catch since 1960s	Not fishing down the food web
Trophic level catch GOA	Constant, relatively high trophic level of catch since 1970s	Not fishing down the food web

Beginning in 2001 the Ecosystem Considerations Chapter of the SAFEs included an ecosystem assessment component and beginning in 2002, individual groundfish stock assessment chapters will include an ecosystem assessment. Within this section will be three subsections: 1) Ecosystem Effects on Stock, 2) Fishery Effects on the Ecosystem and 3) Data gaps and research priorities. These subsections will provide information on how various ecosystem factors might be influencing the subject stock or how the specific stock fishery might be affecting the ecosystem and what data gaps might exist that prevent assessing certain effects. From these individual stock ecosystem effects evaluations and interpretations aggregate effects of all groundfish fisheries on the ecosystem may be determined more quantitatively.

Determinations of significance of impacts on the ecosystem issues of predator-prey relationships, energy flow and balance, and diversity are going to be made from these individual groundfish stock assessment chapters and summarized in Table 6.0-1.

4.9 Effects on State of Alaska Managed State Waters Seasons and Parallel Fisheries for Groundfish Fisheries

The State of Alaska manages state water seasons for several species of groundfish in internal waters of the state; sablefish in Statistical Areas 649 (Prince William Sound) and 659 (Southeast Inside District), pollock in Area 649 (Prince William Sound), and Pacific cod in Areas 610 (South Peninsula District), 620 and 630 (Chignik, Kodiak, and Cook Inlet Districts), and 649 (Prince William Sound). The state also manages groundfish fisheries for which federal TACs are established within state waters. Unless specified otherwise by the state open and closed seasons for directed fishing are concurrent with federal seasons. These fisheries
have been referred to as parallel fisheries or parallel seasons in state waters. Harvests of groundfish in these state parallel fisheries accrue towards achieving the federal TACs established for these fisheries.

This analysis focuses on the effects of Alternatives 1 through 5 on harvest levels in these state managed fisheries. The criteria used in estimating the effects is outlined below in Table 4.9-1. If the alternative considered was deemed by NMFS to likely result in a decrease in harvest levels in the state waters seasons for groundfish or in the parallel seasons in the BSAI and GOA of more than 50% it was rated significantly adverse. If the alternative was deemed to likely result in an increase in harvest levels in the state waters seasons for groundfish or in the parallel seasons in the BSAI and GOA of more than 50% it was rated significant beneficial. If the alternative was not deemed likely to neither decrease nor increase harvest levels by more 50% it was rated insignificant. Where insufficient was available to make such determinations the effect was rated as unknown. The level of a 50% change in harvest levels is more of a qualitative than a quantitative assessment. The authors felt that a change of 50% in either direction was clearly a significant change and that a change of less than 20% in either direction was clearly insignificant as stocks of groundfish frequently change over the short term within this range. The authors acknowledge that individual fishing operations with greater reliance upon participation in these state fisheries may experience adverse or beneficial effects at changes in harvest levels below the 50% level. The year 2001 was used as a benchmark for comparison. These effects are discussed in Section 4.10 Social and Economic Consequences in this EA. The effects on other state managed fisheries (salmon, herring, and crab) are discussed in Section 4.4 Effects on Prohibited Species in this EA.

4.9.1 Effects of Alternatives 1 through 5 on harvest levels in state managed groundfish fisheries in the BSAI and GOA

Guideline harvest levels for the state waters seasons for sablefish in Prince William Sound (Area 649) and the Southeast Inside District (Area 659) and for pollock in Prince William Sound (Area 649) are assessed independently from federal assessments of these stocks in EEZ waters. NMFS does not consider pollock in Prince William Sound to constitute a distinct stock from in the western GOA and includes this pollock in its assessment of the combined PWS/WYK/C/W (Areas 649, 640, 630, 620, and 610) pollock stock. The annual GHL established for PWS is subtracted from the ABC for the combined PWS/WYK/C/W stock in the WYK/C/W area. None of the alternatives considered would have an effect on the GHLs established by the state for these fisheries, therefore the effect on these fisheries under Alternatives 1 through 5 is rated insignificant.

Guideline harvest levels for Pacific cod in the state waters seasons are based on a fraction of the federal ABC apportionments in the GOA (not to exceed 25%). These GHLs would proportionately change with the federal ABCs established for Pacific cod. Therefore alternatives which result in an ABC reduction or increase of more than 50% are rated significant. Alternatives 3 and 5 would reduce Pacific cod ABCs in the GOA (and therefore the GHLs) by more than 50% and are rated significantly adverse. Alternatives 1,2 , and 4 would not reduce or increase ABCs for Pacific cod in the GOA by more than 50% and are rated insignificant.

Alternatives which result in a decrease or increase in TAC levels in the BSAI and GOA from 2001 levels are assumed to have a proportionate effect on harvest levels in the state managed parallel seasons.
Alternatives 1 through 4 do not increase or decrease TACs by more than 50% from 2001 levels in the BSAI and GOA and therefore the effect of these alternatives on harvest levels in the parallel seasons is rated insignificant. Alternative 5 (which would set TACs at zero) would be expected to decrease harvest levels in the state managed parallel seasons by more than 50% and is rated significantly adverse. These effects are summarized in Table 6.0-1.

Table 4.9-1 Criteria used to estimate the significance of effects on harvest levels in state managed groundfish fisheries in the BSAI and GOA.

Effect	Significant Adverse	Insignificant	Significant Beneficial	Unknown
Harvest levels of groundfish in state waters seasons and parallel seasons	Substantial decrease in harvest levels $(>50 \%)$	No substantial decrease or increase in harvest levels $(<50 \%)$	Substantial increase in harvest levels $(>50 \%)$	Insufficient information available

4.10 Social and Economic Consequences

4.10.1 Description of the Fishery

As noted earlier in section 1.2 of this EA, detailed descriptions of the social and economic backgrounds of the groundfish fisheries may be found in the following reports:

Alaska Groundfish Fisheries. Draft Programmatic Supplemental Environmental Impact Statement (NMF S 2001a). This report contains detailed fishery descriptions and statistics in Section 3.10, "Social and Economic Conditions," and in Appendix I, "Sector and Regional Profiles of the North Pacific Groundfish Fisheries."
"Economic Status of the Groundfish Fisheries off Alaska, 2000" (Hiatt et al. 2001), also known as the " 2001 Economic SAFE Report." This document is produced by NMFS and updated annually. The 2001 edition contains 49 historical tables summarizing a wide range of fishery information through the year 2000.

Steller Sea Lion Protection Measures Supplemental Environmental Impact Statement (NMFS 2001c. Referred to as "SSL SEIS" in the remainder of this section) contains several sections with useful background information on the groundfish fishery (although the majority of information provided is focused on three important species - pollock, Pacific cod, and Atka mackerel). Section 3.12.2 provides extensive background information on existing social institutions, patterns, and conditions in these fisheries and associated communities, Appendix C provides extensive information on fishery economics, and Appendix D provides extensive background information on groundfish markets.

Final Environmental Impact Statement for American Fisheries Act Amendments 61/61/13/8 (NMFS 2002a) provides a survey of the Bering Sea and Aleutian Islands groundfish fishery paying particular attention to the pollock fishery and the management changes introduced into it following the American Fisheries Act. The information is contained in Section 3.3, "Features of the human environment."

General significance of the groundfish fisheries off of Alaska

In 2000 the fishing fleets off Alaska produced an estimated $\$ 564.9$ million in ex-vessel gross revenues from the groundfish resources of the Bering Sea and Gulf of Alaska. In 2000, groundfish accounted for just over half of the $\$ 1.098 .5$ billion in ex-vessel gross revenues generated off of the Alaska by all fisheries (Hiatt, et al.2001).

The two most economically important groundfish species are pollock and Pacific cod. Pollock catches generated estimated ex-vessel revenues of $\$ 255.8$ million and accounted for 45.3 percent of all ex-vessel
revenues. ${ }^{1}$ Pacific cod was the next most significant groundfish species, measured by the size of gross revenues. Pacific cod generated an estimated $\$ 162.8$ million in ex-vessel gross revenues and accounted for about 28.8% of all groundfish gross revenues. (Hiatt, et al. 2001).

Other groundfish species were economically important as well. These included sablefish ($\$ 80.4$ million in estimated ex-vessel gross revenues), flatfishes (as a group of species generated $\$ 43$ million in estimated exvessel gross revenues), rockfishes (as a group generated $\$ 9.9$ million), and Atka mackerel generating $\$ 9.4$ million. (Hiatt, et al. 2001).

At the first wholesale level, the gross revenue generated by the groundfish fisheries off of Alaska were estimated to be in excess $\$ 1.36$ billion. Over half of this, $\$ 686.6$ million, came from catcher/processors and motherships operating in the Bering Sea and Aleutian Islands (BSAI). Another $\$ 399.4$ million was generated by shoreside processors operating in the BSAI. In the Gulf of Alaska (GOA) $\$ 41.6$ million was generated by catcher/processors and $\$ 199.1$ million was generated by shoreside processors (NMFS 2001c).

Information on net returns is scanty since there is little information available on costs. A rough estimate can be made for the BSAI pollock fishery, an important part of the overall fishery. The Alaska Department of Commerce and Economic Development (ADCED) reports that in 2000 the average royalty paid, per metric ton of pollock quota, by commercial operators to CDQ groups was $\$ 292.34$ (ADCED, page 27). The first wholesale value of retained pollock harvests in the BSAI was about $\$ 806$ per metric ton in 2000 (Hiatt, pers. comm.). This suggests that royalty payments to CDQ groups were about 36% of the first wholesale price of a metric ton of pollock in the Bering Sea in 2000.

Extrapolating this percent to the gross first wholesale value of the BSAI pollock harvest in 2000, (i.e., $\$ 798.1$ million dollars [Hiatt, et al., 2001, Table 36]), suggests that resource quasi-rents from the pollock fishery might have totaled about $\$ 290$ million in 2000 . This would be a high estimate of the social value of the pollock fishery that year; an estimate of the true social return would have to make deductions for (a) uncompensated government support expenditures, (b) the excess burden of the taxes supporting the government expenditures; (c) potential depreciation of ecosystem capital (if any); (d) potential threats to endangered species; and (e) income accruing to residents of other countries.

Extrapolation of the royalty percentage to other segments of the groundfish fleet is almost certainly inappropriate. The BSAI pollock fishery operates under the CDQ and AFA programs and is almost certainly more efficient than the other fleet segments. Further, the measure of returns estimated above corresponds roughly to the economists' measure of "producers surplus." This will exceed the actual profits of fishing operations by their annual fixed costs.

Catcher/Processors

Catcher/processors carry the equipment and personnel they need to process the fish that they themselves catch. In some cases catcher/processors will also process fish harvested for them by catcher vessels and transferred to them at sea. There are many types of catcher/processors operating in the BSAI and GOA groundfish fisheries. They are distinguished by target species, gear, products, and vessel size.

[^0]Pollock catcher/processors in the BSAI. These vessels (which use trawl gear) are referred to as the "AFA catcher/processors" because of the role played by the American Fisheries Act (AFA) of 1998 in structuring the fishing sector. The AFA: (1) recognized pollock trawl catcher/processors as a distinct industry segment, (2) limited access to the fleet, (3) modified the historical allocation of the overall pollock TAC that the fleet had received, and (4) created a legal structure that facilitated the formation of a catcher/processor cooperative ${ }^{2}$. The pollock at-sea processing fleet has two fairly distinct components - the fillet fleet, which concentrates on fillet product, and the surimi fleet, which produces a combination of surimi products and fillets. Both of these sectors also produce pollock roe, mince, and to varying degrees fish meal.

Trawl Head And Gut (H\&G) catcher/processors. These factory trawlers do not process more than incidental amount of fillets. Generally they are limited to headed and gutted products or kirimi. In general, they focus their efforts flatfish, Pacific cod, and Atka mackerel. Trawl H\&G catcher/processors are generally smaller than AFA catcher/processors and operate for longer periods than the surimi and fillet catcher/processor vessels that focus on pollock. A fishing rotation in this sector might include Atka mackerel and pollock for roe in January; rock sole in February; rock sole, Pacific cod, and flatfish in March; rex sole in April; yellowfin sole and turbot in May; yellowfin sole in June; rockfish in July; and yellowfin sole and some Atka mackerel from August to December. The target fisheries of this sector are usually limited by bycatch regulations or by market constraints and only rarely are able to catch the entire TAC of the target fisheries available to them.

Pot catcher/processors. These vessels have been used primarily in the crab fisheries of the North Pacific, but increasingly are participating in the Pacific cod fisheries. They generally use pot gear, but may also use longline gear. They produce whole or headed and gutted groundfish products, some of which may be frozen in brine rather than blast frozen. Vessels in the pot catcher/processor sector predominantly use pot gear to harvest Bering Sea and GOA groundfish resources. The crab fisheries in the Bering Sea are the primary fisheries for vessels in the sector. Groundfish harvest and production are typically secondary activities. Vessels average about 135 feet LOA and are equipped with deck cranes for moving crab pots. Most pot vessel owners use their pot gear for harvesting groundfish. However, some owners change gear and participate in longline fisheries.

Longline catcher/processor. These vessels, also known as freezer longliners, use longline gear to harvest groundfish. Most longline catcher/processors are limited to headed and gutted products, and in general are smaller than trawl H\&G catcher/processors. The longline catcher/processor sector evolved because regulations applying to this gear type provide more fishing days than are available to other gear types. Longline catcher/processor vessels are able to produce relatively high-value products that compensate for the relatively low catch volumes associated with longline gear. These vessels average just over 130 feet LOA. In 1999, there were 40 vessels operating in this sector. These vessels target Pacific cod, with sablefish and certain species of flatfish (especially Greenland turbot) as important secondary target species. Many vessels reported harvesting all four groundfish species groups each year from 1991 through 1999. Most harvesting activity has occurred in the Bering Sea, but longline catcher/processor vessels operate both the BSAI and GOA.

[^1]
Motherships

Motherships are defined as vessels that process, but do not harvest, fish. The three motherships currently eligible to participate in the BSAI pollock fishery range in length from 305 feet to 688 feet LOA.
Motherships contract with a fleet of catcher vessels that deliver raw fish to them. As of June 2000, 20 catcher vessels were permitted to make BSAI pollock deliveries to these motherships. Substantial harvesting and processing power exists in this sector, but is not as great as either the inshore or catcher/processor sectors.

Motherships are dependent on BSAI pollock for most of their income, though small amounts of income are also derived from the Pacific cod and flatfish fisheries in Alaska. In 1999, over 99 percent of the total groundfish delivered to motherships was pollock. About $\$ 30$ million worth of surimi, $\$ 6$ million of roe, and $\$ 3$ million of meal and other products was produced from that fish. These figures exclude any additional income generated from the whiting fishery off the Oregon and Washington coasts in the summer. In 1996, whiting accounted for about 12 percent of the mothership's total revenue. Only one of the three motherships participated in the GOA during 1999, and GOA participation in previous years was also spotty. This is likely due to the Inshore/Offshore restriction that prohibits pollock from being delivered to at-sea processors in the GOA.

Catcher vessels

Catcher vessels harvest fish, but are not themselves equipped to process it. They will deliver their product at sea to a mothership or catcher/processor, or to an inshore processor. There are a wide variety of catcher vessels, distinguished by target species, delivery mode (i.e., at sea or inshore) and gear type.

AFA-qualified trawl catcher vessels Vessels harvesting BSAI pollock deliver their catch to shore plants in western Alaska, large floating (mothership) processors, and to the offshore catcher/processor fleet. Referred to as catcher vessels, these vessels comprise a relatively homogenous group, most of which are long-time, consistent participants in a variety of BSAI fisheries, including pollock, Pacific cod, and crab, as well as GOA fisheries for pollock and cod. There are 107 eligible trawl vessels in this sector, and they range from under 60 feet to 193 feet, though most of the vessels fishing BSAI pollock are from 70-130 feet. The AFA established, through minimum recent landings criteria, the list of trawl catcher vessels eligible to participate in the BSAI pollock fisheries. There is significant, and recently increasing, ownership of this fleet (about a third) by onshore processing plants.

Non-AFA trawl catcher vessel (greater than or equal to 60 feet in length) Includes all catcher vessels greater than or equal to 60 feet LOA that used trawl gear for the majority of their catch but are not qualified to fish for pollock under the AFA. They are ineligible to participate in Alaska commercial salmon fisheries with seine gear because they are longer than 58 feet. Vessels must have harvested a minimum of 5 tons of groundfish in a year to be considered part of this class. The value of 5 tons of Pacific cod at $\$ 0.20$ per pound is about $\$ 2,200$. Non-AFA trawl catcher vessels greater than or equal to 60 feet also tend to concentrate their efforts on groundfish, obtaining more than 80 percent of ex-vessel value from groundfish harvests. Harvests of pollock by these vessels are substantially lower than those of the AFA qualified vessels, because they have not participated in the BSAI fisheries in recent years.

Pot catcher vessel These vessels are greater than or equal to 60 feet LOA and rely on pot gear for participation in both crab and groundfish fisheries. All vessels included in the class are qualified to participate in the crab fisheries under the Crab LLP. Some of these vessels use longline gear in groundfish fisheries. Pot catcher vessels traditionally have focused on crab fisheries, but have recently adopted pot fishing techniques for use in the Pacific cod fishery, which provide a secondary source of income between crab
fishing seasons. Historically, the pot fishery in Alaska waters produced crab. Several factors, including diminished king and Tanner crab stocks, led crabbers to begin to harvest Pacific cod with pots in the 1990s. The feasibility of fishing Pacific cod with pots was also greatly enhanced with the implementation of Amendment 24 to the BSAI FMP, which allocated the target fishery between trawl and fixed gear vessels.

Longline catcher vessel Vessels greater than 60 feet LOA that use primarily longline gear. None of these vessels are qualified for the BSAI Crab LLP. A large majority of the longliner catcher vessels in this class operate solely with longline fixed gear, focusing on halibut and relatively high-value groundfish such as sablefish and rockfish. Both fisheries generate high value per ton, and these vessels offen enter other highvalue fisheries such as the albacore fisheries on the high seas. The reliance of these vessels on groundfish fisheries sets them apart from smaller fixed gear catcher vessels permitted to operate in Alaska salmon fisheries with multiple gear types. Overall, this fleet is quite diverse. Most vessels are between 60 and 80 feet long with an average length of about 70 feet. The larger vessels in this class can operate in the Bering Sea during most weather conditions, while smaller vessels can have trouble operating during adverse weather.

Shoreside Processors

AFA inshore processors There are six shoreside and two floating processors eligible to participate in the inshore sector of the BSAI pollock fishery. Three AFA shoreside processors are located in Dutch Harbor/Unalaska. The communities of Akutan, Sand Point, and King Cove are each home to one AFA shoreside processor. The shoreside processors produce primarily surimi, fillets, roe, meal, and a minced product from pollock. Other products such as oil are also produced by these plants but accounted for relatively minor amounts of the overall production and revenue. These plants process a variety of species including other groundfish, halibut, and crab, but have historically processed very little salmon. In total, the inshore processors can take BSAI pollock deliveries from a maximum of 97 catcher vessels, as of June 2000, according the regulations implemented by the AFA. The two floating processors in the inshore sector are required to operate in a single BSAI location each year, and they usually anchor in Beaver Inlet in Unalaska. However, one floating processor has relocated to Akutan. The two floating inshore processors have historically produced primarily fillets, roe, meal, and minced products.

Non-AFA inshore processors Inshore plants include shore-based plants that process Alaska groundfish and several floating processors that moor nearshore in protected bays and harbors. This group includes plants engaged in primary processing of groundfish and does not include plants engaged in secondary manufacturing, such as converting surimi into analog products (imitation crab), or further processing of other groundfish products into ready-to-cook products. Four groups of non-AFA inshore processors are described below. The groupings are primarily based on the regional location of the facilities: (1) Alaska Peninsula and Aleutian Islands, (2) Kodiak Island, (3) Southcentral Alaska, and (4) Southeast Alaska.

Alaska Peninsula and Aleutian Islands Inshore Plants. In 1999, ten Alaska Peninsula and Aleutian Islands plants participating in the groundfish fishery. Between 1991 and 1999, almost all of the facilities reported receiving fish every year from the BSAI. In 1999, these facilities processed 66,635 round weight tons, of which 43,646 tons (66 percent) was pollock and 19,402 tons (30 percent) was Pacific cod. Also in 1999, 36,652 tons (55 percent of the total) came from the western Gulf of Alaska (WG) and 21,643 tons (32 percent) came from the BSAI.

Kodiak Island inshore plants Most Kodiak plants process a wide range of species every year, although generally fewer plants process pollock than process other species. The facilities processed a total of 101,354 round weight tons of groundfish in 1999, 51 percent of which was pollock and 30 percent of which
was Pacific cod. All of the plants receive fish from the central Gulf (CG) subarea every year. Most of the plants also receive fish from the WG and eastern Gulf(EG) subareas.

Southcentral Alaska inshore plants. This group includes governmental units that border the marine waters of the GOA (east of Kodiak Island), Cook Inlet, and Prince William Sound. There have been 16 to 22 southcentral Alaska inshore processors participating in the BSAI and GOA groundfish fishery every year since 1991. In 1999 , there were 18 plants in southcentral Alaska processing groundfish. All 18 plants reported processing Pacific cod, flatfish, and other groundfish species in 1999. In addition, 16 of the 18 reported processing pollock. Virtually all of the plants receive fish from the CG subarea every year. Many also receive fish from the EG subarea, and some receive fish from the WG subarea. In 1998 and 1999, fewer than four processors took deliveries from catcher vessels operating in the BSAI.

Southeast Alaska inshore plants. This group includes all shore plants in Southeast Alaska, from Yakutat to Ketchikan. Between 14 and 19 inshore plants operated in Southeast Alaska in the years from 1991 to 1999. There were 14 in 1999. In general, these plants focus on salmon and halibut, but also process some groundfish, particularly high-values species such as salmon and halibut.

Markets

Markets for three of the most important species, pollock, Pacific cod, and Atka mackerel, have been described in detail in Appendix D of the SSL SEIS (NMFS 2001c). The reader is referred to that document for a more detailed report on these markets. The following discussion abstracts Section 5.3 .2 ("Prices") of that appendix. This discussion focuses on pollock, Pacific cod and Atka mackerel because (a) the recent research for Appendix D has made information on these species relatively more available than information for other species, and (b) these three species together account for about 83% of groundfish first wholesale revenues in 2000 (Hiatt et al. 2001).

The three most important pollock products are surimi, fillets, and roe. Alaska surimi is primarily consumed in Japan where it is considered to be a premium product; available substitutes for it are relatively limited. The prices received for pollock surimi will probably be relatively responsive to the quantity supplied to the market, so that there would be noticeable price increases if supply was reduced, and price decreases if supply was increased. These shifts should moderate or offset the revenue increases that would be associated with supply increases, and revenue decreases associated with supply decreases. Similar conditions exist in the Japanese market for pollock roe.

Conditions are different in the market for fillets. Fillets tend to be sold into the relatively competitive U.S. market where there are relatively closer substitutes. Prices received for pollock fillets in that market may be relatively less responsive to changes in the quantity supplied. In this market, price changes would not tend to offset the revenue impacts of quantity changes. ${ }^{3}$

Pacific cod has a relatively close substitute in Atlantic cod and its price is unlikely to be strongly responsive to quantity changes. Atka mackerel from Alaska is a popular product in Japan and South Korea where most of it is consumed, and has relatively few strong substitutes. Its price is likely to be responsive to quantity changes. Thus Pacific cod price changes are relatively unlikely to modify quantity changes, while Atka mackerel prices are likely to modify quantity changes.

[^2]
Safety

Commercial fishing is a dangerous occupation. Lincoln and Conway of the National Institute of Occupational Safety and Health (NIOSH) estimate that, from 1991 to 1998, the occupational fatality rate in commercial fishing off Alaska was $116 / 100,000$ (persons/full time equivalent jobs), or about 26 times the national average of $4.4 / 100,000 .{ }^{4}$ Fatality rates were highest for the Bering Sea crab fisheries. Groundfish fatality rates, at about $46 / 100,000$ were the lowest for the major fisheries identified by Lincoln and Conway. Even this relatively lower rate was about ten times the national average.(Lincoln and Conway 1999, page 692-693). ${ }^{5}$ The danger inherent in commercial groundfish fishing was underscored by two accidents in March and April of 2001. In March, two men were lost when the 110 foot cod trawler Amber Dawn sank in a storm near Atka Island. In April, 15 men were lost when the 103 foot trawler-proces sor Arctic Rose sank about 200 miles to the northwest of St. Paul Island in the Bering Sea, while fishing for flathead sole.

However, during most of the 1990 s commercial fishing appeared to become safer. While annual vessel accident rates remained relatively stable, annual fatality per incident rates (case fatality rates) dropped. The result was an apparent decline in the annual occupational fatality rate. ${ }^{6}$ From 1991 to 1994, the case fatality rate averaged 17.5% a year; from 1995 to 1998 the rate averaged 7.25% a year. Lincoln and Conway report that "The reduction of deaths related to fishing since 1991 has been associated primarily with events that involve a vessel operating in any type of fishery other than crab." (Lincoln and Conway 1999, page 693.) Lincoln and Conway described their view of the source of the improvement in the following quotation.

The impressive progress made during the 1990 s in reducing mortality from incidents related to fishing in Alaska has occurred largely by reducing deaths after an event has occurred, primarily by keeping fishermen who have evacuated capsized (sic.)or sinking vessels afloat and warm (using immersion suits and life rafts), and by being able to locate them readily, through electronic position indicating radio beacons. (Lincoln and Conway 1999, page 694).

There could be many causes for this improvement. Lincoln and Conway point to improvements in gear and training, flowing from provisions of the Commercial Fishing Industry Vessel Safety Act of 1988, that were implemented in the early 1990s. Other causes may be improvements in technology and in fisheries management. The Lincoln-Conway study implies that safety can be affected by management changes that affect the vulnerability of fishing boats, and thus the number of incidents, and by management changes that

[^3]affect the case fatality rate. These may include changes that affect the speed of response by other vessels and the U.S. Coast Guard.

Nevertheless, despite these implications, the exact determinants of incident rates, fatality rates, and other measures of fishing risk, remain poorly understood. In the current instance, reductions in the TAC would reduce fishing operation profitability and could lead fishermen to skimp on safety expenditures and procedures. Conversely, reduced profitability may reduce the number of active fishing operations and the numbers of vessel and fishermen placed at risk. The net impacts are difficult to untangle with our existing state of knowledge. ${ }^{7}$
$C D Q$

Through the Community Development Quota (CDQ) program, the North Pacific Fishery Management Council and NMFS allocate a portion of the BSAI groundfish, prohibited species, halibut and crab TAC limits to 65 eligible Western Alaska communities. These communities work through six non-profit CDQ Groups to use the proceeds from the CDQ allocations to start or support commercial fishery activities that will result in ongoing, regionally based, commercial fishery or related businesses. The CDQ program began in 1992 with the allocation of 7.5% of the BSAI pollock TAC. The fixed gear halibut and sablefish CDQ allocations began in 1995, as part of the halibut and sablefish Individual Fishing Quota Program. In 1998, allocations of 7.5% of the remaining groundfish TACs, 7.5% of the prohibited species catch limits, and 7.5% of the crab guidelines harvest levels were added to the CDQ program, while the CDQ allocation of pollock increased to 10% of the TAC.

4.10.2 Direct and Indirect Impacts of the Alternatives

Impacts

This EA evaluates the significance of the same economic indicators used in the SSL SEIS (NMFS 2001c) with the addition of an indicator for "Net Returns to Industry." This selection of indicators is relatively extensive, as the SSL SEIS (NMFS 2001c) attempted to describe the impact of the protection measures on the costs and benefits accruing to all stakeholders. The indicators, which are listed on page 4-342 in Section 4.12.1 of the SSL SEIS, are:

Passive Use Values
Non-Market Use Value (e.g., subsistence)
Non-Consumptive Use Value (e.g., eco-tourism)
Fish Prices
Operating Cost Impacts
Groundfish Gross Values
Net Returns to Industry
Safety Impacts
Impacts on Related Fisheries
Consumer Effects
Management and Enforcement Costs

[^4]Excess Capacity
Bycatch and Discard Considerations

Each of these indicators was evaluated using the criteria described earlier in this EA.

Passive Use Values

Passive use is also called "non-use" value, because a person need never actually use a resource in order to derive value from it. ${ }^{8}$ That is, people enjoy a benefit (which can be measured in economic terms) from simply knowing that some given aspect of the environment exists. Survey research suggests that passive use values can be significant in at least some contexts. Because passive use values pertain to the continued existence of resources, the focus in this discussion is on classes of resources in the GOA and BSAI which have been listed as endangered under the U.S. Endangered Species Act. Under the Act, an endangered species is one that is "...in danger of extinction throughout all or a significant portion of its range..." and not one of certain insects designated as 'pests."(16 U.S.C. §1532(6).)

Changes in groundfish harvests in the GOA and the BSAI may affect (largely indirectly) passive use values by affecting the probability of continued existence or recovery of a listed species. At present, four endangered species or classes of endangered or threatened species range into the GOA and BSAI management areas: (a) Steller sea lions; (b) seven species of Great Whales; (c) Pacific Northwest salmon; (d) three species of sea birds (Table 6.0-2).

Sea lions and great whales could be impacted if the harvest program affected the groundfish prey available to them; sea birds could be affected if the harvest program led to changes in opportunities for contact with fishing gear and for fishing gear induced mortality; take of ESA listed salmon could be affected if salmon bycatch changed.

The Steller sea lion will be protected by modified fishery management measures (consistent with the Endangered species Act) that will be implemented in 2003. As noted in the discussion of "Bycatch and Discard Considerations" below, salmon harvests are already limited by prohibited species caps. Increases in fishing activity should not affect these stocks.

The mechanisms through which the fisheries might affect endangered species are poorly understood. Models that would relate fishing activity to changes in the probability that a species would become extinct are not available or do not yet have strong predictive power, and information on the ways in which passive use values would change as these probabilities change is not available. Given this lack of information, the significance of this potential impact has been rated "unknown" for all alternatives.

Non-Market Use Value (e.g., subsistence)

While subsistence communities along Alaska's coast use small amounts of groundfish for subsistence purposes, groundfish are not one of the more important subsistence products (NMFS 2001c, page F3-109). Groundfish specifications, however, may affect subsistence harvests of other natural resources through two mechanisms: (1) they influence the levels of harvest of groundfish which may be used by other animals that are themselves used for subsistence purposes; (2) they influence the bycatch of prohibited species that have

[^5]subsistence uses. Changes in groundfish harvests, for example, could affect the prey available to Steller sea lions and thus affect sea lion population status and sea lion availability to subsistence hunters. Alternatively, changes in bycatch of prohibited species, particularly salmon and herring, could directly affect subsistence use of these species.

The mechanisms relating changes in the harvest of groundfish prey to changes in populations of animals used for subsistence purposes, and the mechanisms relating changes in populations of animals to changes in subsistence use are poorly understood. In addition, as noted later in this section, prohibited species bycatch is limited by bycatch caps and area closures. These measures limit groundfish harvests if necessary to protect prohibited species. It thus seems unlikely that the proposed alternative might affect subsistence harvests by changing bycatch. For these reasons, this indicator has been given a significance rating of "not significant."

Non-Consumptive Use Value (e.g., eco-tourism)

Groundfish themselves do not support non-consumptive eco-tourism uses. Groundfish are preyed upon by marine mammals and birds that may themselves be the object of eco-tourism., and gear used in groundfish fishing may impose direct mortalities on sea birds. In the absence of a model describing how changes in specifications and fishing activity will impact marine mammals and seabirds, and a model relating ecotourism values to the sizes and distribution of marine mammal and seabird populations, the significance of the impact of the alternatives on this indicator has been rated as "unknown."

Harvest Levels and Fish Prices

All other things equal, changes in the supply of a fish species should be associated with changes in the price received in the market for that species. Prices would be expected to drop when quantities rose, and would be expected to rise when quantities fell. The magnitude of the effect of the change of quantity on price would be affected by changes in the supplies of other fish species, and changes in a host of variables such as exchange rates, income, prices of non-fish food products, etc. In the alternatives under examination here, changes in the supplies from all other species in the BSAI and GOA would be correlated.

The information necessary to analyze the impacts of quantity changes on fish prices is extremely limited for species from the BSAI and GOA. Available statistical analyses are few and dated, and only available for some species; some anecdotal information is available. The SSL SEIS (NMFS 2001c) contained a discussion of markets for pollock, Pacific cod, and Atka mackerel. It used economic theory and anecdotal information to make extremely rough estimates of the relative responsiveness of price to quantity for these species. These estimates are summarized in Section 4.10 .1 of this EA. These are drawn on here to discuss price impacts on pollock, Pacific cod, and Akta mackerel.

In Section 4.10.1, the prices of pollock surimi and roe products, sold predominantly into Asian markets, were described as being relatively responsive to quantity changes, while the price of fillets, sold into competitive U.S. markets (and to a lesser extent, into European markets) were described as being relatively unresponsive to changes in supply. Pacific cod was described as having a relatively unresponsive price, while Akta mackerel was described as having a relatively responsive price. No explicit estimates of responsiveness were provided.

The proposed specifications contemplate changes in harvest from 2001 and 2002 that are generally relatively modest. A relatively large change, is contemplated in GOA pollock harvests. However, this change, while large in relation to 2001 and 2002 GOA pollock harvests, is modest in the overall context of Alaska pollock production. Large price changes in response to the quantity changes incorporated into the proposed
specifications appear unlikely. The proposed specifications are expected to have a "not significant" impact on market prices.

Operating Cost Impacts

Very little information about operating costs in the BSAI and GOA groundfish fisheries is available. Models that would predict behavioral changes associated with changes in these TAC specifications and that would generate estimates of operating cost impacts associated with these behavioral changes are not available. It is therefore impossible to provide numerical estimates of the operating cost impacts associated with the proposed alternative. However, since the alternative does not differ substantially from the specifications in 2001 and 2002 (except for the GOA pollock), the cost impact may be small in general. This indicator has been rated "not significant."

Groundfish Market Values

Information on gross revenue changes is summarized here. Gross revenues associated the proposed specifications are estimated in Section 4.10.3. The interested reader should turn to that section for a detailed discussion of the procedures and estimates. This section merely summarizes and discusses the significance of impacts.

Gross revenues associated with the proposed specifications were estimated separately for the BSAI and GOA. In addition to estimating gross revenues for the alternative, 2001 and 2002 gross revenues were also estimated for the BSAI and GOA. The gross revenues impacts and their significance are defined here with respect to the change between the alternative and the year 2001 and 2002 estimates. BSAI gross revenues were estimated to be about $\$ 1.309$ million for 2001 and about $\$ 1,338$ million in 2002, while GOA gross revenues were estimated to be about $\$ \$ 333$ million in 2001 and $\$ 273$ million in 2002.

The estimated gross revenues under the proposed alternative are $\$ 1,306$ million in the BSAI , and $\$ 242$ million in the GOA. These changes have been rated as "unknown," reflecting the fact that the large uncertainties associated with the estimation procedure make it unclear if these revenue estimates reflect significant or insignificant changes.

Net Returns to Industry

Although it has been possible to make crude estimates of gross first wholesale revenues under the alternatives, it is not possible to make corresponding estimates of net returns to industry. As noted under Section 4.10.1, "Description of the Fishery," net returns may be considerable. The significance of the proposed specifications is "unknown."

Safety Impacts

As described in Section 4.10.1, groundfish fishing off Alaska is a dangerous occupation. However, little is known about the connection between fisheries management measures and incident, injury, or fatality rates. Moreover, little is known about risk aversion among fishermen, or the values they place on increases or decreases in different risks. There is no way to connect changes in the harvests expected under these alternatives with changes in different risks, and the costs or benefits of these changes to fishermen.

Increases in TACs may improve fishing profitability and lead to greater investments in fishing vessel safety and greater care by skippers. This may reduce the fatality rate (although this is conjecture). Conversely,
increases in TACs may increase the number of operations, the average crew size per operation, and the average time at sea. These may increase the potential population at risk, and the length of time individuals may be exposed to the risks. Without better information it is impossible to determine whether or not a given change in specifications will increase or decrease the number of accidents. Under the circumstances, the alternative has been assigned a significance rating of"unknown."

Impacts on Related Fisheries ${ }^{9}$

Many of the operations active in ground fish fishing are diversified operations participating in other fisheries. Groundfish fishing may provide a way for fishermen to supplement their income from other fisheries and to reduce fishing business risk by diversifying their fishery "portfolios." Moreover, Pacific cod pot fishermen often fish for crab as well and Pacific cod harvests provide them with low cost bait. Changes in specifications and consequent changes in groundfish availability could lead to more or less activity by groundfish fishermen in other fisheries affecting competition in those other fisheries. Changes in specifications might affect the cost of bait for many crab fishermen.

In general, reductions in groundfish availability would be expected to have a negative affect on related fisheries, as fishermen move out of groundfish fishing and into those activities, or crab fishermen find bait costs rising. Conversely, increases in groundfish availability should have a positively significant impact on those fisheries. However, little is known about how these processes would take place and what their quantitative impacts would be. In the absence of this information, the significance of the proposed specifications is rated "unknown."

Consumer Effects

Domestic consumer losses will fall into two parts. One part, corresponding to the loss of benefits from fish products that are no longer produced, will be a total loss to society. This is offen referred to as a "deadweight loss." The second part, corresponding to a reduction in consumer benefits because consumers will have to pay higher prices for the fish they continue to buy, will be offset by a corresponding increase in revenues to industry. This second part should not be treated as a "loss to society." It is a measure of benefits that consumers used to enjoy, but which now accrues to industry in the form of increased prices and additional revenues.

The deadweight loss cannot be measured with current information about the fishery. Estimation would require better empirical information about domestic consumption of the different groundfish species and products, and information about the responsiveness of consumers to the reduction in supply.

The description of groundfish markets in Section 4.10.1 does suggest that for pollock, Pacific cod, and Atka mackerel, the impact on domestic consumers of increases or decreases in production might be fairly modest. Pollock surimi and roe and Atka mackerel were described as being principally sold overseas. Pacific cod and pollock fillets were described as being sold into domestic markets in which there were many competitive

[^6]substitutes. Under these circumstances, consumers would be unlikely to gain or lose much from changes in supply. ${ }^{10}$ The significance of the proposed alternative has therefore been rated "unknown."

Management and Enforcement Costs

Enforcement and in-season management budgets for most of the 2003 fiscal year are already set and are unlikely to be changed much. Within these programs, however, resources could be reallocated to or from groundfish enforcement. Enforcement expenses are related to TAC sizes in complicated ways. Larger TACs may mean that more offloads would have to be monitored and that each offload would take longer. Both these factors might increase the enforcement expenses to obtain any given level of compliance. Conversely, smaller TACs may lead to increased enforcement costs as it becomes necessary to monitor more openings and closures and to prevent poaching ${ }^{11}$. In-season management expenses are believed to be more closely related to the nature and complexity of the regulations governing the fishery (for example, on the number of separate quota categories that must be monitored and closed on time) than on TACs. Over a wide range of possible specifications, in-season management expenses are largely fixed. Increases in TACs from 50\% above 2001 levels to 50% below 2001 levels could probably be handled with existing in-season management resources ${ }^{12}$ (Tromble, pers. comm ${ }^{13}$.). For these reasons, the impact of the proposed alternative on management and enforcement costs appears to be "not significant."

Excess Capacity

Net result of the interactions likely to occur within both the fishing and processing sectors on excess capacity are not quantified at present. For most species, and for all species in the BSAI, the proposed specifications are very similar to those for 2001, and 2002. In the GOA, the reduction in pollock harvests may create some excess capacity. In the absence of this GOA pollock effect, the proposed specifications would have been rated "not significant" on this criterion. However, in light of the uncertainties created, the significance is rated "unknown."

Bycatch and Discard Considerations

Halibut, salmon, king crabs, Tanner crab, and herring are important species in other directed subsistence, commercial, and recreational fisheries. These species are designated prohibited species in the BSAI and GOA groundfish fisheries. Groundfish fishing operations are required to operate so as to minimize their harvests of prohibited species, and, under most circumstances, to discard prohibited species if they are taken.

In the BSAI prohibited species are protected by harvest caps and/or the closure of areas to directed groundfish fishing if high concentrations of the prohibited species are present. Because of the caps or other protection

[^7]measures, changes in the harvests in the directed groundfish fisheries, associated with the different specifications alternatives, should have little impact on catches of prohibited species.

In the GOA bycatch rates are typically low. The only average bycatch amounts that are meaningful in terms of numbers or weight in the Gulf of Alaska are Pacific halibut in the Pacific cod fishery, chinook salmon in the pollock fishery, other salmon (primarily chums) in the pollock fishery, and small amounts of C. bairdi crab in the Pacific cod fishery ${ }^{14}$. Halibut is the only prohibited species managed under a cap in the Gulf. In the GOA, all the proposed alternative projects allowable pollock harvests lower than the actual harvest in 2001. Thus the pollock impact on salmon should be reduced. Other ABCs are set at levels similar to those in 2001 and 2002.

The impact of the proposed specifications on bycatch and discards is rated as "not significant."

4.10.3 Detailed Analysis of 2003 Gross Value Impacts

The gross values analysis estimates gross revenues for products received at the first wholesale level, or "first wholesale gross revenues." First wholesale gross revenues were used as a measure of gross value because they provided the first price level common to two major sectors of the industry: (1) the "inshore sector," comprised of catcher vessels that harvest fish and deliver them for processing to shoreside or at-sea processors, and these same processors; and (2) catcher/processor vessels that process their own harvest. It would be possible to estimate ex-vessel prices for the catcher vessels (i.e., reflecting revenues received for the first commercial transaction, in this case, between catcher and processor), however, those ex-vessel prices would not be comparable to the revenues received through the first commercial transaction of a catcher/processor, because the latter transaction involves a value added product, while the former reflects raw catch. Therefore, by employing a "first wholesale price" a comparable market level value is obtained for the two respective sectors of this industry.

The prices are defined as "first wholesale price per metric ton of retained catch." First wholesale prices are necessary for calculating gross revenues at the first wholesale level. Prices are in metric tons of retained catch by the fishermen. Retained catch differs from total catch because fishermen offen discard parts of their total catch. This is an important factor in fisheries that take less desirable species as bycatch.

Price projections are not available for 2003. The most recent year for which relatively complete price data are available is 2001 . The first wholesale price per metric ton of retained catch was calculated by dividing an estimate of gross first wholesale revenues by an estimate of retained catch. The estimate of gross first wholesale revenues was calculated using volumes of different products produced for wholesale markets (estimated from Weekly Processor Reports, WPRs) and estimates of first wholesale prices (produced from State of Alaska Commercial Operators Annual Reports, COAR reports). Estimates of the volume of retained catch, by species, were obtained from the blend ${ }^{15}$.

Gross revenues were estimated as the product of. (a) an estimate of the allowable harvest associated with the alternative; (b) an estimate of the proportion of the allowable harvest taken on average in 1998, 1999, 2000; (c) an estimate of the proportion of the total catch that was discarded in 1998, 1999, 2000 and 2001; (d) a first

[^8]wholesale price per metric ton of retained weight calculated as described above. Species were grouped according to classifications used in the annual Groundfish Economic SAFE document.

Under the FMP, the groundfish fisheries in the BSAI are subject to an optimum yield (OY) constraint of two million metric tons. The harvests from all groundfish species, taken together, may not exceed this OY. However, the sum of the ABCs for the different species in the BSAI under Alternative 1 were 3.184 million metric tons, exceeding the OY by 1.184 million metric tons. Gross revenues estimates for this alternative, prepared assuming TACs equal to ABCs would lead to gross overestimates of total first wholesale gross revenues for two reasons. First, fishermen would simply not be allowed to harvest the full sum of the ABCs ; their harvests would be constrained, by the FMP, to the OY. Second, because large harvests of the magnitude implied, would almost certainly lead to offsetting price decreases.

In order to address this issue, the ABCs were adjusted downward to reflect decisions the Council would be anticipated to make. The Alternative 1 ABCs for the individual species were generally similar to those recommended by the plan teams in 2001 for 2002. The difference between the sum of the ABCs and the OY was allocated between the species in proportion to the decisions on this issue made by the Council in 2001 for the 2002 specifications.

There are several important conceptual problems with this approach. First, changes in the quantity of fish produced, might be expected to lead to changes in the price paid. However, in this analysis, the same price was used to value the different quantities that would be produced under the different alternatives. Since, all else equal, an increase in quantity should reduce price, while a decrease in quantity should increase price, leaving price changes out of the calculation may lead to an exaggeration of actual gross revenue changes across alternatives. The magnitude of this exaggeration may be small in this instance, since the proposed specifications are generally similar to those for 2002 and 2002 , and the relatively small volume changes may not lead to significant price changes.

Second, many of the groundfish fisheries become limited by prohibited species catch limits, rather than attainment of TAC. Prohibited species catch limits are not proportional to groundfish specifications and are likely to bind sooner, or impose greater costs on groundfish fishermen, given higher levels of TAC specifications. This suggests that gross revenues for alternatives with generally higher levels of TAC specifications will be biased upward.

Other assumptions incorporated into the model may affect the results in ways that are difficult to determine. These include (1) the use of first wholesale prices per metric ton of retained weight implies that outputs at the wholesale level change in proportion to the production of the different species; (2) the use of broad species categories implies that changes in specifications would result in proportional changes in the harvest by all the gear groups harvesting a species; (3) similarly, the lumping of species together in categories implies that changes in specifications would result in proportional changes in the harvest of all the species included in the category.

Table 4.10.3-1 BSAI first wholesale gross revenues estimates by alternative

Species	$\begin{gathered} 2001 \\ \begin{array}{c} \text { (millions of } \\ \text { dollars) } \end{array} \end{gathered}$	$\begin{gathered} 2002 \\ \text { (millions of } \\ \text { dollars) } \end{gathered}$	Sum of ABCs (millions of dollars)	ABCs constrained by OY (millions of dollars)	No harvest alternative (millions of dollars)
Pollock	938.9	994.5	1,406.6	976.3	0
Sablefish	19.2	21.2	11.9	11.9	0
Pacific cod	196.3	208.8	261.4	237.8	0
Arrowtooth	2.1	1.5	1.5	0.05	0
Flathead sole	21.4	13.4	12.7	2.9	0
Rock sole	26.0	18.7	28.9	4.8	0
Turbot	6.2	5.9	14.7	14.7	0
Yellowfin	35.4	27.0	19.3	14.4	0
Flats (other)	6.1	3.3	5.9	0.6	0
Rockfish	6.6	7.6	6.0	6.0	0
Atka mackerel	49.9	35.3	35.0	35.0	0
Other	1.1	1.3	1.4	1.1	0
Column total	1,309.3	1,338.4	1,805.4	1,305.5	0

Notes: Numbers may not sumto column total due to rounding. All gross revenue estimates have been prepared using 200 prices. "ABCs constrained by OY" reflects an a conversion of the ABCs in the column to the leff to TACs, using ratios reflecting the Council's action for 2002 (see text). The 2001 and 2002 gross revenue estimates are not based on actual harvests in those years, but on the TACs, adjusted as are the proposed 2003 specifications for the percent ofTAC harvested in recent years and the percent ofharvest retained.

Table 4.10.3-2 GOA first wholesale gross revenues estimates by alternative

Species	$\mathbf{2 0 0 1}$ (millions of dollars)	$\mathbf{2 0 0 2}$ (millions of dollars)	Sum of ABCs (millions of dollars)	No harvest alternative (millions of dollars)
Pollock	120.9	73.5	56.3	0
Sablefish	70.0	69.9	73.3	0
Pacific cod	78.4	66.6	73.1	0
Arrowtooth	4.4	4.4	8.3	0
Flathead sole	6.0	6.1	2.3	0.1
Rex sole	18.1	2.1	0.6	0
Flats (deep)	2.3	13.2	7.4	0
Flats (shallow)	12.6	17.7	14.1	0
Rock fish	18.4	0.2	0.09	0
Atka mackerel	0.2	1.4	0.5	0
Other	1.7	273.3	242.3	0
Column total	333.1			0

Notes: Numbers may not sumto column total due to rounding. All gross revenue estimates have been prepared using $20 \phi 1$ prices. The 2001 and 2002 gross revenue estimates are not based on actual harvests in those years, but on the TACs, adjusted as are the proposed 2003 specifications for the percent ofTAC harvested in recent years and the percent ofharvest retained

Interim specifications

The Council's recommended specifications for 2003 will not be known until the December Council meeting. It normally takes a period of months to publish a complicated rule like that necessary to implement the specifications. NMFS is typically not able to publish the final specifications until March of the year in which they become effective. However, some of the most important fisheries of the year take place in January, February, and March. Many of these fisheries harvest species in a spawning condition, and produce valuable roe in addition to other products. In order to ensure that fishing can take place during this early period, NMFS annually publishes interim specifications to manage the fisheries from January 1 until they are superceded by the final specifications.

As specified in $50 \mathrm{CFR} \S 679.20(\mathrm{c})(2)$, interim specifications are one-fourth of each proposed initial TAC (ITAC) and apportionment thereof, one-fourth of each proposed PSC allowance, and the first seasonal allowance of GOA and BSAI pollock and BSAI Atka mackerel. For most BSAI target species, the IT AC is calculated as 85 percent of the previous year's TACs (50 CFR $\S 679.20(\mathrm{~b})$). The remaining 15 percent is split evenly between the Western Alaska Community Development Quota (CDQ) program reserve and a nonspecified groundfish reserve. In the GOA, ITACs equal the full T AC except for pollock, Pacific cod, flatfish, and "other species. " The ITACs for these four species or species groups equal 80 percent of the TACs.

The interim PSC limits are one quarter of the annual limit and PSC reserves. A PSC reserve of 7.5 percent is set aside to establish the prohibited species quota (PSQ) for the CDQ program (50 C FR § 679.21(e)(1)(i)). For interim specifications PSQ reserves are subtracted from the previous year's PSC limit and 25 percent of the remaining amounts is established as an interim value until final specifications are adopted.

NMFS publishes the interim specifications in the Federal Register as soon as practicable after the October Council meeting and prior to the December meeting. Retention of sablefish with fixed gear is not currently authorized under interim specifications. Further, existing regulations do not provide for an interim specification for the CDQ non-trawl sablefish reserve or for an interim specification for sablefish managed under the IFQ program. This means that retention of sablefish is prohibited prior to the effective date of the final harvest specifications.

Table 4.10.3-3 Interim specification values

Species group	BSAI metric tons	GOA metric tons	BSAI first wholesale revenue (millions of dollars)	GOA first wholesale revenue (millions of dollars)
Pollock	722,907	12,037	480.3	14.1
Sablefish	0	0	0	0
Pacific cod	128,530	23,177	133.3	33.5
Arrowtooth	21,098	9,500	0.3	0.6
Flathead sole	15,819	2,320	2.7	0.2
Rock sole	43,322		6.1	
Turbot	5,863		3.1	
Yellowfin	24,304		4.1	
Flats (other)	34,036		1.3	
Rockfish	4,639	7,111	1.3	3.1
Atka	25,330	150	14.9	0.02
Other	8,728	3,323	0.3	0.1
Rex sole		2,367		1.5
Flats (deep)		1,220		0.2
Flats (shallow)		5,105		0.8
Column total	1,034,576	66,310	647.7	54.1

Notes: Numbers may not sumto column total due to rounding. The revenue calculations are based on annual average percent ofTAC harvested, percent ofharvest discarded, and first wholesale price estimates. The use of annual average first wholesale price estimates means that the first wholesale revenue estimates reported here should be underestimates ofthe actual revenues that would actually be received. This is because several fisheries, including the important pollock and Pacific cod fisheries produce a higher valued product in the first months of the year.

As reported in Table 4.10.3-3, the revenues produced by these interim specifications in the early part of the year should produce at least $\$ 647.7$ million in first wholesale revenues in the BSAI, and at least $\$ 54.1$ million in the GOA. As noted in the table, these are low estimates because they were calculated using annual price estimates for the different species. For many species, including the pollock and Pacific cod, the actual prices received during this period should be well above the annual average. That is because these species are in spawning condition at this time and the market for the roe increases the market value of the fish.

4.10.4 A note on the calculations

Tables 4.10.4-1 and 4.10.4-2 summarize key elements in the analysis used to prepare the gross revenue estimates in the preceding section. These tables indicate the instances when species, for which specifications are provided separately, were grouped for the gross revenue calculations, the Alternative 1 ABC specifications for each grouping, the assumptions about the relationships between TACs and ABCs imposed to force the specifications to conform to the OY limit in the BSAI, and the estimated annual first wholesale price used to estimate the gross revenues. Note that the TAC estimates are adjusted by historical data to adjust for (1) typical patterns of TAC not harvested, and (2) estimates of harvests that are typically discarded and not retained, in order to prepare the gross revenue estimates in the preceding section.

Table 4.10.4-1 Assumptions used in BSAI calculations

Species group	Specs included in this group	Alt 1 ABC specs (thousands of metric tons)	Specs adjusted to OY (thousands of metric tons)	First wholesale price (\$ per metric ton retained weight)					
Pollock	Pollock	$2,117.0$	$1,469.3$	$\$ 682.51$					
Sablefish	Sablefish	4.9	4.9	$\$ 5,247.36$	$	$	Pacific cod	Pacific cod	252.0
:---	---:	---:							

Table 4.10.4-2 Assumptions used in GOA calculations

Species group	Specs included in this group	Alt 1 ABC specs (thousands of metric tons)	First wholesale price (\$ per metric ton retained weight)
Pollock	Pollock	48.2	$\$ 1,285.71$
Sablefish	Sablefish	13.9	50.5
Pacific cod	Pacific cod	140.4	$\$ 5,882.11$
Arrowtooth	Arrowtooth	22.7	$\$ 1,552.66$
Flathead sole	Flathead sole	9.5	$\$ 395.82$
Rex sole	Rex sole	4.9	$\$ 833.83$
Flats (deep)	Greenland turbot	49.6	$\$ 1,993.62$
Flats (shallow)	Yellowfin sole	32.5	$\$ 552.74$
Rockfish	Pacific Ocean perch, Shortraker/Rougheye,Other rockfish, Northern rockfish, Pelagic shelfrockfish, Thornyhead rockfish, Demersal shelfrockfish	$\$ 760.33$	
Akta mackeral	$\$ 719.53$		
Atka mackerel	Other		13.3

5.0 Cumulative Effects

The SEIS prepared on Steller sea lion protection measures (NMFS 2001c) presents an assessment of cumulative effects of alternative protection measures in its Section 4.13. The SEIS assesses cumulative effects of environmental factors; external factors and consequences; incidental take/entanglements of Steller sea lions, other marine mammals and birds; spacial/temporal harvest of prey; and disturbance of prey by fishing activities.

The 2003 TAC specifications are developed under and managed according to the preferred alternative developed in the Steller Sea Lion Protection Measures SEIS. As such, the cumulative effects associated with the preferred alternative for Steller sea protection measures and the 2003 TACs are expected to be similar as well. In both cases, the TAC levels are consistent with the harvest control rule developed for pollock, Pacific cod and Atka mackerel under the SEIS and total about 1.8 million mt . The temporal distribution of major fisheries are governed by the seasonal apportionments of pollock, Pacific cod, and Atka mackerel TACs, as well as by the seasonal apportionments of prohibited species bycatch allowances. In addition, the 2003 TAC specifications maintain spatial distribution of harvest as envisioned by new Steller sea lion protection measures through the implementation of groundfish directed fishery closures around rookeries, haulouts, and other critical habitat areas, as well as critical habitat harvest limits for Atka mackerel in the Aleutian Islands
and for pollock in the Bering sea. The application of new management measures for the Aleutian Islands Atka Mackerel fishery also will reduce area specific harvest rates by 50 percent by dividing the fleet in half and assigning each half to different geographical areas in the Aleutian Islands Subarea.

Beyond the cumulative impacts analysis documented in the Steller Sea Lion Protection Measures SEIS no additional past, present, or reasonably foreseeable cumulative impact issues have been identified that would accrue from these fisheries in total, or these 2003 TAC specifications in particular. The 2003 TAC specifications are therefore determined to have insignificant cumulative impacts over and above impacts evaluated in the most recent environmental impact statements prepared for these fisheries.

6.0 Conclusions

As stated in section 4.0 of this EA, the intent of TAC setting deliberations is to balance the harvest of fish during the 2003 fishing year consistent with established total optimum yield amounts and ecosystem needs. The effect of the alternatives must be evaluated for all resources, species and issues that may directly or indirectly interact with the groundfish fisheries within the action area as a result of specified TAC levels. The impacts of alternative TAC levels are assessed in section 4 of this EA.

In addition to the Steller sea lion SEIS assessments, the significance of impacts of the actions analyzed in this EA were determined through consideration of the following information as required by NEPA and 50 CFR Section 1508.27:

Context: The setting of the proposed action is the groundfish fisheries of the BSAI and GOA. Any effects of the action are limited to these areas. The effects on society within these areas is on individuals directly and indirectly participating in the groundfish fisheries and on those who use the ocean resources. The action is to set upper limits on harvest specifications for fishing year 2003. Because this action continues groundfish fisheries in BSAI and GOA into the future, this action may have impacts on society as a whole or regionally.

Intensity: Listings of considerations to determine intensity of the impacts are in 50 CFR § 1508.27 (b) and in the NOAA Administrative Order 216-6, Section 6. Each consideration is addressed below in order as it appears in the regulations.
6.1 Adverse or beneficial impact determinations for marine resources accruing from establishment of year 2003 federal groundfish fisheries harvest specifications (see Table 6.0-1).
6.2 Public health and safety will not be affected in any way not evaluated under previous actions or disproportionally. Specifying TAC results in harvest quota assignments to gear groups, along previously established seasons, and according to allocation formulas previously established in regulations.
6.3 Cultural resources and ecologically critical areas: This action takes place in the geographic areas of the Bering Sea, Aleutian Islands, and Gulf of Alaska, generally from 3 nm to 200 nm offshore. The land adjacent to these areas contain cultural resources and ecologically critical areas. The marine waters where the fisheries occur contain ecologically critical area. Effects on the unique characteristics of these areas are not anticipated to occur with this action and mitigation measures such as a bottom trawling ban in the Bering Sea are part of fisheries management measures.
6.4 Controversiality: This action deals with management of the groundfish fisheries. Differences of opinion exist among various industry, environmental, management, and scientific groups on the
appropriate levels of TAC to set for various target species and in particular fishery management areas.
6.5 Risks to the human environment by setting TAC specifications in the BSAI and GOA groundfish fisheries are described in detail in the Draft Programmatic SEIS (NMFS 2001a). Because of the mitigation measures implemented with every past action, it is anticipated that there will be minimal or no risk to the human environment beyond that disclosed in the Draft Programmatic SEIS (NMFS 2001a) or the Steller Sea Lion Protection Measures SEIS (NMFS 2001c).
6.6 Future actions related to this action may result in impacts. NMFS is required to establish fishing harvest levels on an annual basis for the BSAI and GOA groundfish fisheries. Changes may occur in the environment or in fishing practices that may result in significant impacts. Additional information regarding marine species may make it necessary to change management measures. Pursuant to NEPA, appropriate environmental analysis documents (EA or EIS) will be prepared to inform the decision makers of potential impacts to the human environment and will strive to implement mitigation measures to avoid significant adverse impacts.
6.7 Cumulatively significant impacts beyond those described in the TAC setting SEIS (NMFS 1998) are possible with this action. Fisheries are regulated by federal and state agencies in marine waters. NMF S and the State of Alaska work closely in setting harvest levels and managing the nearshore and offshore fisheries of the state. In many instances, state fishing regulations are in addition to and more conservative than federal fishing regulations (Kruse et al. 2000). The state and federal fisheries are unlikely to cause cumulative effects beyond those described in the Draft Programmatic SEIS (NMFS 2001a) for the biological component of the BSAI and GOA.
6.8 Districts, sites, highways, structures, or objects listed or eligible for listing in the National Register of Historic Places: This action will have no effect on districts, sites, highways, structures, or objects listed or eligible for listing in the National Register of Historic Places, nor cause loss or destruction of significant scientific, cultural, or historical resources. This consideration is not applicable to this action.
6.9 Impact on ESA listed species: ESA listed species that range into the fishery management areas are listed in Table 6.0-2. The status of Section 7 consultations is summarized below by group: marine mammals, Pacific salmon, and seabirds.

ESA Listed Marine Mammals A Biological Opinion was written on Alternative 4 (the chosen alternative) for the Steller Sea Lion Protection Measures SEIS (NMFS 2001c). The 2001 Biological Opinion concludes the Alternative 4 suite of management measures would not likely jeopardize the continued existence of the western or eastern populations of Steller sea lions, nor would it adversely modify the designated critical habitat of either population. It is important to point out that the 2001 Biological Opinion does not ask if Alternative 4 helps the Steller sea lion population size recover to some specified level so that the species could be delisted, but rather asks if Alternative 4 will jeopardize the Steller sea lion's chances of survival or recovery in the wild. While the Biological Opinion has concluded that Alternative 4 does not jeopardize the continued survival and recovery of Steller sea lions, it none-the-less identified four reasonable and prudent measures to include with Alternative 4 as necessary and appropriate to minimize impacts of the fisheries to Steller sea lions. The measures are: (1) monitoring the take of Steller sea lions incidental to the BSAI and GOA groundfish fisheries; (2) monitoring all groundfish landings; (3) monitoring the location of all groundfish catch to record whether the catch was taken inside critical habitat; and (4) monitoring vessels fishing for groundfish inside areas closed to pollock, Pacific cod and Atka mackerel to see if they are illegally fishing for those species.

ESA Listed Pacific Salmon When the first Section 7 consultations for ESA listed Pacific salmon taken by the groundfish fisheries were done, only three evolutionary significant units (ESU)s of

Pacific salmon were listed that ranged into the fishery management areas (NMFS 1992; 1993). Additional ESUs of Pacific salmon and steelhead were listed under the ESA in 1997, 1998 and 1999. Only the Snake River fall chinook salmon has designated critical habitat and none of that designated habitat is marine habitat (Table 6.0-2). In 2000, formal consultation was reinitiated for all twelve ESUs of ESA listed Pacific salmon that are thought to range into Alaskan waters. A determination of not likely to jeopardize the continued existence is in the resulting biological opinion (NMFS 1999). The FMP level consultation (NMFS 2000b) included reconsideration of all the listed species of Pacific salmon thought to range into the management area and redetermined no jeopardy for all ESUs. The Incidental Take Statements accompanying the biological opinions state the catch of listed fish will be limited specifically by the measures proposed to limit the total bycatch of chinook salmon. Bycatch should be minimized to the extent possible and in any case should not exceed 55,000 chinook salmon per year in the BS AI fisheries or 40,000 chinook salmon per year in the GOA fisheries.

ESA Listed Seabirds Two section 7 consultations regarding seabirds were reinitiated with USFWS in 2000. Consultations have not been concluded as yet. The first is an FMP-level consultation on the effects of the BSAI and GOA FMPs in their entirety on the listed species (and any designated critical habitat) under the jurisdiction of the USFWS. The second consultation is action-specific and is on the effects of the 2001 to 2004 TAC specifications for the BSAI and GOA groundfish fisheries on the listed species (and any critical habitat) under the jurisdiction of the USFWS. This actionspecific consultation will incorporate the alternatives proposed in this SSL Protection Measures SEIS and the 2003 TACs for the groundfish fisheries. The most recent Biological Opinion on the effects of the groundfish fisheries on listed seabird species expired December 31, 2000. NMFS requested and was granted an extension of that Biological Opinion and its accompanying Incidental Take Statement (USFWS 2001). USFWS intends to issue a Biological Opinion in 2002. This will allow for the consideration of new information: recommendations by Washington Sea Grant Program on suggested regulatory changes to seabird avoidance measures based on a two-year research program as well as modifications to fishery management measure decisions informed by the Steller sea lion Protection Measures.

Section 7 Formal Consultation Information on listed species was analyzed in a November 2000 FMP level biological opinion (NMFS 2000) and in a October 2001 Biological opinion on effects of the pollock, Atka mackerel and Pacific cod fisheries on the eastern and western stocks of Steller sea lions (NMFS 2001c-appendix). Formal consultation by the NOAA Fisheries Office of Protected resources on the effects of the 2003 Groundfish Fisheries on listed species and their critical habitat is underway as of September 2002. Summarize determinations when available which is expected December 2002.

No new information is available on ESA listed salmon and the groundfish fisheries beyond what was considered in the December 22, 1999, biological opinion on the effects of the groundfish fisheries on listed salmon and the subsequent FMP level biological opinion.
6.10 Comparison of Alternatives and Selection of a Preferred Alternative

Alternative 1 would set TACs in the BSAI above the upper limit of $2,000,000 \mathrm{mt}$ for OY. Alternative 5 would set TACs in both the BSAI and GOA below the lower limits set for OY. Alternative 5 would set TACs for some species above ABC levels (for example: pollock, Pacific cod, sablefish and Atka mackerel in the GOA). While Alternative 3 sets TAC for only 1 species above the ABC level (Atka mackerel in the GOA) and falls within the range specified for OY in both the BSAI and GOA
it neither uses the best and most recent scientific information on status of groundfish stocks nor takes into account socioeconomic benefits to the nation.

Alternative 2 is being chosen as the preferred alternative because: 1) It takes into account the best and most recent information available regarding the status of the groundfish stocks, public testimony, and socio-economic concerns; 2) Sets all TACs at levels equal to or below ABC levels; 3) falls within the specified range of OY for both the BSAI and GOA, and 4) is consistent with the Endangered Species Act and the National Standards and other requirements of the Magunson Stevens Fishery Conservation and Management Act.

Table 6.0-1 Summary of significant determinations with respect to direct and indirect impacts.

Issue	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Mar ine Mammals					
Incidental take/entanglement in marine debris	I	1	I	I	1
Spatial/temporal concentration of fishery	I	1	I	1	I
Disturbance	1	1	1	1	I
Target Fish Species					
Fishing mortality	I	I	I	I	1
Spatial temporal concentration of catch	1	1	1	I	1
Change in prey availability	I	1	I	I	I
Habitat suitability: change in suitability of spawning, nursery, or settlement habitat, etc.	1	1	1	1	1
Prohibited Spec ies Management					
Condition of prohibited species stocks	1	1	1	1	1
Harvest levels in directed fisheries targeting prohibited species	I	I	1	1	1
Bycatch levels of prohibited species in directed groundfish fisheries	1	1	1	1	S+
Nor thern Fulmar					
Incidental take-BSAI	U	U	U	U	U(S+)
Incidental take-GOA	1	1	1	I	1
Prey availability	1	1	1	1	I
Benthic habitat	1	1	1	1	1
Proc. waste \& offal	U	U	U	U	U(S-)
Short-tailed Albatross					
Incidental take	U	U	U	U	U(S+)
Prey Availability	1	1	1	1	1
Benthic Habitat	I	1	I	1	I

Coding: I = Insignificant, S = Significant, + = beneficial, - = adverse, U = Unknown					
Issue	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Proc. Waste \& Offal	I	I	I	I	I

Other Albatr osses \& Shear water s

Incidental Take	U	U	U	U	U(S+)
Prey Availability	I	1	I	I	I
Benthic Habitat	I	1	I	I	I
Proc. Waste \& Offal	1	1	I	I	1

Piscivorous Seabirds (Also Breeding in Alaska)

Incidental Take	I	I	I	I	I
Prey Availability	U	U	U	U	U
Benthic Habitat	I	I	I	I	।
Proc. Waste \& Offal	I	I	I	I	I

Eiders (Spec tac led and Stellers)

Incidental Take	I	I	I	I	I
Prey Availability	U	U	U	U	U
Benthic Habitat	U	U	U	U	U
Proc. Waste \& Offal	I	I	I	I	I

Other Seabird Species

Incidental Take	।	।	।	।	।
Prey Availability	।	।	।	।	।
Benthic Habitat	।	।	।	।	।
Proc. Waste \& Offal	।	।	।	।	।

Mar ine Benthic Habitat

Removal and damage to HAPC biota	।	।	।	।	।
Modification of nonliving substrates,	।	।	।	।	।
Changes to species mix	।	।	।	।	।

Ecosystem Consider ations

Predator-Prey Relationships					
Energy Flow and Balance					
Diversity					

State water s seasons

Pollock PWS	।	।	।	।	।
Pacific cod GOA	।	।	$\mathrm{S}-$	।	$\mathrm{S}-$
Sablefish PWS and SEI	I		I	I	I

Coding: I = Insignificant, S = Significant, + = beneficial, - = adverse, U = Unknown					
Issue	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
Parallel seasons BSAI and GOA	1	1	1	1	S-
Economic Indic ators					
Existence Values	U	U	U	U	U
Non-market Subsistence Use	U	U	U	U	U
Non-consumptive Use	U	U	U	U	U
Fish Prices	S-	U	U	U	S-
Operating Cost Impacts	S-	U	U	U	S+
Gross Revenues	S+	U	S-	1	S-
Net Retums to Industry	S+	U	S-	I	S-
Safety Impacts	U	U	U	U	S+
Impacts on Related Fisheries	U	U	U	U	S-
Costs to Consumers	U	U	U	U	S-
Management and Enforcement	U	U	U	U	S+
Ex cess Capacity	U	U	U	U	S-
Prohibited Species Catch	U		U	U	S+

Table 6.0-2 ESA listed and candidate species that range into the BSAI or GOA groundfish management areas and whether Reinitiation of Section 7 Consultation is occurring for these 2003 TAC specifications.

Common Name	Scientific Name	ESA Status	Whether Reinitiation of ESA Consultation is occuring
Blue Whale	Balaenoptera musculus	Endangered	No
Bowhead Whale	Balaena mysticetus	Endangered	No
Fin Whale	Balaenoptera physalus	Endangered	No
Humpback Whale	Megaptera novaeangliae	Endangered	No
Right Whale	Balaena glacialis	Endangered	No
Sei Whale	Balaenoptera borealis	Endangered	No
Sperm Whale	Physeter macrocephalus	Endangered	No
Steller Sea Lion (WestemPopulation)	Eumetopias jubatus	Endangered	Under way Aug 2002
Steller Sea Lion (Eastem Population)	Eumetopias jubatus	Threatened	Under way Aug 2002
Chinook Salmon (Puget Sound)	Oncorhynchus tshawytscha	Threatened	No
Chinook Salmon (Lower Columbia R.)	Oncorhynchus tshawytscha	Threatened	No
Chinook Salmon (Upper Columbia R. Spring)	Oncorhynchus tshawytscha	Endangered	No
Chinook Salmon (Upper Willamette .)	Oncorhynchus tshawytscha	Threatened	No
Chinook Salmon (Snake River Spring/Summer)	Oncorhynchus tshawytscha	Threatened	No
Chinook Salmon (Snake River Fall)	Oncorhynchus tshawytscha	Threatened	No

Common Name	Scientific Name	ESA Status	Whether Reinitiation of ESA Consultation is occuring
Sockeye Salmon (Snake River)	Oncorhynchus nerka	Endangered	No
Steelhead (Upper Columbia River)	Onchorynchus mykiss	Endangered	No
Steelhead (Middle Columbia River)	Onchorynchus mykiss	Threatened	No
Steelhead (Lower Columbia River)	Onchorynchus mykiss	Threatened	No
Steelhead (Upper Willamette River)	Onchorynchus mykiss	Threatened	No
Steelhead (Snake River Basin)	Onchorynchus mykiss	Threatened	No
Steller's Eider ${ }^{1}$	Polysticta stelleri	Threatened	Ongoing
Short-tailed Albatross ${ }^{1}$	Phoebaotria albatrus	Endangered	Ongoing
Spectacled Eider ${ }^{1}$	Somateria fishcheri	Threatened	Ongoing
Northem Sea Otter ${ }^{1}$	Fnhydralutris	Candidate	No

${ }^{1}$ The Steller's eider, short-tailed albatross, spectacled eider, and Northern seaotter are species underthe jurisdiction oftheU.S. Fish and Wildlife Service. Forthe bird species, critical habitat has been proposed only forthe Steller's eider (65 FR 13262). The northern sea otter has been proposed by USFWS as a candidate species (November 9, 2000; 65 FR 67343).

7.0 Initial Regulatory Flexibility Analysis

7.1 Introduction

This Initial Regulatory Flexibility Analysis (IRFA) evaluates the adverse impacts on small entities of the proposed harvest level specifications the groundfish fisheries in the Bering Sea and Aleutian Islands and the Gulf of Alaska in 2003. This IRFA meets the statutory requirements of the Regulatory Flexibility Act (RFA) of 1980, as amended by the Small Business Regulatory Enforcement Fairness Act (SBREFA) of 1996 (5 U.S.C. 601-612).

7.2 The purpose of an IRFA

The Regulatory Flexibility Act (RFA), first enacted in 1980, was designed to place the burden on the government to review all regulations to ensure that, while accomplishing their intended purposes, they do not unduly inhibit the ability of small entities to compete. The RFA recognizes that the size of a business, unit of government, or nonprofit organization frequently has a bearing on its ability to comply with a Federal regulation. Major goals of the RFA are: (1) to increase agency awareness and understanding of the impact of their regulations on small business, (2) to require that agencies communicate and explain their findings to the public, and (3) to encourage agencies to use flexibility and to provide regulatory relief to small entities. The RFA emphasizes predicting impacts on small entities as a group distinct from other entities and on the consideration of alternatives that may minimize the impacts while still achieving the stated objective of the action.

On March 29, 1996, President Clinton signed the Small Business Regulatory Enforcement Fairness Act. Among other things, the new law amended the RFA to allow judicial review of an agency's compliance with the RFA. The 1996 amendments also updated the requirements for a final regulatory flexibility analysis, including a description of the steps an agency must take to minimize the significant economic impact on small entities. Finally, the 1996 amendments expanded the authority of the Chief Counsel for Advocacy of the Small Business Administration (SBA) to file amicus briefs in court proceedings involving an agency's violation of the RFA.

In determining the scope, or 'universe', of the entities to be considered in an IRFA, NMFS generally includes only those entities that can reasonably be expected to be directly regulated by the proposed action. If the effects of the rule fall primarily on a distinct segment, or portion thereof, of the industry (e.g., user group, gear type, geographic area), that segment would be considered the universe for the purpose of this analysis. NMFS interprets the intent of the RFA to address negative economic impacts, not beneficial impacts, and thus such a focus exists in analyses that are designed to address RFA compliance.

Data on cost structure, affiliation, and operational procedures and strategies in the fishing sectors subject to the proposed regulatory action are insufficient, at present, to permit preparation of a "factual basis" upon which to certify that the preferred alternative does not have the potential to result in "significant
adverse impacts on a substantial number of small entities" (as those terms are defined under RFA).
Because, based on all available information, it is not possible to 'certify' this outcome, should the proposed action be adopted, a formal IRFA has been prepared and is included in this package for Secretarial review.

7.3 What is required in an IRFA?

Under 5 U.S.C., Section 603(b) of the RFA, each IRFA is required to contain:

- A description of the reasons why action by the agency is being considered;
- A succinct statement of the objectives of, and the legal basis for, the proposed rule;
- A description of and, where feasible, an estimate of the number of small entities to which the proposed rule will apply (including a profile of the industry divided into industry segments, if appropriate);
- A description of the projected reporting, record keeping and other compliance requirements of the proposed rule, including an estimate of the classes of small entities that will be subject to the requirement and the type of professional skills necessary for preparation of the report or record;
- An identification, to the extent practicable, of all relevant Federal rules that may duplicate, overlap or conflict with the proposed rule;
- A description of any significant alternatives to the proposed rule that accomplish the stated objectives of the proposed action, consistent with applicable statutes, and that would minimize any significant economic impact of the proposed rule on small entities. Consistent with the stated objectives of applicable statutes, the analysis shall discuss significant alternatives, such as:

1. The establishment of differing compliance or reporting requirements or timetables that take into account the resources available to small entities;
2. The clarification, consolidation, or simplification of compliance and reporting requirements under the rule for such small entities;
3. The use of performance rather than design standards;
4. An exemption from coverage of the rule, or any part thereof, for such small entities.

7.4 What is a small entity?

The RFA recognizes and defines three kinds of small entities: (1) small businesses, (2) small non-profit organizations, and (3) and small government jurisdictions.

Small businesses. Section 601(3) of the RFA defines a 'small business' as having the same meaning as 'small business concern' which is defined under Section 3 of the Small Business Act. 'Small business' or 'small
business concern' includes any firm that is independently owned and operated and not dominant in its field of operation. The SBA has further defined a "small business concern" as one "organized for profit, with a place of business located in the United States, and which operates primarily within the United States or which makes a significant contribution to the U.S. economy through payment of taxes or use of American products, materials or labor...A small business concern may be in the legal form of an individual proprietorship, partnership, limited liability company, corporation, joint venture, association, trust or cooperative, except that where the firm is a joint venture there can be no more than 49 percent participation by foreign business entities in the joint venture."

The SBA has established size criteria for all major industry sectors in the United States, including fish harvesting and fish processing businesses. A business involved in fish harvesting is a small business if it is independently owned and operated and not dominant in its field of operation (including its affiliates) and if it has combined annual receipts not in excess of $\$ 3.5$ million for all its affiliated operations worldwide. A seafood processor is a small business if it is independently owned and operated, not dominant in its field of operation, and employs 500 or fewer persons on a full-time, part-time, temporary, or other basis, at all its affiliated operations worldwide. A business involved in both the harvesting and processing of seafood products is a small business if it meets the $\$ 3.5$ million criterion for fish harvesting operations. Finally a wholesale business servicing the fishing industry is a small businesses if it employs 100 or fewer persons on a full-time, part-time, temporary, or other basis, at all its affiliated operations worldwide.

The SBA has established "principles of affiliation" to determine whether a business concern is "independently owned and operated." In general, business concerns are affiliates of each other when one concern controls or has the power to control the other, or a third party controls or has the power to control both. The SBA considers factors such as ownership, management, previous relationships with or ties to another concern, and contractual relationships, in determining whether affiliation exists. Individuals or firms that have identical or substantially identical business or economic interests, such as family members, persons with common investments, or firms that are economically dependent through contractual or other relationships, are treated as one party with such interests aggregated when measuring the size of the concern in question. The SBA counts the receipts or employees of the concern whose size is at issue and those of all its domestic and foreign affiliates, regardless of whether the affiliates are organized for profit, in determining the concern's size. However, business concerns owned and controlled by Indian Tribes, Alaska Regional or Village Corporations organized pursuant to the Alaska Native Claims Settlement Act (43 U.S.C. 1601), Native Hawaiian Organizations, or Community Development Corporations authorized by 42 U.S.C. 9805 are not considered affiliates of such entities, or with other concerns owned by these entities solely because of their common ownership.

Affiliation may be based on stock ownership when (1) A person is an affiliate of a concern if the person owns or controls, or has the power to control 50 percent or more of its voting stock, or a block of stock which affords control because it is large compared to other outstanding blocks of stock, or (2) If two or more persons each owns, controls or has the power to control less than 50 percent of the voting stock of a concern, with minority holdings that are equal or approximately equal in size, but the aggregate of these minority holdings is large as compared with any other stock holding, each such person is presumed to be an affiliate of the concern.

Affiliation may be based on common management or joint venture arrangements. Affiliation arises where one or more officers, directors or general partners controls the board of directors and/or the management of another concern. Parties to a joint venture also may be affiliates. A contractor and subcontractor are treated as joint venturers if the ostensible subcontractor will perform primary and vital requirements of a contract or if the prime contractor is unusually reliant upon the ostensible subcontractor. All requirements of the contract
are considered in reviewing such relationship, including contract management, technical responsibilities, and the percentage of subcontracted work.

Small organizations The RFA defines "small organizations" as any not-for-profit enterprise that is independently owned and operated and is not dominant in its field.

Small governmental jurisdictions The RFA defines small governmental jurisdictions as governments of cities, counties, towns, townships, villages, school districts, or special districts with populations of less than 50,000 .

7.5 What is this action?

Detailed descriptions of each alternative analyzed in this EA/IRFA can be found in Section 2.0. The proposed action is adoption of specifications based on the ABCs recommended by the BSAI and GOA plan teams during their September 2002 meetings. The details of these specifications may be found in Tables 2.0-1 and 2.0-2 of this EA/IRFA.

7.6 Reason for considering the proposed action

The reasons for the proposed action are discussed in detail in Sections 1.0 of this EA/IRFA.
TAC specifications define upper retained harvest limits, or fishery removals, for the subject fishing y ear. Catch specifications are made for each managed species or species group, and in some cases, by species and sub-area. Sub-allocations of TAC are made for biological and socio-economic reasons according to percentage formulas established through fishery management plan (FMP) amendments. For particular target fisheries, TAC specifications are further allocated within management areas (Eastern, Central, Western Aleutian Islands; Bering Sea; Western, Central, and Eastern Gulf of Alaska) among management programs (open access or community development quota program), processing comp onents (inshore or offshore), specific gear types (trawl, non-trawl, hook-and-line, pot, jig), and seasons according to regulations § 679.20, § 679.23, and § 679.31. TAC can be sub-allocated to the various gear groups, management areas, and seasons according to pre-determined regulatory actions and for regulatory announcements by NMFS management authorities opening and closing the fisheries accordingly. The entire TAC amount is available to the domestic fishery. The gear authorized in the Federally managed groundfish fisheries off Alaska includes trawl, hook-and-line, longline pot, pot, and jig (50 CFR 679.2).

Fishing areas correspond to the defined regulatory areas within the fishery management units. The BSAI is divided into nineteen reporting areas, some of which are combined for TAC specifications purposes. The Aleutian Islands group comprises regulatory Areas 541, 542, and 543. When the Aleutian Islands are referred to individually, 541 represents the Eastern Aleutian Islands, 542 the Central Aleutian Islands, and 543 the Western Aleutian Islands. The GOA is divided into eight reporting areas. The Western Gulf is Area 610, the Central Gulf includes Areas 620 and 630, and the Eastern Gulf includes Areas 640 and 650. State waters in Prince William Sound is Area 649. State waters in southeast Alaska is Area 659.

The fishing y ear coincides with the calendar year, January 1 to December 31 (§ 679.2 and 679.23). Depending on the target species' spatial allocation, additional specifications are made to particular
seasons (defined portions of the year or combinations of defined portions of the year) within the fishing y ear. Any TACs not harvested during the y ear specified are not rolled over from that fishing y ear to the next. Fisheries are opened and closed by regulatory announcement. Closures are made when inseason information indicates the apportioned TAC or available prohibited species catch (PSC) limit has been or will soon be reached, or at the end of the specified season, if the particular TAC has not been taken.

TAC specifications for the federal groundfish fisheries are set annually. The process includes review by the North Pacific Fishery Management Council (Council), its Advisory Panel, and its Scientific and Statistical Committee of the SAFE rep orts (Appendices A, B, C, and D). Using the information from the SAFE Reports and the advice from Council committees, the Council makes both ABC and TAC recommendations toward the next y ear's TAC specifications. NMFS packages therecommendations into specification documents and forwards them to the Secretary ofCommerce for approval.

7.7 Objectives of, and legal basis for, the proposed action

The objectives of the proposed action (publication of specifications) are to (1) allow commercial fishing for the groundfish stocks in the BSAI and GOA, while (2) while protecting the long run health of the fish stocks and the social and ecological values that those fish stocks provide.

Under the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) of 1996, the United States has exclusive fishery management authority over all living marine resources, except for marine mammals and birds, found within the exclusive economic zone (EEZ) between 3 and 200 nautical miles from the baseline used to measure the territorial sea. The management of these marine resources is vested in the Secretary of Commerce (Secretary) and in Regional Fishery Management Councils. In the Alaska region, the North Pacific Fishery Management Council (Council) has the responsibility to prepare fishery management plans (FMPs) for the marine resources it finds require conservation and management. The National Marine Fisheries Service (NMFS) is charged with carrying out the federal mandates of the Department of Commerce with regard to marine fish. The Alaska Regional Office of NMFS and Alaska Fisheries Science Center (AFSC, NMFS' research branch), research, draff, and support the management actions recommended by the Council.

The Magnuson-Stevens Act established that the FMPs must specify the optimum yield from each fishery to provide the greatest benefit to the Nation, and must state how much of that optimum yield may be harvested in U.S. waters. The FMPs must also specify the level of fishing that would constitute overfishing. Using the framework of the FMPs and current information about the marine ecosystem (stock status, natural mortality rates, and oceanographic conditions), the Council annually recommends to the Secretary total allowable catch (TAC) specifications and prohibited species catch (PSC) limits and/or fishery bycatch allowances based on biological and economic information provided by NMFS. The information includes determinations of acceptable biological catch (ABC) and overfishing level (OFL) amounts for each of the FMP established target species or species groups.

7.8 Number and description of small entities affected by the proposed action

What are the regulated entities?

This action will change the process by which the annual ABC , OFL , and TAC levels will be determined. The entities regulated by this action are those entities that harvest fish in the BSAI and GOA. These entities include the groundfish catcher vessels and catcher/processor vessels active in these areas. It also includes organizations to whom direct allocations of groundfish are made. In the BSAI, this includes the CDQ groups and the AFA fishing cooperatives.

Number of small regulated entities

Table 7.8-1 shows the estimated numbers of small and large entities in the BSAI and GOA groundfish fisheries. The reasoning behind these estimates is summarized in the paragraphs which follow the table.

Table 7.8-1 Estimated numbers of small entities in the BSAI and GOA groundfish fisheries

Fleet segment	Number small entities	Number large entities	Total number of entities
Catcher vessels	1,353	$13(70$ vessels $)$	1,366
Catcher processors	33	$46(57$ vessels $)$	79
Motherships	0	3	3
Shoreside processors	36	$13(32$ plants $)$	49
CDQ groups	6	0	6

Notes: In some cases, the number ofentities is smaller than the number of vessels or shoreplants - indicating that at least some entities have multiple vessels or plants. The estimated numbers of vessels and plants have been placed in parenthes $\$ s$. Catcher vessel and catcher/processor estimates prepared from fishtickets, weekly processor reports, product price files, and intent-to-operate listing. The methodology used probably overstates the numbers ofsmall entities. Shoreside processors prepared by comparing a list of processors producing groundfish in 2000 with data on monthly employment by processing firmin 2000 obtained from Alaska Department ofLabor. All CDQ groups are non-profits and are therefore treated as small.

Fishing vessels, both catcher vessels and catcher/processors, are small if they gross less than $\$ 3.5$ million in a year. Table 7.8-2 provides estimates of the numbers of catcher vessels and catcher/processors with less than $\$ 3.5$ million in gross revenues from groundfish fishing in the BSAI and GOA. ${ }^{16}$ Estimates of the numbers of vessels are provided by year and gear type from 1996 to $2000 .{ }^{17}$ Estimates are also broken out for the

[^9]GOA, the BSAI, and for all of Alaska. Table $7.8-3$, provides similar information for catcher vessels and catcher/processors grossing more than $\$ 3.5$ million.

Table 7.8-2 indicates that, in 2000, there were 1,264 small catcher vessels in the GOA and 301 in the BSAI. There were 1,422 small vessels in total. These numbers suggest that 143 vessels must have operated in both the BSAI and the GOA. Table 7.8-2 implies that each of the small catcher vessels is treated as a separate small entity. This may overstate the number of separate entities since there is probably not a strict one-to-one correspondence between vessels and entities; some persons or firms may ${ }^{18} \mathrm{own}$ more than one vessel.

It is possible to draw on analysis done recently for the American Fisheries Act amendments (61/61/13/8) to add somewhat more precision to the estimates of small catcher vessel entities in the BSAI (NMFS 2002a). The FRFA prepared for those amendments provides the most detailed current picture of the affiliations and sizes of the catcher vessel entities active in the BSAI pollock fisheries. This FRFA reports that 112 catcher vessels were active in the pollock fisheries covered by the American Fisheries Act. 100 of these delivered to inshore processing plants, 7 delivered to catcher/processors offshore, and 5 delivered only to motherships (a total of 20 delivered to motherships, but 15 of these also delivered to onshore processors and these 15 are included here with the onshore processing group). While Table $7.8-2$ suggests that all but one of these had gross revenues under $\$ 3.5$ million, the FRFA indicates that 69 of them had affiliations with large entities and should be considered large under the SBA criteria. (NMFS 2002a, pages 4-176 to 4-181) Adjusting the numbers of small entities in light of these considerations, the number for the BSAI drops from 301 to 232 and the total for the BSAI and GOA drops from 1,422 to 1,353 . The change in the GOA alone can't be determined.

The number of large catcher vessel entities from Table $7.8-1$ is 1 . In addition, the 69 pollock catcher vessels determined to be large based on their affiliations in the AFA FRFA were associated with an estimated 12 entities. ${ }^{19}$ (NMFS 2002a, pages 4-176 to 4-181). Thus the total number of large catcher vessel entities is estimated to be 13 .

Table 7.8-2 indicates that, in 2000, there were 16 small catcher/processors in the GOA and 31 in the BSAI. There were 33 small catcher/processors in total. These numbers suggest that 14 catcher/processors must have operated in both the BSAI and the GOA. Table 7.8-2 implies that each of the small catcher/processors is treated is a separate small entity. This may overstate the number of separate entities since there is probably not a strict one-to-one correspondence between vessels and entities; some persons or firms may ${ }^{20}$ own more than one vessel. The AFA FRFA used above for the catcher vessel analysis indicates that in 2000, 20 large catcher/processors owned by 9 companies were authorized to fish for pollock in the BSAI under the AFA.

[^10](NMFS 2002a, pages 4-176 to 4-181) For the purposes of this IRFA, there were an estimated 33 small catcher/processor entities, and 46^{21} large entities, for a total of 79 total catcher/processor entities. These may be underestimates of the numbers of large entities, and overestimates of the numbers of small entities, for the reasons discussed above in the catcher vessel paragraph.

The estimates of large and small shoreside processors in Table 7.8-1 were made by comparing a list of processors with gross revenues generated from groundfish products in 2000 with a data from the Alaska Department of Labor on numbers of employees per month for each processing facility. The employees data counted each employee, treating part-time and full-time employees alike. If a plant employed more than 500 persons in any month it was considered to be a large plant. Multiple plants that could be connected to a single processing firm were treated as a single entity in the counts. This procedure may overstate the number of small entities somewhat, since there are many interconnections between processing facilities in Alaska, and they are not well known.

The three motherships are believed to be large entities. The six Community Development Quota (CDQ) groups are treated as small entities because they are non-profit entities supporting the community development objectives of 65 Western Alaska communities.

[^11]Table 7.8-2 Number of vessels that caught or caught and processed less than $\$ 3.5$ million ex-vessel value or product value of groundfish by area, catcher type and gear, 1996-2000.

	Gulf of Alaska			Bering Sea and Aleutian			All Alaska		
	Catcher Vessels	Catcher process	Total	Catcher Vessels	Catcher process	Total	Catcher Vessels	Catcher process	Total
1996									
All gear	1190	30	1220	311	52	363	1317	55	1372
H \& L	984	23	1007	114	35	149	1015	38	1053
Pot	146	1	147	88	15	103	203	15	218
Trawl	152	7	159	116	8	124	203	9	212
Oth. \& unk.	4	1	5	0	0	0	4	1	5
1997									
All gear	1186	29	1215	264	51	315	1265	52	1317
H \& L	949	19	968	94	35	129	961	36	997
Pot	145	1	146	74	9	83	191	9	200
Trawl	166	9	175	100	10	110	194	10	204
Oth. \& unk.	24	0	24	0	0	0	24	0	24
1998									
All gear	1111	18	1129	226	40	266	1187	40	1227
H \& L	865	14	879	72	29	101	883	29	912
Pot	170	0	170	71	7	78	215	7	222
Trawl	164	4	168	102	6	108	197	6	203
Oth. \& unk.	35	0	35	0	0	0	35	0	35
1999									
All gear	1164	29	1193	274	31	305	1272	34	1306
H \& L	905	16	921	75	18	93	929	21	950
Pot	204	10	214	89	12	101	258	12	270
Trawl	154	3	157	116	4	120	194	4	198
Oth. \& unk.	21	1	22	0	0	0	21	1	22
2000									
All gear	1264	16	1280	301	31	332	1422	33	1455
H \& L	1011	8	1019	105	18	123	1050	19	1069
Pot	252	4	256	91	11	102	304	12	316
Trawl	127	4	131	113	6	119	205	7	212
Oth. \& unk.	21	0	21	0	1	1	21	1	22

Note: Includes only vessels that fished part of Federal TACs.
Source: Fishtickets, weekly processor reports, product price files, NMSF permits. National Marine Fisheries Service, P.O. Box 15700, Seattle, WA 98115-0070.

Table 7.8-3 Number of vessels that caught or caught and processed more than $\$ 3.5$ million ex-vessel value or product value of groundfishby area, catcher type and gear, 1996-2000.

	Gulf of Alaska			Bering Sea and Aleutian			All Alaska		
	Catcher Vessels	Catcher process	Total	Catcher Vessels	Catcher process	Total	Catcher Vessels	Catcher process	Total
1996									
All gear	1	33	34	2	62	64	2	62	64
H \& L	0	4	4	0	9	9	0	9	9
Trawl	1	29	30	2	53	55	2	53	55
1997									
All gear	1	21	22	1	56	57	1	56	57
H \& L	0	4	4	0	8	8	0	8	8
Pot	0	0	0	0	1	1	0	1	1
Trawl	1	17	18	1	48	49	1	48	49
1998									
All gear	0	25	25	0	59	59	0	59	59
H \& L	0	5	5	0	14	14	0	14	14
Trawl	0	20	20	0	44	44	0	44	44
Oth. \& unk.	0	0	0	0	2	2	0	2	2
1999									
All gear	0	28	28	0	57	57	0	57	57
H \& L	0	13	13	0	21	21	0	21	21
Pot	0	1	1	0	3	3	0	3	3
Trawl	0	14	14	0	36	36	0	36	36
Oth. \& unk.	0	0	0	0	1	1	0	1	1
2000									
All gear	0	26	26	1	57	58	1	57	58
H \& L	0	12	12	0	25	25	0	25	25
Pot	0	0	0	0	1	1	0	1	1
Trawl	0	14	14	1	33	34	1	33	34

Note: Includes only vessels that fished part of Federal TACs.
Source: Fishtickets, weekly processor reports, NMFS permits, annual processor survey. National Marine Fisheries Service, P.O. Box 15700, Seattle, WA 98115-0070.

Description of small regulated entities

Section 4.10-1 of this EA/IRFA provides a description of the fishery participants. The section also lists other reports with detailed descriptions of the fishery. This section focuses on comparing the average revenues of small entities, absolutely, and in comparison with the revenues of large entities.

Tables 6.8-4 and 6.8-5 provide estimates of average gross revenues from groundfish production in the BSAI and GOA for small and for large vessels. ${ }^{22}$ Considering activity in both the BSAI and the GOA, small catcher vessels grossed an average of about $\$ 170,000$ in 2000 . This average conceals variation by fishery management area and gear type. Small hook and line gear vessels (longline and jig) in the BSAI had the smallest average gross revenues at about $\$ 30,000$, while small trawlers in the BSAI had the largest at $\$ 920,000$. The overall average gross revenues for all small vessels active in the GOA were $\$ 100,000$, while the overall average gross revenues for all small vessels active in the BSAI was $\$ 380,000$. Corresponding average gross revenues for large entities for these gear types and areas may be found in Table 7.8-5. It is not possible to use this information to compare the average gross revenues for the small and the large catcher vessel entities.

Catcher/processors carry the equipment and personnel they need to process the fish that they themselves catch. In some cases catcher/processors will also process fish harvested for them by catcher vessels and transferred to them at sea. There are many types of catcher/processors operating in the BSAI and GOA groundfish fisheries. They are distinguished by target species, gear, products, and vessel size. The 33 small catcher/processor vessels had first wholesale gross revenues of about $\$ 46$ million in 2000; average revenues were about $\$ 1.4$ million. The 57 large catcher/processor vessels had first wholesale gross revenues of about $\$ 606$ million in 2000 ; average revenues were about $\$ 10.6$ million. (gross revenue data, Hiatt T., pers. comm 2-28-02.)

There were an estimated 36 small processors. These small processors averaged gross revenues of $\$ 902,000$ from groundfish products; these processors also averaged $\$ 5.2$ million from all fish products. The 13 large processors averaged $\$ 43.5$ million from groundfish products, and $\$ 79.1$ million from all fish products. (Hiatt T., pers. comm. 9-27-01)

Through the Community Development Quota (CDQ) program, the North Pacific Fishery Management Council and NMFS allocate a portion of the BSAI groundfish, prohibited species, halibut and crab TAC limits to 65 eligible Western Alaska communities. These communities work through six non-profit CDQ Groups to use the proceeds from the CDQ allocations to start or support commercial fishery activities that will result in ongoing, regionally based, commercial fishery or related businesses. The CDQ program began in 1992 with the allocation of 7.5 percent of the BSAI pollock TAC. The fixed gear halibut and sablefish CDQ allocations began in 1995, as part of the halibut and sablefish Individual Fishing Quota Program. In 1998, allocations of 7.5 percent of the remaining groundfish TACs, 7.5 percent of the prohibited species catch limits, and 7.5 percent of the crab guidelines harvest levels were added to the CDQ program. At this time, the CDQ share of the pollock TAC was increased to 10 percent. The CDQ groups are reported to have had gross revenues of about $\$ 63.2$ million in 2000 (Alaska Department of Community and Economic Development 2001, page 25); average gross revenues were thus about $\$ 10.5$ million.

[^12]Table 7.8-4 Average revenue of vessels that caught or caught and processed less than $\$ 3.5$ million ex-vessel value or product value of groundfishby area, catcher type and gear, 1996-2000. (\$ millions)

	Gulf of Alaska			Bering Sea and Aleutian			All Alaska		
	Catcher Vessels	Catcher process	Total	Catcher Vessels	Catcher process	Total	Catcher Vessels	Catcher process	Total
1996									
All gear	. 08	. 55	. 10	. 30	1.23	. 43	. 15	1.45	. 20
H \& L	. 06	. 47	. 07	. 02	1.32	. 33	. 06	1.50	. 12
Pot	. 05	-	. 05	. 08	. 49	. 14	. 07	. 49	. 10
Trawl	. 21	. 72	. 23	. 71	1.29	. 75	. 56	1.71	. 61
Oth. \& unk.	. 00	-	. 00	-	-	-	. 00	-	. 00
1997									
All gear	. 09	. 59	. 10	. 38	1.23	. 52	. 17	1.53	. 22
H \& L	. 06	. 56	. 07	. 03	1.44	. 41	. 07	1.69	. 13
Pot	. 06	-	. 06	. 07	. 40	. 11	. 07	. 40	. 09
Trawl	. 23	. 67	. 25	. 93	. 90	. 93	. 67	1.51	. 71
Oth. \& unk.	. 00	-	. 00	-	-	-	. 00	-	. 00
1998									
All gear	. 07	. 62	. 08	. 31	1.34	. 46	. 13	1.61	. 17
H \& L	. 05	. 55	. 05	. 02	1.26	. 37	. 05	1.52	. 09
Pot	. 05	-	. 05	. 05	. 83	. 12	. 06	. 83	. 08
Trawl	. 19	. 85	. 21	. 63	1.86	. 70	. 49	2.43	. 54
Oth. \& unk.	. 00	-	. 00	-	-	-	. 00	-	. 00
1999									
All gear	. 08	. 49	. 09	. 35	. 96	. 41	. 15	1.25	. 18
H \& L	. 05	. 46	. 06	. 02	1.00	. 21	. 05	1.21	. 07
Pot	. 08	. 55	. 10	. 09	. 87	. 18	. 09	1.33	. 15
Trawl	. 23	-	. 23	. 75	. 30	. 74	. 63	. 30	. 63
Oth. \& unk.	. 00	-	. 00	-	-	-	. 00	-	. 00
2000 (10)									
All gear	. 10	. 69	. 10	. 38	1.13	. 45	. 17	1.40	. 19
H \& L	. 07	. 52	. 07	. 03	1.33	. 22	. 07	1.48	. 09
Pot	. 08	. 31	. 08	. 09	. 34	. 12	. 09	. 41	. 10
Trawl	. 27	1.43	. 31	. 92	1.23	. 93	. 67	1.88	. 71
Oth. \& unk.	. 00	-	. 00	-	-	-	. 00	-	. 00

Note: Includes only vessels that fished part of Federal TACs.
categories with fewer than four vessels are not reported.
Source: Fishtickets, weekly processor reports, product price files, NMSF permits. National Marine Fisheries Service, P.O. Box 15700, Seattle, WA 98115-0070.

Table 7.8-5 Average revenue of vessels that caught or caught and processed more than $\$ 3.5$ million ex-vessel value or product value of groundfish by area, catcher type and gear, 1996-2000. (\$ millions)

	Gulf of Alaska		BSAI		All Alaska	
	Catcher process	Total	Catcher process	Total	Catcher process	Total
1996						
All gear	. 97	. 97	9.24	9.24	9.75	9.75
$H \& L$. 81	. 81	3.69	3.69	4.05	4.05
Trawl	. 99	. 99	10.18	10.18	10.72	10.72
1997						
All gear	. 76	. 76	10.09	10.09	10.37	10.37
H \& L	. 60	. 60	3.98	3.98	4.28	4.28
Trawl	. 80	. 80	11.11	11.11	11.39	11.39
1998						
All gear	. 70	. 70	8.30	8.30	8.61	8.61
H \& L	. 33	. 33	4.40	4.40	4.51	4.51
Trawl	. 80	. 80	9.55	9.55	9.91	9.91
1999						
All gear	. 91	. 91	9.56	9.56	9.99	9.99
H \& L	. 56	. 56	4.00	4.00	4.34	4.34
Trawl	1.24	1.24	12.81	12.81	13.29	13.29
2000						
All gear	1.16	1.16	10.11	10.11	10.64	10.64
$H \& L$. 91	. 91	4.27	4.27	4.71	4.71
Trawl	1.38	1.38	14.22	14.22	14.80	14.80

Notes: Includes only vessels that fished part of Federal TACs.

Categories with fewer than four vessels are not reported.

Source: Fishtickets, weekly processor reports, NMFS permits, annual processor survey. National Marine Fisheries Service, P.O. Box 15700, Seattle, WA 98115-0070.

7.9 Impacts on regulated small entities

Impact on cash flow or profitability

The impacts of the preferred alternatives on first wholesale revenues in the BSAI and the GOA are summarized in Tables 4.10.3-1 and 4.10-3-2 in Section 4.10.3 of this EA/IRFA.

Overall first wholesale revenues in the BSAI are very similar to what they were estimated to have been in 2001 and 2002. There do not seem to have been large shifts in the revenues from the different species that might be masked by the overall BSAI totals. On this basis, the proposed specifications are not expected to adversely effect the cash flow or profitability of small entities operating in the BSAI.

Overall first wholesale gross revenues in the GOA can be seen to have dropped from 2001 to 2002, and this drop is projected to continue under the specifications proposed for 2003. An examination of the changes in gross revenues projected by species group indicates that a decline in gross revenues earned from GOA pollock is the key factor behind the decline in overall gross revenues.

Interim first wholesale gross revenue estimates for the BSAI and GOA under the preferred alternative are summarized in Table 4.10.3-3. As noted in the table, the estimation methodology understates the true level of revenues under this alternative. In the absence of the interim specifications no fishing would take place. Thus, the proposed alternative has the smallest impact on small entities of the alternatives examined.

7.10 Recordkeeping and reporting requirements

The IRFA should include "a description of the projected reporting, record keeping and other compliance requirements of the proposed rule, including an estimate of the classes of small entities that will be subject to the requirement and the type of professional skills necessary for preparation of the report or record..."

This regulation does not impose new recordkeeping or reporting requirements on the regulated small entities.

7.11 Federal rules that may duplicate, overlap, or conflict with proposed action

An IRFA should include "An identification, to the extent practicable, of all relevant Federal rules that may duplicate, overlap or conflict with the proposed rule..."

This analysis did not reveal any Federal rules that duplicate, overlap or conflict with the proposed action.

7.12 Description of significant alternatives

An IRFA should include "A description of any significant alternatives to the proposed rule that accomplish the stated objectives of the proposed action, consistent with applicable statutes, and that would minimize any significant economic impact of the proposed rule on small entities."

There are no significant alternatives to the proposed rule that accomplish the stated objectives, are consistent with applicable statutes, and that would minimize the economic impact of the proposed rule on small entities. The adverse impact on small entities in the GOA is caused by the reduction in the ABC (and the implied reduction in TACs) for 2003. This reduction is, in turn, a response by NMFS to the evidence of reduced pollock biomass in the GOA in recent biological surveys. NMFS could not reduce the adverse impact on
small entities from this alternative without failing to meet its objective of protecting the viability of the pollock stock in the GOA

The following extract from the minutes of the September 2002 GOA Plan Team meeting indicate the nature of the problem:
"...The 2002 hydroacoustic survey indicates the lowest adult biomass of pollock in Shelikof Strait since these surveys have been regularly conducted. Preliminary results of this survey indicate that this is the second consecutive year of low abundance of pre-spawning pollock in the Shelikof Strait. An additional survey was conducted on the shelf break near the entrance to Shelikof Strait after indications that the fishing fleet was concentrated in that area. This additional survey showed a high adult biomass concentration near the shelf break (approximately twice the adult biomass in Shelikof Strait). The pollock size concentration in shelf break aggregation was similar to Shelikof Strait adults, but it was noted that the age composition data available for November Plan Team meeting would help to resolve whether these two aggregations represent a single stock. Pollock GSI (an index of spawning readiness) was unusually low in Shelikof Strait, suggesting changes in the timing of spawning. ${ }^{י 23}$

The GOA Plan Team minutes indicate that there was disagreement within the team about the appropriate response to these results. The assessment author recommended a roll over of the previous year's pollock $\mathrm{ABC}(54,000$ metric tons). Another member of the team, noting that there was an 11% probability that spawning biomass could already be below B_{20}, suggested that the ABC be set at zero, and that NMFS then use emergency rules to change the ABC as necessary following new analyses. The minutes note that "The team disagreed with the author's recommendation to roll over last year's $54,000 \mathrm{mt} A B C$ for pollock. The team felt that using this roll over ABC would not be sufficiently responsive to preliminary indications of a decline in stock size.... The team voted $4-3$ to adopt an $A B C$ of $43,390 \mathrm{mt}$ based upon the projected 2003 ABC reduced by the calculated percent ratio described above." This ratio was "...the ratio of the 2002 Shelikof Strait observed biomass to the predicted 2002 Shelikof Strait biomass from last year's assessment model..., ${ }^{24}$

8.0 List of Preparers

Tamra Faris, Regional Planner and NEPA Coordinator, NMFS Alaska Region, P.O. Box 21668, Juneau, Alaska 99802 (Overall analysis and coordination of analysts).

Melanie Brown, Regulatory Specialist, Sustainable Fisheries Division, NMFS Alaska Region, P.O. Box 21668, Juneau, Alaska 99802 (Endangered Species lists).

Mary Furuness, Regulatory Specialist, Sustainable Fisheries Division, NMFS Alaska Region, P.O. Box 21668, Juneau, Alaska 99802 (TAC specifications BSAI).

[^13]Pat Livingston, Biologist, Alaska Fisheries Science Center, 7600 Sand Point Way, N.E., Seattle, Washington 98115 (Ecological indicators and Ecosystems Considerations).

Ben Muse, Economist, Sustainable Fisheries Division, NMFS Alaska Region, P.O. Box 21668, Juneau, Alaska 99802 (Economic analysis).

Tom Pearson, Regulatory Specialist, Sustainable Fisheries Division, NMFS Alaska Region, Kodiak, Alaska (TAC specifications GOA and Prohibited Species analysis).

Andrew Smoker, Regulatory Specialist, Sustainable Fisheries Division, NMF S Alaska Region, P.O. Box 21668, Juneau, Alaska 99802 (Inseason management)

Kathy Kuletz, Wildlife Biologist, USDI Fish and Wildlife Service, 1011 E Tudor Road, Anchorage, Alaska 99503 (Seabird analysis).

Appendix A by Council Groundfish Plan Team and BSAI Stock Assessment authors
Appendix B by Council Groundfish Plan Team and GOA Stock Assessment authors
Appendix C edited by Pat Livingston, Biologist, Alaska Fisheries Science Center, 7600 Sand Point Way, N.E., Seattle, Washington 98115

Appendix D by REFM Division economists, Alaska Fisheries Science Center, 7600 Sand Point Way, N.E., Seattle, Washington 98115

9.0 References

Alaska Department of Commerce and Economic Development. (2001). "Western Alaska Community Development Quota Handbook." Juneau: June, 2001.

Clark W. and A. Parma. (2000). International Pacific Halibut Commission Annual Report 1999. IPHC, P.O. Box 95009, Seattle, Washington 98145.

Hiatt, T., R. Felthoven and J. Terry. (2002) "Stock Assessment and Fishery Evaluation Report for the Groundfish Fisheries of the Gulf of Alaska and Bering Sea/Aleutian Island Area: Economic Status of the Groundfish Fisheries off Alaska, 2001." November 2002. Socioeconomic Assessments Program. Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, NMFS. 7600 Sand Point Way, Seattle, WA 98115.

Kruse, G. H., Funk, F. C., Geiger, H. J., Mabry, K. R., Savikko, H. M., and Siddeek, S. M. (2000). " Overview of State-managed Marine Fisheries in the Central and Western Gulf of Alaska, Aleutian Islands, and the Southeastern Bering Sea, with Reference to Steller Sea Lions.", Alaska Department of Fish and Game, Division of Commercial Fisheries, P.O. Box 25526, Juneau, AK 99802.

Lincoln, J.M., and G. A. Conway. (1999). "Preventing commercial fishing deaths in Alaska." Occup. Environ. Med., 56, pp 691-695.

Lowry, L. F. (1982). "Documentation and assessment of marine mammal-fishery interactions in the Bering Sea." Trans. 47th North American Wildlife and Natural Resource Conference, Portland, Oregon, pp. 300-311.

National Marine Fisheries Service (NMFS). (1992). Endangered Species Act-Section 7 Consultation Biological Opinion: Fishing conducted under the Pacific Coast Groundfish Fishery Management Plan for the California, Oregon, and Washington Groundfish Fishery. August 28, 1992. Northwest Region, 7600 Sand Point Way N. E. BIN C15700, Seattle, WA. 53 pp.

NMFS. (1993). Section 7 Consultation-Biological Opinion: 1992/1993 and 1993/1994 Winter Season, Regulations Under the Fishery Management Plan for Salmon Fisheries off the Coast of Alaska and other activities. May 28, 1993. Northwest Region, 7600 Sand Point Way N. E. BIN C15700, Seattle, WA. 74 pp .

NMFS. (1998). Final Supplemental Environmental Impact Statement: Groundfish Total Allowable Catch Specifications and Prohibited Species Catch Limits Under the Authority of the Fishery Management Plans for the Groundfish Fishery of the Bering Sea and Aleutian Islands Area and Groundfish of the Gulf of Alaska. December 1998. DOC, NOAA, National Marine Fisheries Service, AK Region, P.O. Box 21668, Juneau, AK 99802-1668. p. $692+$ Appendices and Comments.

NMFS. (1999). "Endangered Species Act - Section 7 Reinitiation of Consultation Biological Opinion: Groundfish Fisheries Conducted under the Bering Sea and Aleutian Islands and Gulf of Alaska Fishery Management Plans of the North Pacific Fishery Management Council.", NMFS Northwest Region, 7600 Sand Point Way NE, Seattle, WA 98115. p. 60.

NMFS. (1999a). "Endangered Species Act - Section 7 Consultation-Biological Opinion: Authorization of BSAI and GOA groundfish fisheries based on TAC specifications recommended by the North Pacific Fishery Management Council for 2000 and Authorization of both BSAI and GOA groundfish fisheries based on statutes, regulations, and management measures to implement the American Fisheries Act of 1998. National Marine Fisheries Service, Protected Resources, P.O.Box 21668 Juneau, AK 99802-1668. December 23, 1999. p. 197.

NMFS. (1999b). "Endangered Species Act - Section 7 Consultation-Biological Opinion: Take of listed salmon in the groundfish fisheries conducted under the BSAI and GOA groundfish FMPs. Office of Protected Resources, NMFS. December 22, 1999. p. 60.

NMFS. (2000). Section 7 consultation of the authorization of the Bering Sea and Aleutian Islands groundfish fishery under the BSAI FMP and the authorization of the Gulf of Alaska groundfish fishery under the GOA FMP. Office of Protected Resources, NMFS. November 30, 2000. p. 352.

NMFS. (2001a). Alaska Groundfish Fisheries Draft Programmatic Supplemental Environmental Impact Statement. January 2001. DOC, NOAA, National Marine Fisheries Service, AK Region, P.O. Box 21668, Juneau, AK 99802-1668. pp. Volumes I-VIII approx 3300.

NMFS. (2001b). "EA/RIR for the Extension and Revisions of the Emergency Interim Rule for 2001 Harvest Specifications for the Alaska Groundfish Fisheries and for Steller Sea Lion Protective Fisheries Management Measures." No FONSI. EA transmittal letter dated July 20, 2001, DOC, NOAA, National Marine Fisheries Service, AK Region, P.O. Box 21668, Juneau, AK 99802-1668. p. 306.

NMFS. (2001c). Steller sea lion protection measures supplemental environmental impact statement. November 2001. DOC, NOAA, National Marine Fisheries Service, AK Region, P.O. Box 21668, Juneau, AK 99802-1668.

NMFS. (2001d). Environmental Assessment for the Total Allowable Catch Specifications for the Year 2002 Alaska Groundfish Fisheries. P.O. Box 21668, Juneau, AK 99801. 72pp.

NMFS. (2002a). Environmental Impact Statement for the American Fisheries Act Amendments 61/61/13/8. February 2002. P.O. Box 21668, Juneau, AK 99801.

NMFS. (2002b). Still in planning phases as of September 2002 - Essential Fish Habitat Consultation on the 2002 Steller Sea Lion Protection Measures to be implemented off Alaska under the FMPs for groundfish in the GOA and BSAI. Memorandum from P. Michael Payne to Sue Salveson, October 24, 2001. P.O. Box 21668, Juneau, AK 99801. 4pp.

North Pacific Fishery Management Council. 2001. Stock assessment and fishery evaluation report for the king and Tanner crab fisheries of the Bering Sea and Aleutian Islands regions. NPFMC, 605 W. $4^{\text {th }}$ Ave, \#306, Anchorage, AK 99501.

Sullivan, P. J., R. L. Trumble, and S. A. Adlersen. (1994). Pacific halibut bycatch in the groundfish fisheries: effects on and management implications for the halibut fishery. IPHC Sci. Rpt. No. 78: 28 p .

USFWS. (2001). Endangered Species Act Formal Consultation for the 2001-2004 Total Allowable Catch Specifications for the Gulf of Alaska and Bering Sea/Aleutian Island Groundfish Fisheries. Letter from Ann G. Rappoport to James W. Balsiger. 1011 E. Tudor Road, Suite 219, Anchorage, AK 99503. FWS Log No. WAES-01016.

Witherell D. and G. Harrington. (1996). Evaluation of alternative management measures to reduce the impacts of trawling and dredging on Bering Sea crab stocks. In High latitude crabs: biology, management, and economics, p 41-58. Alaska Sea Grant Coll. Rep. AK-S G-96-02, Univ. Alaska, Fairbanks.

Witherell, D. and C. Pautzke. (1997). A brief history of bycatch management measures for eastern Bering Sea groundfish fisheries. Mar. Fish. Rev. 59(4): 15-22.

[^0]: ${ }^{1}$ As noted below, a large proportion ofpollock is taken by catcher processors and ex-vessel prices are not generated. Ex-vessel prices have been inferred for these operations.

[^1]: ${ }^{2}$ There are non-pollock factory trawlers in the BSAI, about 25 'head and gut', or H\&G factory trawlers, which target species other than pollock. Those vessels are not covered in this description.

[^2]: ${ }^{3}$ Technically, the demands for surimi and roe are described as relatively " inelastic," while the demand for fillets is described as relatively "elastic."

[^3]: ${ }^{4}$ To make accident rates easier to read and to compare across industries, all rates have been standardized in terms of the hypothetical numbers of accidents per 100,000 full time equivalent jobs in the business. The numerator, 116 , is not the number of actual deaths; the denominator, 100,000 , is probably at least five times the total number of full time equivalent jobs each year. In decimal form, this is a rate of 00116 .
 ${ }^{5}$ The NIOSH study does not cover 1999-2001. Results updated through 1999 should be published in the summer of 2001; however, these results are not available at this writing (Lincoln, pers. comm.). The rates are based on an estimate of 17,400 full time employees active in the fisheries. This estimate ofthe employment base was assumed constant over the time period. However, various factors may have affected this base, including reductions in the size of the halibut and sablefish fleets due to the introduction ofindividual quotas. These estimates must therefore be treated as rough guides. The updated results due in the summer of 2001 should include an updated estimate of the number of full time equivalent employees as well.
 ${ }^{6}$ This result is based on an examination of the years from 1991-1998. It does not reflect the losses in the winter of 2001 .

[^4]: ${ }^{7}$ A more detailed discussion ofsafety issues may be found in Section 1.3.3.4 of Appendix C to the SSL SEIS (NMFS 2001c).

[^5]: 8" Passive use" has also been referred to in the literature as "existence value" since it picks up the value people place on the mere existence of resource, whether or not they ever expect to have anything to do with it.

[^6]: ${ }^{9}$ The impact ofgroundfish fisheries on fisheries for species that are prohibited catches in groundfish fisheries is discussed under another heading in this section.

[^7]: ${ }^{10}$ In economic terms, their demand curves would be relatively elastic and the changes in consumer surplus associated with changes in output would be relatively small.
 ${ }^{11}$ JeffPasser. (2001). NOAA Enforcement. "Personal Communication." NMFS Alaska Region, P.O. Box 21668, Juneau, Alaska 99802. November 19, 2001.
 ${ }^{12}$ Although at low levels of TACs (but above a zero level) in-season management costs might increase due to the difficulties in managing numerous small quotas (Tromble, pers. comm.).
 ${ }^{13}$ Galen Tromble. (2001). National Marine Fisheries Service. Alaska Region, Sustainable Fisheries Division, P.O. Box 21668, Juneau, Alaska 99802 " Personal Communication." November 16, 2001.

[^8]: ${ }^{14}$ David Ackley. "Personal Communication" National Marine Fisheries Service. Alaska Region, Sustainable Fisheries Division, P.O. Box 21668 , Juneau, AK 99802. November 14, 2001.
 ${ }^{15}$ Terry Hiatt. "Personal Communication". NMFS 7600 Sand Point Way, Seattle, WA 98115.

[^9]: ${ }^{16}$ The tables tend to overstate the number ofsmall catcher vessels and catcher/processors. One important reason is that the tables only consider revenues fromgroundfish fishing in Alaska. They do not consider revenues that these vessels may have earned from fishing for other species or from fishing in other areas. In addition, the SBA small entity criteria state an entities affiliations should be considered in determining whether or not an entity is small. In many cases vessels are owned by larger firms, or multiple vessels are owned by a single person or firm. These affiliation issues are not reflected in the counts in Tables 6.8-2 and 6.8-3. Catcher/processor affiliations are addressed in the text.
 ${ }^{17}$ The product price information that would permit estimates ofgross revenues for 2001 is not yet (May 2002) available.

[^10]: ${ }^{18}$ This total of 69 catcher vessels affiliated with large entities is made up of 63 vessels delivering inshore, 2 ofthose delivering to catcher/processors, and 4 ofthose delivering to motherships. (NMFS 2002a, pages 4-176 to 4181)
 ${ }^{19}$ This estimate is not provided in the AFA FRFA, but is inferred frominformation contained in it. The 63 large catcher vessels delivering to inshore cooperatives were affiliated with seven large entities. The two delivering to catcher/processors and the four delivering only to motherships were each assumed to be affiliated with a separate entity (except that there were only three motherships so that there could be no more than three large entities in that case). (NMFS 2002a, pages 4-176 to 4-181)
 ${ }^{20}$ This total of 69 catcher vessels affiliated with large entities is made up of63 vessels delivering inshore, 2 ofthose delivering to catcher/processors, and 4 ofthose delivering to motherships. (NMFS 2002a, pages 4-176 to 4181)

[^11]: ${ }^{21} 46$ large entities $=(57$ vessels with gross revenues over $\$ 3.5$ million $)$ minus (20 vessel affiliated with companies) plus (the nine companies with which they were affiliated).

[^12]: ${ }^{22}$ Since these estimates only include information on gross revenues fromgroundfish fishing, these are low estimates of the total gross revenues for these entities.

[^13]: 23" GOA P lan TeamMeeting. September 10, 2002. Minutes." Page 1.
 24"GOA P lan Team Meeting. September 10, 2002. Minutes." Page 2.

