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➡ SCENARIOS WITH SUPERSYMMETRY AND CHARGED 
LEPTON FLAVOR VIOLATION

➡ KAON PHYSICS AND MINIMAL FLAVOR VIOLATION

➡ ADD YOUR OWN EXAMPLES HERE!

SCENARIOS FOR PRECISION PHYSICS WITH 
PROJECT X IN THE “LHC ERA”



➡ A neutrino see-saw implies larger, perhaps order 1, neutrino 
Yukawa couplings up at some high energy scale

➡ If there is also supersymmetry, this implies that the slepton soft 
mass matrix will acquire CLFV entries from the renormalization 
group running down from the high scale

➡ These in turn will induce CLFV decays at low energies via loop 
effects

SCENARIOS WITH SUPERSYMMETRY AND 
CHARGED LEPTON FLAVOR VIOLATION

FIG. 1: The diagrams contributing to µ → e, γ decays

Irrespective of the source, LFV at the weak scale can be parametrised in a model-independent
manner in terms of a mass insertion (MI), ∆l

ij, the flavour violating off-diagonal entry appearing
in the slepton mass matrix2. These MI are further subdivided into LL/LR/RL/RR types, labelled
by the chirality of the corresponding SM fermions3. Depending on the model, one or several of
these types of MI can simultaneously be present at the weak scale. In the presence of any of these
parameters, 1-loop diagrams mediated by gauginos, higgsinos (neutral and 3 charged fermionic
partners of gauge and Higgs bosons) and sleptons lead to lepton flavour violating processes such as
µ → e + γ, µ → 3e, µ → e conversion in nuclei, etc (an example diagram is shown in Fig.1). The
strength of these processes crucially depends on the MI factor δl

ij ≡ ∆l
ij/m

2
l̃
, where m2

l̃
is the average

slepton mass. For |δ| < 1, which is expected to be the case for most models, one can always use the
MI approximation [15, 19] to compute the amplitudes of the relevant processes. Such computations
have been done long ago, considering the neutral gaugino diagrams [6, 7]. It has been realised later
that, in addition to the flavour violating LL/RR MI, considering the Higgsinos/gaugino mixing, as
well as the flavour diagonal left-right mixing in the slepton mass matrix, can significantly enhance
the amplitudes of these processes at large tan β [20]. These computations have since then been
updated by Hisano–Nomura [21] and Masina–Savoy [22], including this mixing as well as the
charged gaugino/higgsino contribution4. Taking the tan β factor into account, the branching ratio
of lj → li, γ for the dominant LL MI is roughly given by:

BR(lj → liγ) ≈
α3 |δl

ij |
2

G2
F m4

SUSY

tan2 β, (1)

where mSUSY represents the typical supersymmetry breaking mass such as the gaugino/slepton
mass. For large |δ| ∼ 1 or for many δ’s present simultaneously, it is instructive to diagonalise the
slepton mass matrix and evaluate the precise amplitudes in the mass-eigenstate basis. A complete
computation in this basis has been presented in [23] for several LFV processes such as lj → li + γ;
lj → 3li; µ → e conversion in nuclei. The processes discussed so far are the ones mediated by
neutralino and chargino sector. However, Higgs bosons (h0,H0, A0) are also sensitive to flavour
violation and mediate processes such as µ → e conversion [25], τ → 3µ [26], τ → µη [27]. The
amplitudes of these processes are sensitive to a higher degree in tan β than the chargino/neutralino

2 In the basis where the charged lepton mass matrix is diagonal.
3 i, j, k denote generation indices throughout the present work.
4 Another important feature is that the interference between various contributions could lead to suppressed am-

plitudes in some regions of the parameter space [21, 22, 23]. This typically occurs for RR type MI as long as
universality in the gaugino masses is maintained at the high scale. Although in a completely generic situation
without any universal boundary conditions, such cancellations can occur for LL type MI also [24].
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➡ If supersymmetry is discovered by CMS and ATLAS, one of the 
most compelling challenges will be to connect this discovery to  
neutrino physics via charged lepton flavor violation

➡ This will (most probably) be our best chance to explore unification 
scale physics in the next decade (i.e. in the pre- “ILC Era”)

SCENARIOS WITH SUPERSYMMETRY AND 
CHARGED LEPTON FLAVOR VIOLATION



➡ One immediate difficulty is that we don’t know the neutrino 
Yukawas matrices at the high scale

➡ One can look at two extremes: where the mixing seen by the 
sleptons is small, CKM-like

➡ Or the mixing is large, PMNS-like

➡ Then one can scan over SUSY models, computing the rates 
for 

SCENARIOS WITH SUPERSYMMETRY AND 
CHARGED LEPTON FLAVOR VIOLATION

µ → e γ

τ → µ γ

µ → e
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FIG. 8: Scaled BR(µ → e γ) vs. M1/2 outside LHC exper-
iments’ reach for low and high tan β. The horizontal line is
the present MEGA bound. The upcoming MEG sensitivity
will test all the points.

C. Probing the PMNS case with Ue3 ≈ 0 at MEG

We have seen that if a Super Flavour factory will be
built, the τ → µ γ process will be highly complementary
to the µ → e γ one as a probe of SUSY–GUT scenar-
ios, with the added bonus of being Ue3 independent. As
a Super Flavour factory is just a proposed experiment,
whereas MEG will sure be operating, it is nevertheless
interesting to ask what is the probing capability of such
an experiment in the PMNS case, if Ue3 happens to be
vanishing small, or even 0.

In the case that Ue3 = 0 equation (10) is no more a
good approximation to the running of the off-diagonal
LL entries, as we have to resort to the 2nd generation
entries:

(δLL)µe = − 3

8π2
Y 2

c Ue2Uµ2 ln
MX

MR2

. (29)

Here the off-diagonal contribution in slepton masses, now
being proportional to the square of the charm Yukawa
Yc are much smaller, in fact even smaller than the CKM
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FIG. 9: Scaled BR(τ → µ γ) vs. M1/2. The plots are obtained
by scanning the LHC accessible SUSY–GUT parameter space
at fixed tanβ. The horizontal lines are the present (B facto-
ries), future (SuperKEKB) and planned (Super Flavour fac-
tory) experimental sensitivities.

contribution by a factor

Y 2
c Uµ2 Ue2 ln(MX/MR2)

Y 2
t Vtd Vts ln(MX/MR3)

∼ O(10−2). (30)

The point is that the estimate (30) misses and important
point. The PMNS case is the case where the R matrix
is the identity; but we should keep in mind at what scale
we should enforce this. Because the angle Ue3 runs with
the energy scale and Ue3 ≈ 0 at the weak scale does
not necessarily mean Ue3 ≈ 0 at high scale. Even for
hierarchical spectra, where the running effects are small,
the induced RG effects in the soft spectrum could be
large, leading to large enough µ → e γ. The running
effect of the neutrino mixing angle can be estimated by
using the neutrino RG [49, 50] equations.

Moreover, as we have seen in section III, in a SUSY–
GUT framework we have also sizable subleading contri-
bution to the amplitude of the µ → e γ process coming
form the (δRR)eµ insertion and from the double inser-
tions (δRR)eτ (δLL)τµ; the interplay between the RG en-
hancement of Ue3 and the amplitudes coming from the

L. Calibbi, A. Faccia, A. Masiero, S. Vempati, hep-ph/0605139

Super B reach is interesting but not comprehensive
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a probe of lepton flavour violating scenarios. In SUSY–
GUT frameworks the main contribution to the amplitude
comes from the penguin diagram that is also responsible
for the FV µ → e γ amplitude. There is thus a strong
correlation between these two processes, the µ → e con-
version being suppressed by a factor ∼ Zα/π with respect
to the flavour violating decay µ → e γ.

The present bounds on µ → e conversion come from
the SINDRUM II experiment at PSI, that gave bounds
on conversion rates in different Nuclei. For instance, the
bound for the conversion in Titanium (4.3 · 10−12) is al-
most as good as the current MEGA bound on µ → e γ
(1.1 · 10−11) in constraining the SUSY–GUT parameter
space, but it will be superseded by the future MEG sensi-
tivity. To achieve a sensitivity to SUSY–GUTs scenarios
that is comparable to the MEG experiment, a µ → e
conversion experiment in Titanium would need a sensi-
tivity of O(10−15). This would require an high intensity
muon source and an experimental apparatus that pro-
vides a very good resolution in the energy of the emitted
electron, to discriminate with high accuracy the µ → e
conversion versus the µ decay in orbit. The J-PARC ex-
periment PRISM/PRIME [17] addresses these issues by
means of an innovative µ source (Phase Rotated Intense
Slow Muons, PRISM), with an intensity of 1011 − 1012

µ/s, and its µ → e conversion in Ti dedicated experi-
ment (PRIME: PRISM µ−e conversion experiment); the
planned sensitivity of the experiment is of 4 · 10−18, with
the possibility of improving it by upgrading the PRISM
machine intensity to 1014 µ/s.

Although the experiment has not yet been approved,
the construction of the PRISM machine has already be-
gun and should be completed in five years [18]. It is thus
timely to ask what will be the power of the post–LHC
PRIME experiment to discriminate between the differ-
ent SUSY–GUT scenarios in the case that the LHC finds
evidence for SUSY. As can be seen from Fig. 12 and
13 the PRIME experiment would be able to really test
our SUSY–GUT ansatz (Table XI): the high tanβ case
would be tested in both the large and small mixing angles
scenarios, even beyond the reach of the LHC. As for the
low tanβ scenario, the PMNS case would be completely
tested and much of the CKM case would be within reach:
masses as high as (m0, mg̃) ! 2800 GeV could be probed.

As the PRIME experiment would be a post–LHC era
experiment its capability of testing and ruling out so
many different SUSY–GUT scenarios is most interest-
ing. It would be an ideal complement to the findings of
the LHC in the case that it gets positive evidence for low
energy supersymmetry.

VI. LFV RATES AT SPS BENCHMARK POINTS

In this section we discuss the possibility of detect-
ing supersymmetry at the SPS benchmark points [55]
by means of LFV experiments. We concentrate on the
SPS points defined for mSUGRA/CMSSM framework.
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FIG. 12: µ → e in Ti as a probe of SUSY–GUT scenarios. The
plots are obtained by scanning the LHC accessible parameter
space. The horizontal lines are the present (SINDRUM II)
bound and the planned (PRISM/PRIME) sensitivity to the
process. We see that PRIME would be able to severely con-
strain the low tan β, low mixing angles case and to completely
test the other scenarios.

These take in to consideration various constraints, in-
cluding relic density requirements, in addition to what
we have considered here. We note that some of these
points will be ruled out in the light of new WMAP data
if one requires a purely Bino dark matter. As of now,
there is no corresponding definition of SPS points within
SUSY–GUTs. In the present work, we consider the input
values of the mSUGRA SPS points in our SO(10) model
and study the impact of flavour violation for that spectra
5 We note that for all the points, the PMNS framework
is ruled out by the present MEGA bound on µ → e γ.
Furthermore, the PRISM/PRIME experiment would be
able to test all the scenarios.

5 In some points, we notice the need for modifying these numbers
within a SUSY–GUT framework. For example, in SPS 3, the
LSP and τ̃1 are no longer degenerate, whereas SPS 4 and SPS

5 are already in conflict with experimental measurements.

L. Calibbi, A. Faccia, A. Masiero, S. Vempati, hep-ph/0605139
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➡ Suppose that you observe CLFV in the MEG experiment, in  a 
Project X experiment, and at a Super Flavor factory

➡ What can we learn about supersymmetry from these 
measurements?

➡ Can we make a direct connection between CLFV and its SUSY 
origins?

CONNECTING CLFV TO SUSY



➡                and                come from independent parts of the 
slepton mass matrix

➡                and                are related in the underlying SUSY model

➡ Thus measuring both probes/constrains the SUSY model

CONNECTING CLFV TO SUSY

µ → e γ

µ → e γ τ → µ γ

µ → e

therefore, it is necessary to observe at least two of these processes and to
look for possible correlations among them.

Because it provides the strongest constraint on µ-e flavor violation, we
will use the decay µ → eγ as the reference process to correlate with. Other
LFV processes that might be related to µ → eγ include τ → µγ, µ → 3e,
and µ-e conversion in nuclei.

The off-shell amplitude for #j → #iγ
∗, that gives a significant contribution

to a wide class of lepton flavor violating processes, may be written as

T = eεα∗ūi(p − q)
[
q2γα(AL

1 PL + AR
1 PR) + mjiσαβqβ(AL

2 PL + AR
2 PR)

]
uj(p)

(3)
where q is the momentum of the photon, e is the electric charge, ε∗ the
photon polarization vector, ui and uj the wave functions of the initial and
final leptons, p is the momentum of the particle #j, and explicit expressions
for the coefficients can be found in [7]. Since each coefficient receives con-
tributions from both chargino-sneutrino and neutralino-slepton loops, the
amplitude depends on several supersymmetric masses. On the other hand,
in the mass insertion approximation is easily seen that all four coefficients
are proportional to the corresponding off-diagonal element and consequently
T ∝ (m2

L)ij.
The branching ratio of the decay µ → eγ is obtained from (3),

BR(µ → eγ) =
48π3α

G2
F

(∣∣AL
2

∣∣2 +
∣∣AR

2

∣∣2) . (4)

It depends only on the A2 coefficients, which fulfill the relation AR
2 $ AL

2 .
τ → µγ is a decay analogous to µ → eγ. They have the same loop

structure but are induced by different off-diagonal elements in the left-handed
slepton mass matrix, (m2

L)21 for µ → eγ and (m2
L)32 for τ → µγ. Since these

two quantities are in principle independent, correlations between τ → µγ
and µ → eγ can not be used to get information about the msugra parameter
space. To this end, we must search for other processes induced by the same
off-diagonal element. That is, other µ-e transitions.

The decay µ → 3e receives contributions from penguin-type diagrams
and from box-type diagrams. It turns out, however, that the amplitude is
dominated by a penguin-type contribution involving the same combination
of AL

2 and AR
2 that enters into µ → eγ. Indeed,

BR(µ → 3e)

BR(µ → eγ)
≈

α

8π

(
16

3
log

mµ

2me
−

14

9

)
= 7 × 10−3 . (5)
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Being constant over the whole parameter space, this ratio cannot be used to
constrain it.

µ-e conversion in nuclei also receives contributions from penguin and box
diagrams, and the γ-penguin diagram dominates over a large portion of the
parameter space. In that region, the rate of µ-e conversion in nuclei is given
by

R(µ → e) =
Γ(µ → e)

Γcapt
(6)

"
4α5Z4

effZ|F (q)|2m5
µ

Γcapt

[
|AL

1 − AR
2 |

2 + |AR
1 − AL

2 |
2
]

(7)

where Z denote the proton number, Zeff is the effective charge of the muon in
the 1s state, F (q2) is the nuclear form factor, and Γcapt is the total capture
rate. Without loss of generality, we will limit our following discussion on
µ-e conversion rates to the nucleus 48

22T i. Then [7, 8], Zeff = 17.6, F (q2 "
−m2

µ) " 0.54, and Γcapt = 2.59 × 106s−1.

Owing to the additional dependence of R(µ T i → e T i) on the AL,R
1

amplitudes, the ratio
BR(µ → eγ)

R(µ T i → e T i)
≡ C (8)

is not expected to be constant. Its value might contain useful information
about supersymmetric parameters. In fact, since both BR(µ → eγ) and
R(µ T i → e T i) are proportional to |(m2

L)21|2, C does not depend on it.
Thus, C is determined exclusively by msugra parameters.

We have thus identified µ-e conversion in a nucleus as a process that in
conjunction with µ → eγ could allow us, through C, to constrain the msugra
parameter space. In the following section, we will investigate numerically
such constraints.

3 Results

Now we proceed to evaluate C, as defined in (8), in msugra models with see-
saw mechanism of neutrino mass generation. The method we follow consists
of scanning randomly the relevant set of soft-breaking terms. For each set
we evaluate C and display the results for different sets as scatter plots. In
such plots, correlations, if they exist, must be evident.
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Figure 1: Scatter plot of C as a function of m0 for µ > 0 and µ < 0.

in the relative sign between AR
2 and AL

1 when µ changes sign. As expected
from these considerations, C(µ < 0) is always larger than C(µ > 0), and the
gap between them is small because one of the two -|AR

2 |- is much larger than
the other.

Since practically any given C is compatible with all possible values of
m0 and M1/2, C cannot constrain them. C does determine the sign of µ,
however. For instance, C ∼ 180 implies µ < 0 whereas C ∼ 150 implies
µ > 0.

More interesting is the correlation of C with tanβ (see figure 3). The
coefficient AL

1 is independent of tan β whereas AR
2 ∝ tanβ. Hence, at low

tanβ the interference between them in R(µ T i → e T i) is stronger, giving
rise to a larger gap. When tan β increases, AR

2 becomes much larger than AL
1

and the gap gets consequently reduced.
Due to the strong dependence of C on tanβ, not all possible values of

tanβ are compatible with a given C. Thus, tanβ can be constrained. For
example, C ≥ 180 would exclude the region tan β ≥ 20.

Thus, we have demonstrated that C correlates nicely with the sign of µ
and with tanβ. If C is measured it becomes possible to determine from it

6
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scan over mSUGRA models
note C is always between ~ 120 and 220
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Figure 3: Scatter plot of C as a function of tanβ for µ > 0 and µ < 0.

4 Conclusion

We have shown that in msugra models the values of BR(µ → eγ) and the
µ-e conversion rate in a nucleus determine the sign of µ and constrain tanβ
practically in a model independent way. In fact, this result holds as long
as the dominant source of lepton flavor violation resides in the left-handed
slepton mass matrix. In particular, it is valid, independently of the value of
the off-diagonal elements, in all models with seesaw induced neutrino masses.
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Figure 10: CR(µ − e, Ti) versus BR(µ → eγ) for 250 GeV ≤ MSUSY ≤ 1000 GeV, and δ1 =

−1.8, −1.7, −1.6, 0 (crosses, triangles, asterisks, dots, respectively). We set δ2 = 0, and take mNi
=

(1010, 1011, 1014) GeV, A0 = 0, tanβ = 50 and R = 1 (θi = 0). From left to right and top to bottom, the

panels are associated with θ13 = 10◦, 5◦, 1◦ and 0.2◦. In each case, the horizontal and vertical dashed (dot-

ted) lines denote the present experimental bounds (future sensitivities) for CR(µ− e, Ti) and BR(µ → eγ),

respectively.

Considering larger values of MSUSY and identical intervals for δ1,2 leads to somewhat

similar results: one finds the same pattern of clusters departing from the constant value of

the universal case, but the maximum value of CR(µ−e, Ti)/BR(µ → eγ) is in general smaller

than the 0.04 obtained in the scan of Fig. 11. The reason why this ratio is not improved at

larger values of MSUSY than 1 TeV is because the acceptable solutions producing the proper

SU(2) × U(1) breaking do not lead to sufficiently light Higgs bosons.

Even without the knowledge of the seesaw parameters, a measurement of CR(µ − e, Ti)

29

 10
-13

 10
-12

 10
-11

 10
-10

 10
-10

 10
-9

 10
-8

 10
-7

C
R

 (
µ

 -
 e

, 
T

i)

BR (µ ! e ")

mN = (10
10

, 10
11

, 10
14

 ) GeV

A0 = 0, tan # = 50

$13 = 10°, $i = 0

250 GeV < MSUSY < 1000 GeV

%1 = -1.8

%1 = -1.7

%1 = -1.6

%1 = 0.   

 10
-13

 10
-12

 10
-11

 10
-10

 10
-11

 10
-10

 10
-9

 10
-8

C
R

 (
µ

 -
 e

, 
T

i)

BR (µ ! e ")

mN = (10
10

, 10
11

, 10
14

 ) GeV

A0 = 0, tan # = 50

$13 = 5°, $i = 0

250 GeV < MSUSY < 1000 GeV

%1 = -1.8

%1 = -1.7

%1 = -1.6

%1 = 0.   

 10
-15

 10
-14

 10
-13

 10
-12

 10
-12

 10
-11

 10
-10

 10
-9

C
R

 (
µ

 -
 e

, 
T

i)

BR (µ ! e ")

mN = (10
10

, 10
11

, 10
14

 ) GeV

A0 = 0, tan # = 50

$13 = 1°, $i = 0

250 GeV < MSUSY < 1000 GeV

%1 = -1.8

%1 = -1.7

%1 = -1.6

%1 = 0.   

 10
-18

 10
-17

 10
-16

 10
-15

 10
-15

 10
-14

 10
-13

 10
-12

C
R

 (
µ

 -
 e

, 
T

i)

BR (µ ! e ")

mN = (10
10

, 10
11

, 10
14

 ) GeV

A0 = 0, tan # = 50

$13 = 0.2°, $i = 0

250 GeV < MSUSY < 1000 GeV

%1 = -1.8

%1 = -1.7

%1 = -1.6

%1 = 0.   

Figure 10: CR(µ − e, Ti) versus BR(µ → eγ) for 250 GeV ≤ MSUSY ≤ 1000 GeV, and δ1 =

−1.8, −1.7, −1.6, 0 (crosses, triangles, asterisks, dots, respectively). We set δ2 = 0, and take mNi
=

(1010, 1011, 1014) GeV, A0 = 0, tanβ = 50 and R = 1 (θi = 0). From left to right and top to bottom, the

panels are associated with θ13 = 10◦, 5◦, 1◦ and 0.2◦. In each case, the horizontal and vertical dashed (dot-

ted) lines denote the present experimental bounds (future sensitivities) for CR(µ− e, Ti) and BR(µ → eγ),

respectively.

Considering larger values of MSUSY and identical intervals for δ1,2 leads to somewhat

similar results: one finds the same pattern of clusters departing from the constant value of

the universal case, but the maximum value of CR(µ−e, Ti)/BR(µ → eγ) is in general smaller

than the 0.04 obtained in the scan of Fig. 11. The reason why this ratio is not improved at

larger values of MSUSY than 1 TeV is because the acceptable solutions producing the proper

SU(2) × U(1) breaking do not lead to sufficiently light Higgs bosons.

Even without the knowledge of the seesaw parameters, a measurement of CR(µ − e, Ti)
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if basic SUSY parameters are already known from 
LHC, can constrain other high scale parameters



point (with δ1 = −1.8 and δ2 = 0). For completeness, the values of the relevant parameters

for these nuclei, Zeff , Fp and Γcapture, have been collected in Table 3 and follow [35]. In

this figure we clearly see that throughout most of the explored MSUSY interval, the relative

conversion rates obey the hierarchy CR(µ − e, Sb) > CR(µ − e, Sr) > CR(µ − e, Ti) >

CR(µ − e, Au) > CR(µ − e, Pb) > CR(µ − e, Al), in agreement with the generic results

in [35]. We do not find a significant difference in the large MSUSY region, where the Higgs-

contribution dominates the ratios. The predicted rates for Ti, Au and Pb tend to converge

whereas the corresponding curve for Al nuclei deviates slightly from the others at large

MSUSY, but we do not consider these differences among the predictions for the various nuclei

to be relevant. The most important conclusion from Fig. 9 concerns the fact that we have

found predictions for Gold nuclei which, for the input parameters in this plot, are clearly

above its present experimental bound throughout the explored MSUSY interval. However, it

should be recalled that the formulae here used for these estimates come from approximations

that may not properly work for the case of very heavy nuclei. These heavy nuclei deserve a

more dedicated and refined study.
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➡ Measuring small deviations from MFV will be of great importance, 
since these can tell us about things like (i) the SUSY breaking 
scale, (ii) flavor symmetries related to unification, (iii) 
compositeness, extra dimensions, etc.

➡ Such measurements will be directly complementary to the central 
physics program of the LHC

➡ Future quark flavor experiments had better focus on modes with 
small theoretical uncertainties, and had better achieve 
experimental precision comparable to those small theory errors

➡ More $ for lattice gauge theory!

IMPLICATIONS OF AN ALMOST-MFV WORLD

(SLIDE FROM MY PREVIOUS TALK)



structure of the corresponding electroweak amplitudes, new-physics effects could

be quite different in direct- and indirect-CP-violating amplitudes (see e.g. [28]).

The former are poorly tested so far, because of the sizable non-perturbative uncer-

tainties which affect non-leptonic process both in B and K decays. This implies

that there is still much room in the new-physics parameter space which can only

be explored by means of KL → π0νν̄.

• One of the most popular (and well motivated) scenarios about the flavor structure

of physics beyond the SM is the so-called Minimal Flavor Violation (MFV) hypoth-

esis [29, 30]. Within this framework (which can be regarded as the most pessimistic

case for new-physics effects in rare decays), flavor- and CP-violating interactions

are induced only by terms proportional to the SM Yukawa couplings. This implies

that deviations from the SM in FCNC amplitudes rarely exceed the O(20%) level,

or the level of irreducible theoretical errors in most of the presently available ob-

servables, although model independently effects of order 50% cannot be excluded

at present [31]. Moreover, theoretically clean quantities such as aCP(B → J/ΨKS)

and ∆MBd
/∆MBs

, which measure only ratios of FCNC amplitudes, turn out to be

insensitive to new-physics effects. Within this framework, the need for additional

clean and precise information on FCNC transitions is therefore even more impor-

tant. A precise measurement of B(KL → π0νν̄) would offer a unique opportunity

in this respect.

3.2 General parameterization and phenomenological consider-

ations

An important consequence of the first item in the above list, is the fact that in most

SM extensions the new physics contributions in K+ → π+νν̄ and KL → π0νν̄ can be

parameterized in a model-independent manner by just two parameters, the magnitude

and the phase of the Wilson coefficient of the operator Qνν
sd in Eq. (2.1).2 More explicitly,

we can encode all the new-physics effects around and above the electroweak scale into

an effective Hamiltonian of the type (λt = V ∗
tsVtd)

Heff (M
2
W ) =

G2
FM2

W

2π2
λt X Qνν

sd + [non-FCNC terms] + h.c. (3.1)

where the short-distance function [33]

X = |X|eiθX (3.2)
2 For a discussion about the scenarios where this parameterization does not hold, see [32].
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➡ Look at the general MFV analysis of Buras et al

➡ Note that their definition of MFV is very strict, thus some effects 
called MFV SUSY by others are not MFV for them

➡ Thus their analysis is the most conservative scenario

KAON PHYSICS AND              
MINIMAL FLAVOR VIOLATION



1 Introduction

Recently, great experimental progress has been made in the study of Flavour Changing Neutral

Current (FCNC) decays, leading not only to an impressive accuracy in the extraction of CKM

parameters from the Unitarity Triangle (UT) analysis [1, 2], but also to stringent constraints

on models with extra sources of flavour and CP violation, although an accidental agreement of

the UT analysis with the Standard Model (SM) cannot yet be excluded [3, 4].

One is then naturally led to consider models with Minimal Flavour Violation (MFV) [5], in

which flavour and CP violation is governed entirely by the CKM matrix [6, 7] and the relevant

operators in effective Hamiltonians for weak decays are the same as in the SM.

As pointed out in [5], there exists a universal unitarity triangle (UUT) valid in all these

models, that can be constructed independently of the parameters specific to a given model.

Moreover, there exist several relations between various branching ratios that allow straightfor-

ward tests of these models. A review has been given in [8].

This formulation of MFV agrees with the one of [9, 10] except for the case of models with

two Higgs doublets at large tan β, where also additional operators, strongly suppressed in the

SM, can contribute significantly and the relations in question are not necessarily satisfied. In

the present paper, MFV will be defined as in [5, 8].

As reviewed in [8], this class of models can be formulated to a very good approximation

in terms of eleven parameters: four parameters of the CKM matrix and seven values of the

universal master functions Fi(v) that parametrize the short distance contributions to rare

decays with v denoting symbolically the parameters of a given MFV model. However, as

argued in [8], the new physics contributions to the functions

S(v), C(v), D′(v), (1.1)

representing respectively ∆F = 2 box diagrams, Z0-penguin diagrams and the magnetic photon

penguin diagrams, are the most relevant ones for phenomenology, with the remaining functions

producing only minor deviations from the SM in low-energy processes. Several explicit calcu-

lations within models with MFV confirm this conjecture. We have checked the impact of these

additional functions on our analysis, and we will comment on it in Section 3.

Now, the existence of a UUT implies that the four CKM parameters can be determined

independently of the values of the functions in (1.1). Moreover, only C(v) and D′(v) enter the

branching ratios for radiative and rare decays so that constraining their values by (at least)

two specific branching ratios allows to obtain straightforwardly the ranges for all branching

ratios within the class of MFV models. Analyses of that type can be found in [8, 9, 11].1

The unique decay to determine the function D′(v) is B → Xsγ, whereas a number of decays

such as K+ → π+νν̄, KL → π0νν̄, Bs,d → µ+µ−, B → Xs,dνν̄ and KL → π0l+l− can be used
1An alternative approach is to extract from rare decays the relevant Wilson coefficients [12, 13, 14]. However,

since in MFV models these coefficients have nontrivial correlations among themselves, we find it more transparent

to express the physical quantities in terms of the functions in eq. (1.1).
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to determine C(v). The decays B → Xs,dl+l− depend on both C(v) and D′(v) and can be

used together with B → Xsγ and K+ → π+νν̄ to determine C(v).

Eventually the decays K+ → π+νν̄ and KL → π0νν̄, being the theoretically cleanest ones

[15, 16], will be used to determine C(v). However, so far only three events of K+ → π+νν̄

have been observed [17, 18, 19] and no event of KL → π0νν̄, with the same comment applying

to Bs,d → µ+µ−, B → Xs,dνν̄ and KL → π0l+l−. On the other hand the branching ratio

for B → Xsγ has been known for some time and the branching ratio for B → Xsl+l− has

been recently measured by Belle [20] and BaBar [21] collaborations. The latter, combined with

K+ → π+νν̄, provide presently the best estimate of the range for C(v) within MFV models.

The main goals of the present paper are

• to calculate various branching ratios as functions of C(v) within MFV models,

• to determine the allowed range for C(v) from presently available data,

• to find the upper bounds for the branching ratios of K+ → π+νν̄, KL → π0νν̄, Bs,d →

µ+µ−, B → Xs,dνν̄ and KL → π0l+l− within MFV models as defined here,

• to assess the impact of future measurements on MFV models.

Our paper is organized as follows. Section 2 can be considered as a guide to the literature,

where the formulae for the branching ratios in question can be found. In this Section we also

give the list of the input parameters. In Section 3 we present our numerical analysis of various

branching ratios as functions of C(v) and their expectation values and upper bounds. A brief

summary of our results is given in Section 4.

2 Basic Formulae

In the MFV models considered here there are no new complex phases and flavour changing

transitions are governed by the CKM matrix. Moreover, the only relevant operators are those

already present in the SM. Consequently, new physics enters only through the Wilson coeffi-

cients of the SM operators that can receive additional contributions due to the exchange of

new virtual particles beyond the SM ones.

Any weak decay amplitude can be then cast in the simple form

A(Decay) =
∑

i

Biη
i
QCDV i

CKMFi(v), Fi(v) = F i
SM + F i

New (real), (2.1)

where Fi(v) are the master functions of MFV models [8]

S(v), X(v), Y (v), Z(v), E(v), D′(v), E′(v) (2.2)

with v denoting collectively the parameters of a given MFV model. Examples of models in this

class are the Two Higgs Doublet Model II and the Minimal Supersymmetric Standard Model

(MSSM) without new sources of flavour violation and for small or moderate tan β. Also models

2

Parameter Value Gaussian (σ)

λ 0.2255 0.0014

|Vcb| 0.0415 0.0007

ρ̄ 0.191 0.046

η̄ 0.353 0.028

FBs 230 MeV 30 MeV

FBd
189 MeV 27 MeV

Br(B → Xclν̄) 0.1045 0.0021

Br(K+ → π0e+ν) 0.0487 0.0006

mpole
t 178.0 GeV 4.3 GeV

mb 4.21 GeV 0.08 GeV

mc 1.3 GeV 0.1 GeV

αs(MZ) 0.119 0.003

Table 2: Values of the relevant parameters used in the analysis.

a first insight, we see that the dependence of Br(B → Xsl+l−) on ∆D is relatively weak, as

can be read off from the small prefactors in the formulae below. From eq. (2.5) one can also

check whether the NP contribution to box diagrams in any given model is large enough as to

modify significantly our results obtained for ∆Bll̄ = ∆Bνν̄ = 0 in the next Section. Finally,

these formulae allow to understand the structure of our numerical results. We have 2:

Br(B → Xsl
+l−, 0.04 < q2(GeV) < 1) = 1.16 · 10−6

(
1 + 0.38 (∆Bll̄)2 + 0.46∆Ceff

7 ∆Bll̄

+0.41∆C∆Bll̄ − 3.47∆Ceff
7 + 0.56∆Bll̄ + 4.31(∆Ceff

7 )2

+0.19 (∆C)2 + 0.38∆C − 0.11∆Ceff
7 ∆D

)
,

Br(B → Xsl
+l−, 1 < q2(GeV) < 6) = 1.61 · 10−6

(
1 + 1.33 (∆Bll̄)2 + 1.26∆Ceff

7 ∆Bll̄

+1.43∆C∆Bll̄ − 0.31∆D∆Bll̄ + 2.08∆Bll̄ + 1.42(∆Ceff
7 )2

+0.67 (∆C)2 + 1.36∆C − 0.29∆Ceff
7 ∆D − 0.18∆D

)
,

Br(B → Xsl
+l−, 14.4 < q2(GeV) < 25) = 3.70 · 10−7

(
1 + 1.18 (∆Bll̄)2 + 0.70∆Ceff

7 ∆Bll̄ + 0.60∆Ceff
7

+1.27∆C∆Bll̄ − 0.27∆D∆Bll̄ + 2.18∆Bll̄ + 0.21(∆Ceff
7 )2

+0.60 (∆C)2 + 1.24∆C − 0.16∆Ceff
7 ∆D − 0.24∆D

)
,

Br(Bd → µ+µ−) = 1.08 · 10−10
(
1 + ∆Bll̄ + ∆C

)2
,

Br(Bs → µ+µ−) = 3.76 · 10−9
(
1 + ∆Bll̄ + ∆C

)2
,

2Notice that we have discarded terms with coefficients smaller than 0.1 in Br(B → Xsl
+l−).
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Br(B → Xdνν̄) = 1.50 · 10−6 (
1 + 0.65 (∆C + ∆Bνν̄)

)2
,

Br(B → Xsνν̄) = 3.67 · 10−5 (
1 + 0.65 (∆C + ∆Bνν̄)

)2
,

Br(K+ → π+νν̄) = 8.30 · 10−11
(
1 + 0.20(∆C + ∆Bνν̄)2 + 0.89(∆C + ∆Bνν̄)

)
,

Br(KL → π0νν̄) = 3.10 · 10−11(1 + 0.65(∆C + ∆Bνν̄))2 ,

Br(KL → µ+µ−) = 8.58 · 10−10(1 + 0.82(∆C + ∆Bll̄))2 . (2.5)

3 Numerical Analysis

Our numerical analysis consists of three steps:

1. Extracting CKM parameters using the UUT analysis;

2. Determining the allowed range for ∆C and ∆Ceff
7 from presently available data;

3. Computing the expectation values of rare decays based on these allowed ranges.

For the first step, we use the very recent results of the UTfit collaboration on the UUT analysis

[4]:

ρ̄ = 0.191 ± 0.046 , η̄ = 0.353 ± 0.028. (3.1)

Since the UUT analysis is independent of loop functions, the above results are in particular

independent of the top quark mass.

In the second step, to minimize the theoretical input, we have traded D′(v) and E′(v) for

Ceff
7 , which is the relevant low-energy quantity entering Br(B → Xsγ) and Br(B → Xsl+l−).

Concerning Br(B → Xsγ), we compare the theoretical value with the experimental results

of CLEO [33], Belle [34] and BaBar [35] in the corresponding kinematic ranges, adding a

conservative 10% flat theoretical error to the theoretical prediction. This error contains both

the uncertainties due to the cutoff in the photon spectrum [36] and the ones related to higher

order effects, which are particularly large since we are omitting here model-specific NLO terms

for the NP contribution. For Br(B → Xsl+l−), we use the experimental data in the q2 regions

0.04 < q2(GeV) < 1, 1 < q2(GeV) < 6 and 14.4 < q2(GeV) < 25 to avoid the theoretical

uncertainty due to the presence of cc̄ resonances.

The second and third steps are carried out using the approach of ref. [40]: taking C(v),

Ceff
7 (µb) and D(v) to have a flat a-priori distribution and using the available experimental

data and theoretical inputs, we determine the a-posteriori probability density function (p.d.f.)

for C(v), Ceff
7 (µb) and all the rare decays listed in Table 3. Concerning D(v), it plays only a

marginal role in these decays and therefore it is not well determined by the analysis. We varied

∆D in the conservative range ±4DSM. Even this rather large variation has little impact on the

extraction of the allowed range for C(v).
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marginal role in these decays and therefore it is not well determined by the analysis. We varied

∆D in the conservative range ±4DSM. Even this rather large variation has little impact on the

extraction of the allowed range for C(v).
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Figure 1: Leading Feynman diagrams relevant to K → πνν̄ decays (a); CKM unitarity

triangle from K → πνν̄ (b).

where λt = V ∗
tsVtd, with Vij being the elements of the CKM matrix and (β, γ) the angles

of the unitarity triangle (see Fig. 1). With the measurements of the branching ratios at

the ±5% level these estimates change to

σ(sin 2β) = ±0.03, σ(Imλt) = ±3%, σ(|Vtd|) = ±4%, σ(γ) = ±6◦ . (2.3)

Further details can be found in [9].

It is worth stressing that the determination of CKM parameters via K → πνν̄ decays

is mainly an efficient way to compare the measured value of these clean FCNC transitions

with other clean tree-level mediated or loop-induced observables. Since the loop-induced

observables are potentially affected by non-standard contributions, this comparison offers

a powerful tool to constrain or identify new-physics effects. For instance, one of the

most interesting studies which could be performed with experimental data on the two

branching ratios, is a test of the so-called “golden relation” [26]:

(sin 2β)ψKS
= (sin 2β)πνν̄ . (2.4)

Here the right-hand side stands for the value of sin 2β determined from the two K → πνν̄

rates (see Fig. 1), while the left-hand side denotes the corresponding value extracted at

B factories from the time-dependent CP asymmetry in B0
d → ψKS. This relation is

not only a very powerful tool to falsify the SM, but also a useful handle to discriminate

among different new-physics scenarios.

A key feature of the KL → π0νν̄ mode is the fact that it proceeds through a pure loop-

induced direct-CP-violating amplitude [18]. Within the SM, its rate gives the cleanest

determination of Imλt, or the combination of Yukawa couplings which control the amount

of CP violation in the model [27]. We can indeed write [25]

Imλt = 1.39 · 10−4

[
|Vus|

0.224

] [
1.53

X(xt)

]√
B(KL → π0νν̄)

3 · 10−11
, (2.5)
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Figure 3: Error budget of the SM prediction of BR(KL → π0νν̄) (left) and BR(K+ → π+νν̄(γ)) (right).
See text for details.

finds, by adding errors quadratically, the following SM predictions for the two K → πνν̄ rates

BR(KL → π0νν̄)SM = (2.54±0.35)×10−11 , (2.3)

BR(K+ → π+νν̄(γ))SM = (7.96±0.86)×10−11 . (2.4)

The error budgets of the SM predictions of both K → πνν̄ decays are illustrated by the pie charts
in Fig. 3. As the breakdown of the residual uncertainties shows, both decay modes are at present
subject mainly to parametric errors (81%, 69%) stemming from the CKM parameters, the quark
masses mc and mt , and αs(MZ). The non-parametric errors in KL → π0νν̄ are dominated by the
uncertainty due to higher-order perturbative effects (15%), while in the case of K+ → π+νν̄(γ) the
errors due to dimension-eight charm and LD up quark effects (16%) and left over scale uncertainties
(12%) are similar in size. Given the expected improvement in the extraction of the CKM elements
through the B-factories, SM predictions for both K → πνν̄ rates with an accuracy significantly
below 10% should be possible before the end of this decade. Such precisions are unique in the field
of flavor-changing-neutral-current processes.

3. Recent theoretical progress in B̄→ Xsγ and B̄→ Xs!+!−

Considerable effort has gone into the calculation of fixed-order logarithmic enhanced NNLO
QCD corrections to B̄ → Xsγ [11, 12, 13, 14]. A crucial part of the NNLO calculation is the
interpolation in the charm quark mass performed in [13]. The three-loop O(α2

s ) matrix elements
of the current-current operators Q1,2 contain the charm quark, and the NNLO calculation of these
matrix elements is essential to reduce the overall theoretical uncertainty of the SM calculation. In
fact, the largest part of the theoretical uncertainty in the NLO analysis of the BR is related to the
definition of the mass of the charm quark [15] that enters the O(αs) matrix elements 〈sγ|Q1,2|b〉.
The latter matrix elements are non-vanishing at two loops only and the scale at which mc should be
normalized is therefore undetermined at NLO. Since varying mc between mc(mc)∼ 1.25GeV and
mc(mb)∼ 0.85GeV leads to a shift in the NLO BR of more than 10% this issue is not an academic
one.

Finding the complete NNLO correction to 〈sγ|Q1,2|b〉 is a formidable task, since it involves
the evaluation of hundreds of three-loop on-shell vertex diagrams that are presently not even known
in the case mc = 0. The approximation made in [13] is based on the observation that at the phys-
ical point mc ∼ 0.25mb the large mc ' mb asymptotic form of the exact O(αs) [16] and large-β0
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lots of work to be done before we can fully exploit the 
precision of Project X kaon experiments
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Figure 1: P.d.f.’s for ∆Ceff
7 (top-left), ∆C (top-right) and ∆C vs. ∆Ceff

7 (bottom). Dark (light)

areas correspond to the 68% (95%) probability region.

In Figure 1 we plot the p.d.f. for ∆C(v) and ∆Ceff
7 , that represent F i

New in (2.1) and enter

eq. (2.5). In Figure 2 we plot the p.d.f. for the branching ratios. The corresponding upper

bounds at 95% probability are reported in Table 3, where, for comparison, we also report the

results obtained within the SM, using the same CKM parameters obtained from the UUT
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Figure 1: Regions in the mt̃ – mχ̃ plane (lightest stop and chargino masses) allowing en-
hancements of B(K+ → π+νν̄) of more than 11% (yellow/light gray), 8.5% (red/medium
gray) and 6% (blue/dark gray) in the MFV scenario, for tanβ = 2 and MH+ > 1 TeV [the
corresponding enhancements for B(KL → π0νν̄) are 15%, 12.5% and 10%, respectively,
see Eq. (21)].

R(K → f) = B(K → f)/B(K → f)SM , (22)

in the region of maximal enhancements (i.e. 10% to 16% for the neutral mode). In
principle, the relation (21) would allow the best test of the MFV hypothesis. However, the
experimental challenges of the KL → π0νν̄ mode make the correlation between B(K+ →
π+νν̄), mt̃ and mχ̃ outlined in Figure 1 a more useful test for the near future.

In Figure 2, we present a more detailed analysis of the parameter-space region with
enhanced B(K → πνν̄), showing the two-dimensional projections on the most significant
planes. In this case is even more evident the key role of a precision measurement of B(K →
πνν̄) in selecting a well-defined region of the model, or in constraining its structure. As
can be noted, an important role is played by the parameter a4: sizable enhancements of
B(K → πνν̄) can occur only for large enough values of this parameter. The reason of this
effect can be traced back to the enhancement mechanism discussed in Ref. [11]. Indeed,
even within the MFV scenario one generates non-vanishing left-right flavour-mixing terms
in the squark basis of Refs. [10,11]. In particular, the double mass-insertion combination
which controls possible enhancements in B(K → πνν̄) [11, 13] assumes the form6(

δ̄U
RL

)∗
32

(
δ̄U
RL

)
31

∝ m2
tV

∗
tsVtd |a∗

4 − µ cotβ|2 (23)
6 We denote by (δ̄U

LR)ij the flavour-mixing couplings of Eq. (18) in the squark basis of Refs. [10, 11].
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• Assuming that future more precise measurements of the K → πνν̄ branching ratios will

be consistent with the MFV upper bounds presented here, the determination of C through

these decays will imply much sharper predictions for various branching ratios that could

confirm or rule out the MFV scenario. In this context the correlations between various

branching ratios discussed in [8] will play the crucial role.

• One of such correlations predicts that the measurement of sin 2β and of Br(K+ → π+νν̄)

implies only two values of Br(KL → π0νν̄) in the full class of MFV models that corre-

spond to two signs of the function X [42]. Figure 8 demonstrates that the solution with

X < 0, corresponding to the values in the left lower corner, is practically ruled out so

that a unique prediction for Br(KL → π0νν̄) can in the future be obtained.

• A strong violation of any of the 95% probability upper bounds on the branching ratios

considered here by future measurements will imply a failure of MFV as defined in [5],

unless an explicit MFV scenario can be found in which the contributions of box diagrams

are significantly larger than assumed here. Dimensional arguments [43] and explicit

calculations indicate that such a possibility is rather remote.

• If the only violation of the upper bounds in Table 3 occurs in Bs → µ+µ− and Bd →

µ+µ−, it will be most likely due to new operators beyond the SM ones. For example, the

scalar operators which arise in MFV SUSY models at large tan β can enhance Br(Bs →

µ+µ−) up to the present experimental upper bound [9, 13, 49].

• Conversely, a violation of the upper bounds for the other channels in Table 3 would

signal the presence of new sources of flavour and in particular of CP violation. This can

be confirmed observing a violation of the correlations between K and B decays discussed

above.

• In particular, recalling that in most extensions of the SM the decays K → πνν̄ are

governed by the single (V − A) ⊗ (V − A) operator, the violation of the upper bounds

on at least one of the K → πνν̄ branching ratios, will either signal the presence of new

complex weak phases at work or new contributions that violate the correlations between

the B decays and K decays.

Assuming that the MFV scenario will survive future tests, the next step will be to identify

the correct model in this class. Clearly, direct searches at high energy colliders can rule out

or identify specific extensions of the SM. But also FCNC processes can play an important role

in this context, provided the theoretical and experimental uncertainties in some of them will

be sufficiently decreased. In this case, by studying simultaneously several branching ratios

it should be in principle possible to select the correct MFV models by just identifying the

pattern of enhancements and suppressions relative to the SM that is specific to a given model.

If this pattern is independent of the values of the parameters defining the model, no detailed

quantitative analysis of the enhancements and suppressions is required in order to rule it out.

20

Figure 8: P.d.f. for the branching ratios of the rare decays Br(KL → π0νν̄) vs Br(K+ →

π+νν̄). Dark (light) areas correspond to the 68% (95%) probability region. Very light areas

correspond to the range obtained without using the experimental information.

As in the previous cases, the HI solution corresponds to a much lower upper bound.

Let us now consider B decays:

Br(B → Xsνν̄) = [0, 5.17] (LOW : [0, 1.56] ∪ [1.59, 5.4], HI : [0, 3.22]) × 10−5 ,

Br(B → Xdνν̄) = [0, 2.17] (LOW : [0, 2.26], HI : [0, 1.34]) × 10−6 ,

Br(Bs → µµ̄) = [0, 7.42] (LOW : [0, 7.91], HI : [0, 3.94]) × 10−9 ,

Br(Bd → µµ̄) = [0, 2.20] (LOW : [0, 2.37], HI : [0, 1.15]) × 10−10 . (3.9)

The reader may wonder whether other observables could help improving the constraints on

∆C and testing MFV models. In particular, the Forward-Backward asymmetry in B → Xsl+l−

is known to be a very sensitive probe of Ceff
7 and of C [44]. Indeed, the HI and LOW solutions for

∆Ceff
7 and corresponding possible values of ∆C give rise to different profiles of the normalized

ĀFB, defined as

ĀFB(ŝ) =

∫ 1
−1 d cos θl

d2Γ(b→sµ+µ−)
dŝd cos θl

sgn(cos θl)∫ 1
−1 d cos θl

d2Γ(b→sµ+µ−)
dŝd cos θl

. (3.10)
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Figure 7: P.d.f.’s for ∆Ceff
7 (top-left), ∆C (top-right), ∆C vs. ∆Ceff

7 (bottom-left) and

Br(K+ → π+νν̄) vs ∆C (bottom-right) obtained without using Br(K+ → π+νν̄) as a con-

straint. Dark (light) areas correspond to the 68% (95%) probability region.

(see Figures 2, 5 and 6). In Figure 8 we see explicitly the correlation between the charged

and neutral Kaon decay modes. We observe a very strong correlation, a peculiarity of models

with MFV [42]. In particular, a large enhancement of Br(KL → π0νν̄) characteristic of models

with new complex phases is not possible [43]. An observation of Br(KL → π0νν̄) larger than

6 · 10−11 would be a clear signal of new complex phases or new flavour changing contributions

that violate the correlations between B and K decays.

The 95% probability ranges for Br(KL → µ+µ−)SD are

Br(KL → µ+µ−)SD = [0, 1.36] (LOW : [0, 1.44], HI : [0, 0.74]) × 10−9 . (3.8)
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➡ If supersymmetry is discovered at the LHC, it will be of great 
importance to understand to what extent it is minimally flavor 
violating

➡ Project X kaon experiments could play a decisive role here.

KAON PHYSICS AND              
MINIMAL FLAVOR VIOLATION


