

Taku Yamanaka Osaka Univ.

Nov. 16, 2007@Fermilab Workshop on Physics with a high intensity proton source

* Joint (between KEK and JAEA)

* Proton Accelerator Research Complex

Streaming |||||||| 100%

Eye alt 1783.18 mi

Ē

ф

ė

© 2006 Europa Technologies © 2006 ZENRIN Image © 2006 TerraMetrics Image © 2006 NASA

Pointer 37*19'13.52" N 142°22'35.36" E elev 0 ft

Streaming |||||||| 100%

***Google**

Eye alt 614.14 mi //

Google Earth

🔍 🔲 🦎 🛋 🍪 🥪 🚦 🕅 🖽

Ŧ

KEK

Tokyo

C 2006 ZENRIN Image © 2006 TerraMetrics

Pointer 36"44'14.81" N 141°10'56.10" E elev 0 ft

Streaming |||||||| 100%

Eye alt 202.34 mi //

Google Earth

Q

÷

N)

 $\bigcirc D$

Image © 2006 DigitalGlobe

Image © 2006 TerraMetrics

Streaming ||||||||| 100%

™Google™

Eye alt 12.11 mi

Google Earth

· 🔍 🔲 🛠 MB _* & ₽* I

8

7

N)D

÷ ¢ ė

Image © 2006 DigitalGlobe

Pointer 36°26'50.86" N 140°36'13.33" E elev 23 ft

Streaming ||||||||100%

Image © 2006 DigitalGlobe Image © 2006 TerraMetrics

""Google

Design Spec.

- * 30-50GeV
- * 3E14 protons/3.3sec
- * Fast extraction for neutrino experiment
- * Slow extraction for Kaon, nuclear physics, hadron physics

Linac

* Nov. 20th, 2006 : $50 \text{keV} \rightarrow 3 \text{ MeV}$ by RFQ

* Jan. 24, 2007 : 18 IMeV, beam at the end of Linac

3GeV Synchrotron

* 25Hz cycle

* Oct. 31, 2007: Accelerated up to 3GeV!

* March 2007: All magnets were installed.

* Start dry run in Dec. 2007.

Plane view of Hadron Beamline NP-HALL $56m(L) \times 60m(W)$ 50-GeV PS A-Line Switch Yard T1 target (30% Loss) Beam Dump 750kW

Hadron Hall

Official Schedule

- 50GeV-Ring will
 - start Dry Run in Dec, 2007.
 - accept beam from 3GeV-Ring in April ~ July, 2008.
 - install extraction magnets for Hadron bl. during summer shutdown in 2008.
- Hadron beamline will
 - accept first beam in Dec. 2008.
 - start beam tuning \rightarrow until end of March, 2009.

 \Rightarrow Hadron Experimental Hall will be available in Summer, 2007.

 Neutrino beamline will accept first beam on April 1st, 2009, and will start T2K experiment.

Multi-purpose accelerator complex

- * Material and Life (neutrons and muons)
- * High energy physics (neutrinos and Kaons)
- * Nuclear physics (Kaons and protons)

Material & Life Experimental Facility

THATTA ILLI

18

Material & Life Experimental Facility

Mercury target for neutron source

20

July 19, 2007

J-PARC

A doorway to New Physics

Neutrino Oscillation

24

Tokai to Kamioka

How to make v_{μ}

Bend protons hard

Superconducting bending magnet

1/16, 2007

Final Focusing Section / ARC

Supported by CCLRC/RAL and

BARTOSZEK ENGINEERING

Target Station Ti-alloy Beam Window BEAM BEAM Allower Station Beam Beam

KEKTC07: KEK Topical Conference, February 2007

Ishida@KEKTC07

29

T->µv Decay volume

Far Detector=50kton SuperKamiokande

Sensitivity to 923

Ichikawa, 2006

Sensitivity to 913 Expected signal+BG **10**⁻¹ 50 90%CL **∆BG=10%** events/22.5kt/5yrs **1**0-2 $(\sin^2 2\vartheta_{13} = 0.10, \Delta m^2 = 0.0025)$ **5years** 40 ${{{\Delta m}_{13}}^2}$ Total BG

10⁻³

10-4

10⁻³

BG from ν_{μ}

Δm²=2.5x10⁻³eV²,sin²2θ₁₃=0.1

0

		1. 2.	5. 4.	5. E _v rec Ass	suming sin ² 0 ₂₃ =0.8	sin²2θ₁₃ 5, δ=0, no matte
	$sin^2 2\theta_{13}$	Ba ν _μ	ackground in Super-K		Signal	Signal + BG
Z	0.1	10	13	23	103	126
	0.01				10	33

30

20

10

0

Ichikawa, 2006

CHOOZ Cluded

1

~20

10⁻¹

10-2

Ki->T⁰vv in Standard Model

 η

* BR = (2.8±0.4) x 10⁻¹¹
(w/currently known
CKM parameters)

* 1 - 2% theoretical error

New Physics adds extra amplitude

s

 η

 \widetilde{u}

 $K_L \to \pi^0 \nu \overline{\nu}$

* Compare with B results

 $\rightarrow J/\psi K_S$

d

 $\overline{\nu}$

37

probe New Physics

based on Bryman-Buras-Isidori-Littenberg, hep-ph/0505171

Step 0=KEK E391a w/12GeV protons

E391a Detector

* Published BR<2.1x10⁻⁷ (90% CL) based on 10% of Run 1

J-Parc E14 Step 1

* Modified E391a detector at KO beamline

Step 1 Detector

* Hermetic veto system w/high detection efficiency

Signal Sensitivity

45

* July 2006: Stage 1 approval

- * July 2007: Stage 2 approval recommended by PAC
- * KEK is reviewing the experiment to schedule beamline construction etc..

* Optimized beamline with 5deg angle for

* higher KL momentum <PK>=5.2GeV/c

higher yield: 4.4E7/2µsr /3E14pot

T-violation experiment

Thanks to Jun Imazato@KEK

T-violation exp. @ J-Parc

- * J-Parc E04 aims dPT = 10-4
 - * x 30 beam intensity
 - * x 10 acceptance
 - * high analyzing power for polarization
 - * better misalignment measurements
 - * correction of systematic effects

Sensitivity

- * Statistical error : 1.35E-4 w/
 - * 1E7 sec running time
 - * 9µA proton beam on target
 - * 3MHz K⁺ beam
 - * 7.2E8 events for analysis
- * Systematic error: 1E-4

Lepton Number Violation?

$\mu \rightarrow e?$

Sensitivity to Different Muon Conversion Mechanisms

Supersymmetry Predictions at 10⁻¹⁵

MECC

55

 $\Lambda_{\rm c}$ = 3000 TeV

 Heavy Neutrinos
 μ^{-1}
 $|U^*_{\mu N} U_{eN}|^2 =$ μ^{-1}
 8×10^{-13} q^{-1}

Second Higgs doublet

$$g_{H\mu e} = 10^{-4} \times g_{H\mu \mu}$$

Heavy Z', Anomalous Z coupling $M_{Z'} = 3000 \text{ TeV/c}^2$ $B(Z \rightarrow \mu e) < 10^{-17}$

µ-e conversion in atom

- * muon is captured in 1s state
- * µ + N(A,Z) --> e + N(A,Z)
- * Signal = 105MeV e⁻
- * Background

- * end point of µ->evv decay
- * beam related background

Backgrounds

* pion capture in atom (prompt)

* $\pi^{+}(A,Z) \rightarrow (A,Z^{-})^{*} \rightarrow \gamma + (A,Z^{-}); \gamma \rightarrow e^{+}e^{-}$

Need <1E-9 proton extinction</p>

* muon decay in orbit

* Need accurate E and t measurements

59

Pulsed Proton Beam (2) : Bunching Scheme

- J-PARC Accelerator Complex
- RCS : 1 bunch operation
 h=1 or h=2 w/ empty bucket
- MR : Empty bucket Scheme
 h=9 or h=8
- Adiabatic dumping : small
 - 30 GeV \rightarrow 8 GeV
 - Reduce RCS painting area
 - Smaller 3-50BT collimator
- 8 GeV, 7 µA; 56 kW to NP-Hall

Electron Detection (preliminary)

Under a solenoidal magnetic field of 1 Tesla.

In vacuum to reduce multiple scattering.

Straw-tube Trackers to measure electron momentum.

- should work in vacuum and under a magnetic field.
- •A straw tube has 25µm thick, 5 mm diameter.
- •One plane has 2 views (x and y) with 2 layers per view.
- Five planes are placed with 48 cm distance.
- •250µm position resolution.

Sensitivity and background

- * 8E20 8GeV protons x 2.4E-3 muons/p
 - x 0.29 stopping eff = 6E17 stopping muons
- * x 0.6 muon capture eff x 7% acceptance
- * ==> BR<1E-16 (90%CL)
- * 0.34 bkg events (0.12 radiative pion capture, 0.05 muon decay in orbit, ...)

JFY starts in April

J-PARC Construction Schedule

Feb. 27 2006

schedule was created

Construction Start

Facility

Operation

JFY starts in April

J-PARC Construction Schedule

Feb. 27 2006

63

- Phase 1 + Phase 2 = 1,890 Oku Yen (= \$1.89 billions if \$1 = 100 Yen).
- Phase 1 = 1,527 Oku Yen (= 1.5 billions) for ~ 8 years.
- JAEA: 860 Oku Yen (56%), KEK: 667 Oku Yen (44%).

Commissioning & Linac Energy Recovery

- Power beyond 1 MW (neutrinos to study CP violation in the leptonic sector)
 - Design study was advanced to 1.3 MW.
 - Possibility up to 2.7 MW is in progress by the Accelerator group.
 - Users want up to 4 MW.
- Muon Storage Ring (LFV, muon g-2, etc.)
 - Need additional extraction beam line.
 - Exit was already prepared.
 - Anti-protons together with muons?
- Polarized Protons
 - Study group was formed.
 - Installation of Siberian snakes seems possible.
- Heavy Ion Acceleration
 - Interest exists among users.
 - Need technical studies.

- Power beyond 1 MW (neutrinos to study CP violation in the leptonic sector)
 - Design study was advanced to 1.3 MW.
 - Possibility up to 2.7 MW is in progress by the Accelerator group.
 - Users want up to 4 MW.
- Muon Storage Ring (LFV, muon g-2, etc.)
 - Need additional extraction beam line.
 - Exit was already prepared.
 - Anti-protons together with muons?
- Polarized Protons
 - Study group was formed.
 - Installation of Siberian snakes seems possible.
- Heavy Ion Acceleration
 - Interest exists among users.
 - Need technical studies.

Summary

- * J-Parc is the Intensity Frontier in the world
- * J-Parc covers wide scientific areas; life, materials, nuclear and particle physics
- * Coming up soon!

Backgroundの評価

	Backgrounds	Events	Comments
(1)	Muon decay in orbit Radiative muon capture Muon capture with neutron emission Muon capture with charged particle emission	0.05 <0.001 <0.001 <0.001	230 keV resolution
(2)	Radiative pion capture* Radiative pion capture Muon decay in flight* Pion decay in flight* Beam electrons* Neutron induced* Antiproton induced	0.12 0.002 <0.02 <0.001 0.08 0.024 0.007	prompt late arriving pions for high energy neutrons for 8 GeV protons
(3)	Cosmic-ray induced Pattern recognition errors	0.04 <0.001	10 ⁻⁴ veto efficiency
	Total	0.34	

Construction Budget

Construction Budget

Operational Cost of J-PARC

200 day data taking

(Other personnel's: About 30 Oku Yen)

Operational Cost of J-PARC

200 day data taking

The Review Committee understood the reason why this budget is needed. However, an effort to reduce the cost was also recommended.

Total: 187 Oku Yen

(Other personnel's: About 30 Oku Yen)

Operational Cost of J-PARC

200 day data taking

The Review Committee understood the reason why this budget is needed. However, an effort to reduce the cost was also recommended.

Request for JFY2008:

- All except neutrino start to run.
- 110day operation for neutrons.
 Operational cost for JFY2008
 - KEK: 39 Oku Yen
 - JAEA: 53 Oku Yen
- Total 92 Oku Yen

Plane view of Hadron Experimental Hall

